1
|
Liu Q, Zou X, Zhao M, Guan Q, Xuan Z, Liu L, Gao Z. Integrated transcriptome and metabolome analysis of liver reveals unsynchronized growth mechanisms in blunt-snout bream (Megalobrama amblycephala). BMC Genomics 2025; 26:30. [PMID: 39806290 PMCID: PMC11727267 DOI: 10.1186/s12864-025-11208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Megalobrama amblycephala presents unsynchronized growth, which affects its productivity and profitability. The liver is essential for substance exchange and energy metabolism, significantly influencing the growth of fish. RESULTS To investigate the differential metabolites and genes governing growth, and understand the mechanism underlying their unsynchronized growth, we conducted comprehensive transcriptomic and metabolomic analyses of liver from fast-growing (FG) and slow-growing (SG) M. amblycephala individuals. A total of 2,097 differentially expressed genes (DEGs) were identified between FG and SG, with 830 genes exhibiting significantly higher expression level in FG. KEGG and GO enrichment analysis indicated that the DEGs with higher expression level were significantly correlated with insulin signaling pathway, steroid hormone and lipid metabolism related pathway (PPAR signaling pathway and fatty acid degradation). In the metabolomic analysis, 224 differentially expressed metabolites (DEMs) were detected, of which 128 were significantly more abundant in FG. These more abundant DEMs were prominently enriched in pathways associated with cell proliferation and energy metabolism (Oxidative phosphorylation, mTOR signaling pathway and FoxO signaling pathway). In addition, DEGs and DEMs in adenosine diphosphate (ATP) hydrolysis activity and associate with fatty acid metabolism, glucose metabolism, and amino acid metabolism pathways were both found in the transcriptomic and metabolomic integrated data. These findings suggest that the large amounts of energy generated by fatty acid, glucose metabolism and other energy metabolism pathway promote the rapid growth of FG. CONCLUSIONS This research is the first to integrate metabolomic and transcriptomic analyses of liver to identify key genes, metabolites, and pathways to uncover the molecular and metabolic mechanisms of unsynchronized growth in M. amblycephala. The identified metabolic and genes can be potential targets for selective breeding programs to improve growth performance in aquaculture.
Collapse
Affiliation(s)
- Qi Liu
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
| | - Xue Zou
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Ming Zhao
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
| | - Qianqian Guan
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
| | - Zhaoyang Xuan
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China
| | - Lusha Liu
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China.
- Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan, 430070, China.
| | - Zexia Gao
- College of Fisheries, Huazhong Agricultural University, No.1, Shizishan street, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
2
|
Rbbani G, Murshed R, Siriyappagouder P, Sharko F, Nedoluzhko A, Joshi R, Galindo-Villegas J, Raeymaekers JAM, Fernandes JMO. Embryonic temperature has long-term effects on muscle circRNA expression and somatic growth in Nile tilapia. Front Cell Dev Biol 2024; 12:1369758. [PMID: 39149515 PMCID: PMC11324953 DOI: 10.3389/fcell.2024.1369758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Embryonic temperature has a lasting impact on muscle phenotype in vertebrates, involving complex molecular mechanisms that encompass both protein-coding and non-coding genes. Circular RNAs (circRNAs) are a class of regulatory RNAs that play important roles in various biological processes, but the effect of variable thermal conditions on the circRNA transcriptome and its long-term impact on muscle growth plasticity remains largely unexplored. To fill this knowledge gap, we performed a transcriptomic analysis of circRNAs in fast muscle of Nile tilapia (Oreochromis niloticus) subjected to different embryonic temperatures (24°C, 28°C and 32°C) and then reared at a common temperature (28°C) for 4 months. Nile tilapia embryos exhibited faster development and subsequently higher long-term growth at 32°C compared to those reared at 28°C and 24°C. Next-generation sequencing data revealed a total of 5,141 unique circRNAs across all temperature groups, of which 1,604, 1,531, and 1,169 circRNAs were exclusively found in the 24°C, 28°C and 32°C groups, respectively. Among them, circNexn exhibited a 1.7-fold (log2) upregulation in the 24°C group and a 1.3-fold (log2) upregulation in the 32°C group when compared to the 28°C group. Conversely, circTTN and circTTN_b were downregulated in the 24°C groups compared to their 28°C and 32°C counterparts. Furthermore, these differentially expressed circRNAs were found to have multiple interactions with myomiRs, highlighting their potential as promising candidates for further investigation in the context of muscle growth plasticity. Taken together, our findings provide new insights into the molecular mechanisms that may underlie muscle growth plasticity in response to thermal variation in fish, with important implications in the context of climate change, fisheries and aquaculture.
Collapse
Affiliation(s)
- Golam Rbbani
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Riaz Murshed
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Fedor Sharko
- Paleogenomics Laboratory, European University at Saint Petersburg, Saint Petersburg, Russia
- Paleogenomics Laboratory, National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Artem Nedoluzhko
- Paleogenomics Laboratory, European University at Saint Petersburg, Saint Petersburg, Russia
| | | | - Jorge Galindo-Villegas
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Jorge M. O. Fernandes
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Institute of Marine Sciences, Spanish National Research Council, Barcelona, Spain
| |
Collapse
|
3
|
Zou X, Liu Q, Guan Q, Zhao M, Zhu X, Pan Y, Liu L, Gao Z. Muscle Fiber Characteristics and Transcriptome Analysis in Slow- and Fast-Growing Megalobrama amblycephala. Genes (Basel) 2024; 15:179. [PMID: 38397169 PMCID: PMC10888202 DOI: 10.3390/genes15020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Growth is an important trait in aquaculture that is influenced by various factors, among which genetic regulation plays a crucial role. Megalobrama amblycephala, one of the most important freshwater species in China, exhibits wide variations in body mass among individuals of the same age within the same pool. But the molecular mechanisms underlying wide variation in body mass remain unclear. Here, we performed muscle histological and transcriptome analysis of muscle tissues from Fast-Growing (FG) and Slow-Growing (SG) M. amblycephala at the age of 4 months old (4 mo) and 10 months old (10 mo) to elucidate its muscle development and growth mechanism. The muscle histological analysis showed smaller diameter and higher total number of muscle fibers in FG compared to SG at 4 mo, while larger diameter and total number of muscle fibers were detected in FG at 10 mo. The transcriptome analysis of muscle tissue detected 1171 differentially expressed genes (DEGs) between FG and SG at 4 mo, and 718 DEGs between FG and SG at 10 mo. Furthermore, 44 DEGs were consistently up-regulated in FG at both 4 mo and 10 mo. Up-regulated DEGs in FG at 4 mo were mainly enriched in the pathways related to cell proliferation, while down-regulated DEGs were significantly enriched in cell fusion and muscle contraction. Up-regulated DEGs in FG at 10 mo were mainly enriched in the pathways related to cell proliferation and protein synthesis. Therefore, these results provide novel insights into the molecular mechanism of M. amblycephala muscle growth at different stages, and will be of great guiding significance to promote the fast growth of M. amblycephala.
Collapse
Affiliation(s)
- Xue Zou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Qi Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Qianqian Guan
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Ming Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Xin Zhu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha 410003, China; (X.Z.)
| | - Yaxiong Pan
- Department of Bioengineering and Environmental Science, Changsha University, Changsha 410003, China; (X.Z.)
| | - Lusha Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Zexia Gao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan 430070, China
| |
Collapse
|
4
|
Zhu W, Huang Y, Yu C. The emerging role of circRNAs on skeletal muscle development in economical animals. Anim Biotechnol 2023; 34:2778-2792. [PMID: 36052979 DOI: 10.1080/10495398.2022.2118130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
CircRNAs are a novel type of closed circular molecules formed through a covalent bond lacking a 5'cap and 3' end tail, which mainly arise from mRNA precursor. They are widely distributed in plants and animals and are characterized by stable structure, high conservativeness in cells or tissues, and showed the expression specificity at different stages of development in different tissues. CircRNAs have been gradually attracted wide attention with the development of RNA sequencing, which become a new research hotspot in the field of RNA. CircRNAs play an important role in gene expression regulation. Presently, the related circRNAs research in the regulation of animal muscle development is still at the initial stage. In this review, the formation, properties, biological functions of circRNAs were summarized. The recent research progresses of circRNAs in skeletal muscle growth and development from economic animals including livestock, poultry and fishes were introduced. Finally, we proposed a prospective for further studies of circRNAs in muscle development, and we hope our research could provide new ideas, some theoretical supports and helps for new molecular genetic markers exploitation and animal genetic breeding in future.
Collapse
Affiliation(s)
- Wenwen Zhu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, China
| | - Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Chuan Yu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, China
| |
Collapse
|
5
|
Rbbani G, Nedoluzhko A, Siriyappagouder P, Sharko F, Galindo-Villegas J, Raeymaekers JAM, Joshi R, Fernandes JMO. The novel circular RNA CircMef2c is positively associated with muscle growth in Nile tilapia. Genomics 2023; 115:110598. [PMID: 36906188 PMCID: PMC7614353 DOI: 10.1016/j.ygeno.2023.110598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023]
Abstract
Muscle growth in teleosts is a complex biological process orchestrated by numerous protein-coding genes and non-coding RNAs. A few recent studies suggest that circRNAs are involved in teleost myogenesis, but the molecular networks involved remain poorly understood. In this study, an integrative omics approach was used to determine myogenic circRNAs in Nile tilapia by quantifying and comparing the expression profile of mRNAs, miRNAs, and circRNAs in fast muscle from full-sib fish with distinct growth rates. There were 1947 mRNAs, 9 miRNAs, and 4 circRNAs differentially expressed between fast- and slow-growing individuals. These miRNAs can regulate myogenic genes and have binding sites for the novel circRNA circMef2c. Our data indicate that circMef2c may interact with three miRNAs and 65 differentially expressed mRNAs to form multiple competing endogenous RNA networks that regulate growth, thus providing novel insights into the role of circRNAs in the regulation of muscle growth in teleosts.
Collapse
Affiliation(s)
- Golam Rbbani
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Artem Nedoluzhko
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway; Paleogenomics laboratory, European University at Saint Petersburg, 191187 Saint-Petersburg, Russia
| | | | | | - Jorge Galindo-Villegas
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Joost A M Raeymaekers
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | | | - Jorge M O Fernandes
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway.
| |
Collapse
|