1
|
Zhang Q, Zhang Y, Guo S, Wang X, Wang H. Hydrogen sulfide plays an important role by regulating microRNA in different ischemia-reperfusion injury. Biochem Pharmacol 2024; 229:116503. [PMID: 39179120 DOI: 10.1016/j.bcp.2024.116503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/28/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
MicroRNAs (miRNAs) are the short endogenous non-coding RNAs that regulate the expression of the target gene at posttranscriptional level through degrading or inhibiting the specific target messenger RNAs (mRNAs). MiRNAs regulate the expression of approximately one-third of protein coding genes, and in most cases inhibit gene expression. MiRNAs have been reported to regulate various biological processes, such as cell proliferation, apoptosis and differentiation. Therefore, miRNAs participate in multiple diseases, including ischemia-reperfusion (I/R) injury. Hydrogen sulfide (H2S) was once considered as a colorless, toxic and harmful gas with foul smelling. However, in recent years, it has been discovered that it is the third gas signaling molecule after carbon monoxide (CO) and nitric oxide (NO), with multiple important biological functions. Increasing evidence indicates that H2S plays a vital role in I/R injury through regulating miRNA, however, the mechanism has not been fully understood. In this review, we summarized the current knowledge about the role of H2S in I/R injury by regulating miRNAs, and analyzed its mechanism in detail.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yanting Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xiao Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
2
|
Chen T, Bai D, Gong C, Cao Y, Yan X, Peng R. Hydrogen sulfide mitigates mitochondrial dysfunction and cellular senescence in diabetic patients: Potential therapeutic applications. Biochem Pharmacol 2024; 230:116556. [PMID: 39332692 DOI: 10.1016/j.bcp.2024.116556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/08/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Diabetes induces a pro-aging state characterized by an increased abundance of senescent cells in various tissues, heightened chronic inflammation, reduced substance and energy metabolism, and a significant increase in intracellular reactive oxygen species (ROS) levels. This condition leads to mitochondrial dysfunction, including elevated oxidative stress, the accumulation of mitochondrial DNA (mtDNA) damage, mitophagy defects, dysregulation of mitochondrial dynamics, and abnormal energy metabolism. These dysfunctions result in intracellular calcium ion (Ca2+) homeostasis disorders, telomere shortening, immune cell damage, and exacerbated inflammation, accelerating the aging of diabetic cells or tissues. Hydrogen sulfide (H2S), a novel gaseous signaling molecule, plays a crucial role in maintaining mitochondrial function and mitigating the aging process in diabetic cells. This article systematically explores the specific mechanisms by which H2S regulates diabetes-induced mitochondrial dysfunction to delay cellular senescence, offering a promising new strategy for improving diabetes and its complications.
Collapse
Affiliation(s)
- Ting Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Dacheng Bai
- Guangdong Institute of Mitochondrial Biomedicine, Room 501, Coolpad Building, No.2 Mengxi Road, High-tech Industrial Park, Nanshan District, Shenzhen, Guangdong Province 518000, China
| | - Changyong Gong
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xiaoqing Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
3
|
Jin Y, Yuan H, Liu Y, Zhu Y, Wang Y, Liang X, Gao W, Ren Z, Ji X, Wu D. Role of hydrogen sulfide in health and disease. MedComm (Beijing) 2024; 5:e661. [PMID: 39156767 PMCID: PMC11329756 DOI: 10.1002/mco2.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
In the past, hydrogen sulfide (H2S) was recognized as a toxic and dangerous gas; in recent years, with increased research, we have discovered that H2S can act as an endogenous regulatory transmitter. In mammals, H2S-catalyzing enzymes, such as cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, are differentially expressed in a variety of tissues and affect a variety of biological functions, such as transcriptional and posttranslational modification of genes, activation of signaling pathways in the cell, and metabolic processes in tissues, by producing H2S. Various preclinical studies have shown that H2S affects physiological and pathological processes in the body. However, a detailed systematic summary of these roles in health and disease is lacking. Therefore, this review provides a thorough overview of the physiological roles of H2S in different systems and the diseases associated with disorders of H2S metabolism, such as ischemia-reperfusion injury, hypertension, neurodegenerative diseases, inflammatory bowel disease, and cancer. Meanwhile, this paper also introduces H2S donors and novel release modes, as well as the latest preclinical experimental results, aiming to provide researchers with new ideas to discover new diagnostic targets and therapeutic options.
Collapse
Affiliation(s)
- Yu‐Qing Jin
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Ya‐Fang Liu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Yi‐Wen Zhu
- School of Clinical MedicineHenan UniversityKaifengHenanChina
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xiao‐Yi Liang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Zhi‐Guang Ren
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- Faculty of Basic Medical SubjectsShu‐Qing Medical College of ZhengzhouZhengzhouHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- School of StomatologyHenan UniversityKaifengHenanChina
- Department of StomatologyHuaihe Hospital of Henan UniversityKaifengHenanChina
| |
Collapse
|
4
|
Corvino A, Scognamiglio A, Fiorino F, Perissutti E, Santagada V, Caliendo G, Severino B. Pills of Multi-Target H 2S Donating Molecules for Complex Diseases. Int J Mol Sci 2024; 25:7014. [PMID: 39000122 PMCID: PMC11240940 DOI: 10.3390/ijms25137014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Among the various drug discovery methods, a very promising modern approach consists in designing multi-target-directed ligands (MTDLs) able to modulate multiple targets of interest, including the pathways where hydrogen sulfide (H2S) is involved. By incorporating an H2S donor moiety into a native drug, researchers have been able to simultaneously target multiple therapeutic pathways, resulting in improved treatment outcomes. This review gives the reader some pills of successful multi-target H2S-donating molecules as worthwhile tools to combat the multifactorial nature of complex disorders, such as inflammatory-based diseases and cancer, as well as cardiovascular, metabolic, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Angela Corvino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (A.S.); (F.F.); (E.P.); (V.S.); (G.C.); (B.S.)
| | | | | | | | | | | | | |
Collapse
|
5
|
Lin K, Zhang Y, Shen Y, Xu Y, Huang M, Liu X. Hydrogen Sulfide can Scavenge Free Radicals to Improve Spinal Cord Injury by Inhibiting the p38MAPK/mTOR/NF-κB Signaling Pathway. Neuromolecular Med 2024; 26:26. [PMID: 38907170 DOI: 10.1007/s12017-024-08794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Spinal cord injury (SCI) causes irreversible cell loss and neurological dysfunctions. Presently, there is no an effective clinical treatment for SCI. It can be the only intervention measure by relieving the symptoms of patients such as pain and fever. Free radical-induced damage is one of the validated mechanisms in the complex secondary injury following primary SCI. Hydrogen sulfide (H2S) as an antioxidant can effectively scavenge free radicals, protect neurons, and improve SCI by inhibiting the p38MAPK/mTOR/NF-κB signaling pathway. In this report, we analyze the pathological mechanism of SCI, the role of free radical-mediated the p38MAPK/mTOR/NF-κB signaling pathway in SCI, and the role of H2S in scavenging free radicals and improving SCI.
Collapse
Affiliation(s)
- Kexin Lin
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yanyang Shen
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yiqin Xu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China.
| |
Collapse
|
6
|
Gao X, Jin B, Zhou X, Bai J, Zhong H, Zhao K, Huang Z, Wang C, Zhu J, Qin Q. Recent advances in the application of gasotransmitters in spinal cord injury. J Nanobiotechnology 2024; 22:277. [PMID: 38783332 PMCID: PMC11112916 DOI: 10.1186/s12951-024-02523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Spinal Cord Injury (SCI) is a condition characterized by complete or incomplete motor and sensory impairment, as well as dysfunction of the autonomic nervous system, caused by factors such as trauma, tumors, or inflammation. Current treatment methods primarily include traditional approaches like spinal canal decompression and internal fixation surgery, steroid pulse therapy, as well as newer techniques such as stem cell transplantation and brain-spinal cord interfaces. However, the above methods have limited efficacy in promoting axonal and neuronal regeneration. The challenge in medical research today lies in promoting spinal cord neuron regeneration and regulating the disrupted microenvironment of the spinal cord. Studies have shown that gas molecular therapy is increasingly used in medical research, with gasotransmitters such as hydrogen sulfide, nitric oxide, carbon monoxide, oxygen, and hydrogen exhibiting neuroprotective effects in central nervous system diseases. The gas molecular protect against neuronal death and reshape the microenvironment of spinal cord injuries by regulating oxidative, inflammatory and apoptotic processes. At present, gas therapy mainly relies on inhalation for systemic administration, which cannot effectively enrich and release gas in the spinal cord injury area, making it difficult to achieve the expected effects. With the rapid development of nanotechnology, the use of nanocarriers to achieve targeted enrichment and precise control release of gas at Sites of injury has become one of the emerging research directions in SCI. It has shown promising therapeutic effects in preclinical studies and is expected to bring new hope and opportunities for the treatment of SCI. In this review, we will briefly outline the therapeutic effects and research progress of gasotransmitters and nanogas in the treatment of SCI.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Bingrong Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Jinyu Bai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Hao Zhong
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Kai Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Zongrui Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jiang Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Qin Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
7
|
Scheid S, Goebel U, Ulbrich F. Neuroprotection Is in the Air-Inhaled Gases on Their Way to the Neurons. Cells 2023; 12:2480. [PMID: 37887324 PMCID: PMC10605176 DOI: 10.3390/cells12202480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Cerebral injury is a leading cause of long-term disability and mortality. Common causes include major cardiovascular events, such as cardiac arrest, ischemic stroke, and subarachnoid hemorrhage, traumatic brain injury, and neurodegenerative as well as neuroinflammatory disorders. Despite improvements in pharmacological and interventional treatment options, due to the brain's limited regeneration potential, survival is often associated with the impairment of crucial functions that lead to occupational inability and enormous economic burden. For decades, researchers have therefore been investigating adjuvant therapeutic options to alleviate neuronal cell death. Although promising in preclinical studies, a huge variety of drugs thought to provide neuroprotective effects failed in clinical trials. However, utilizing medical gases, noble gases, and gaseous molecules as supportive treatment options may offer new perspectives for patients suffering neuronal damage. This review provides an overview of current research, potentials and mechanisms of these substances as a promising therapeutic alternative for the treatment of cerebral injury.
Collapse
Affiliation(s)
- Stefanie Scheid
- Department of Anesthesiology and Critical Care, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care Medicine, St. Franziskus-Hospital, 48145 Muenster, Germany;
| | - Felix Ulbrich
- Department of Anesthesiology and Critical Care, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| |
Collapse
|
8
|
Baskaran K, Johnson JT, Prem PN, Ravindran S, Kurian GA. Evaluation of prophylactic efficacy of sodium thiosulfate in combating I/R injury in rat brain: exploring its efficiency further in vascular calcified brain slice model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2587-2598. [PMID: 37058187 DOI: 10.1007/s00210-023-02481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Cerebral ischemia reperfusion injury (CIR) is one of the clinical manifestations encountered during the management of stroke. High prevalence of intracranial arterial calcification is reported in stroke patients. However, the impact of vascular calcification (VC) in the outcome of CIR and the efficacy of mechanical preconditioning (IPC) and pharmacological conditioning with sodium thiosulphate (STS) in ameliorating IR remains unclear. Two experimental models namely carotid artery occlusion (n = 36) and brain slice models (n = 18) were used to evaluate the efficacy of STS in male Wistar rats. IR was inflicted in rat by occluding carotid artery for 30 min followed by 24-h reperfusion after STS (100 mg/kg) administration. Brain slice model was used to reconfirm the results to account blood brain barrier permeability. Further, brain slice tissue was utilised to evaluate the efficacy of STS in VC rat brain by measuring the histological alterations and biochemical parameters. Pre-treatment of STS prior to CIR in intact animal significantly reduced the IR-associated histopathological alterations in brain, declined oxidative stress and improved the mitochondrial function found to be similar to IPC. Brain slice model data also confirmed the neuroprotective effect of STS similar to IPC in IR challenged tissue slice. Higher tissue injury was noted in VC brain IR tissue than normal IR tissue. Therapeutic efficacy of STS was evident in VC rat brain tissues and normal tissues subjected to IR. On the other hand, IPC-mediated protection was noted only in IR normal and adenine-induced VC brain tissues not in high-fat diet (HFD) induced VC brain tissues. Based on the results, we concluded that similar to IPC, STS was effective in attenuating IR injury in CIR rat brain. Vascular calcification adversely affected the recovery protocol of brain tissues from ischemic insult. STS was found to be an effective agent in ameliorating the IR injury in both adenine and HFD induced vascular calcified rat brain, but IPC-mediated neuroprotection was absent in HFD-induced VC brain tissues.
Collapse
Affiliation(s)
- Keerthana Baskaran
- Vascular Biology Lab, SASTRA Deemed University, 117, Anusandhan Kendra, TirumalaisamudramThanjavur, 613401, Tamil Nadu, India
| | - Jefri Thimoathi Johnson
- Vascular Biology Lab, SASTRA Deemed University, 117, Anusandhan Kendra, TirumalaisamudramThanjavur, 613401, Tamil Nadu, India
| | - Priyanka N Prem
- Vascular Biology Lab, SASTRA Deemed University, 117, Anusandhan Kendra, TirumalaisamudramThanjavur, 613401, Tamil Nadu, India
- School of Chemical and Biotechnology, SASTRA Deemed University, TirumalaisamudramThanjavur, 613401, Tamil Nadu, India
| | - Sriram Ravindran
- Vascular Biology Lab, SASTRA Deemed University, 117, Anusandhan Kendra, TirumalaisamudramThanjavur, 613401, Tamil Nadu, India
| | - Gino A Kurian
- Vascular Biology Lab, SASTRA Deemed University, 117, Anusandhan Kendra, TirumalaisamudramThanjavur, 613401, Tamil Nadu, India.
- School of Chemical and Biotechnology, SASTRA Deemed University, TirumalaisamudramThanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
9
|
Głowacka U, Magierowski M, Śliwowski Z, Cieszkowski J, Szetela M, Wójcik-Grzybek D, Chmura A, Brzozowski T, Wallace JL, Magierowska K. Hydrogen Sulfide-Releasing Indomethacin-Derivative (ATB-344) Prevents the Development of Oxidative Gastric Mucosal Injuries. Antioxidants (Basel) 2023; 12:1545. [PMID: 37627540 PMCID: PMC10452022 DOI: 10.3390/antiox12081545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Hydrogen sulfide (H2S) emerged recently as an anti-oxidative signaling molecule that contributes to gastrointestinal (GI) mucosal defense and repair. Indomethacin belongs to the class of non-steroidal anti-inflammatory drugs (NSAIDs) and is used as an effective intervention in the treatment of gout- or osteoarthritis-related inflammation. However, its clinical use is strongly limited since indomethacin inhibits gastric mucosal prostaglandin (PG) biosynthesis, predisposing to or even inducing ulcerogenesis. The H2S moiety was shown to decrease the GI toxicity of some NSAIDs. However, the GI safety and anti-oxidative effect of a novel H2S-releasing indomethacin derivative (ATB-344) remain unexplored. Thus, we aimed here to compare the impact of ATB-344 and classic indomethacin on gastric mucosal integrity and their ability to counteract the development of oxidative gastric mucosal injuries. Wistar rats were pretreated intragastrically (i.g.) with vehicle, ATB-344 (7-28 mg/kg i.g.), or indomethacin (5-20 mg/kg i.g.). Next, animals were exposed to microsurgical gastric ischemia-reperfusion (I/R). Gastric damage was assessed micro- and macroscopically. The volatile H2S level was assessed in the gastric mucosa using the modified methylene blue method. Serum and gastric mucosal PGE2 and 8-hydroxyguanozine (8-OHG) concentrations were evaluated by ELISA. Molecular alterations for gastric mucosal barrier-specific targets such as cyclooxygenase-1 (COX)-1, COX-2, heme oxygenase-1 (HMOX)-1, HMOX-2, superoxide dismutase-1 (SOD)-1, SOD-2, hypoxia inducible factor (HIF)-1α, xanthine oxidase (XDH), suppressor of cytokine signaling 3 (SOCS3), CCAAT enhancer binding protein (C/EBP), annexin A1 (ANXA1), interleukin 1 beta (IL-1β), interleukin 1 receptor type I (IL-1R1), interleukin 1 receptor type II (IL-1R2), inducible nitric oxide synthase (iNOS), tumor necrosis factor receptor 2 (TNFR2), or H2S-producing enzymes, cystathionine γ-lyase (CTH), cystathionine β-synthase (CBS), or 3-mercaptopyruvate sulfur transferase (MPST), were assessed at the mRNA level by real-time PCR. ATB-344 (7 mg/kg i.g.) reduced the area of gastric I/R injuries in contrast to an equimolar dose of indomethacin. ATB-344 increased gastric H2S production, did not affect gastric mucosal PGE2 content, prevented RNA oxidation, and maintained or enhanced the expression of oxidation-sensitive HMOX-1 and SOD-2 in line with decreased IL-1β and XDH. We conclude that due to the H2S-releasing ability, i.g., treatment with ATB-344 not only exerts dose-dependent GI safety but even enhances gastric mucosal barrier capacity to counteract acute oxidative injury development when applied at a low dose of 7 mg/kg, in contrast to classic indomethacin. ATB-344 (7 mg/kg) inhibited COX activity on a systemic level but did not affect cytoprotective PGE2 content in the gastric mucosa and, as a result, evoked gastroprotection against oxidative damage.
Collapse
Affiliation(s)
- Urszula Głowacka
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-530 Kraków, Poland
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - Zbigniew Śliwowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - Jakub Cieszkowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - Małgorzata Szetela
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - Dagmara Wójcik-Grzybek
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - Anna Chmura
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - John L. Wallace
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| |
Collapse
|
10
|
Cicala C, Morello S. Signaling Pathways in Inflammation and Its Resolution: New Insights and Therapeutic Challenges. Int J Mol Sci 2023; 24:11055. [PMID: 37446232 DOI: 10.3390/ijms241311055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Tissue inflammation is a dynamic process that develops step by step, in response to an injury, to preserve tissue integrity [...].
Collapse
Affiliation(s)
- Carla Cicala
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
11
|
Rodkin S, Nwosu C, Sannikov A, Raevskaya M, Tushev A, Vasilieva I, Gasanov M. The Role of Hydrogen Sulfide in Regulation of Cell Death following Neurotrauma and Related Neurodegenerative and Psychiatric Diseases. Int J Mol Sci 2023; 24:10742. [PMID: 37445920 DOI: 10.3390/ijms241310742] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Injuries of the central (CNS) and peripheral nervous system (PNS) are a serious problem of the modern healthcare system. The situation is complicated by the lack of clinically effective neuroprotective drugs that can protect damaged neurons and glial cells from death. In addition, people who have undergone neurotrauma often develop mental disorders and neurodegenerative diseases that worsen the quality of life up to severe disability and death. Hydrogen sulfide (H2S) is a gaseous signaling molecule that performs various cellular functions in normal and pathological conditions. However, the role of H2S in neurotrauma and mental disorders remains unexplored and sometimes controversial. In this large-scale review study, we examined the various biological effects of H2S associated with survival and cell death in trauma to the brain, spinal cord, and PNS, and the signaling mechanisms underlying the pathogenesis of mental illnesses, such as cognitive impairment, encephalopathy, depression and anxiety disorders, epilepsy and chronic pain. We also studied the role of H2S in the pathogenesis of neurodegenerative diseases: Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, we reviewed the current state of the art study of H2S donors as neuroprotectors and the possibility of their therapeutic uses in medicine. Our study showed that H2S has great neuroprotective potential. H2S reduces oxidative stress, lipid peroxidation, and neuroinflammation; inhibits processes associated with apoptosis, autophagy, ferroptosis and pyroptosis; prevents the destruction of the blood-brain barrier; increases the expression of neurotrophic factors; and models the activity of Ca2+ channels in neurotrauma. In addition, H2S activates neuroprotective signaling pathways in psychiatric and neurodegenerative diseases. However, high levels of H2S can cause cytotoxic effects. Thus, the development of H2S-associated neuroprotectors seems to be especially relevant. However, so far, all H2S modulators are at the stage of preclinical trials. Nevertheless, many of them show a high neuroprotective effect in various animal models of neurotrauma and related disorders. Despite the fact that our review is very extensive and detailed, it is well structured right down to the conclusions, which will allow researchers to quickly find the proper information they are interested in.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Chizaram Nwosu
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - Margarita Raevskaya
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Tushev
- Neurosurgical Department, Rostov State Medical University Clinic, 344022 Rostov-on-Don, Russia
| | - Inna Vasilieva
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Polyclinic Therapy, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| |
Collapse
|
12
|
Wang Y, Hou R, Liu Y. Plasma Homocysteine (Hcy) Concentration Functions as a Predictive Biomarker of SPECT-Evaluated Post-Ischemic Hyperperfusion in Acute Ischemic Stroke. Pharmgenomics Pers Med 2023; 16:481-489. [PMID: 37256202 PMCID: PMC10226540 DOI: 10.2147/pgpm.s400767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction Homocysteine (Hcy) concentration has been reported to be associated with ischemic stroke. In this study, we aimed to investigate the potential of plasma Hcy in the prediction of post-ischemic hyperperfusion in AIS patients, which was diagnosed with the single-photon emission computed tomography (SPECT) method. Methods A total of 112 ischemic stroke patients were recruited in this study. According to whether the patients were subjected to post-ischemic hyperperfusion, all recruited subjects were divided into a post-ischemic hyperperfusion (+) group (N=48) and post-ischemic hyperperfusion (-) group (N=64). The basic demographical data, clinicopathological data and laboratory biochemical data were collected and compared. Level of homocysteine (Hcy) and cystatin-C (Cys-C) and their potential as predictive biomarker are also investigated. Results No significant differences were spotted between the post-ischemic hyperperfusion group (+) and post-ischemic hyperperfusion (-) group in respect to the basic demographical and clinicopathological data. And the serum Hcy levels were lower in the post-ischemic hyperperfusion (+) group. Moreover, ROC analysis indicated significant relationships between Hcy levels and the onset of post-ischemic hyperperfusion. Conclusion In conclusion, we validated that the plasma Hcy concentration can be used as a predictive biomarker of SPECT-evaluated post-ischemic hyperperfusion in patients suffering from acute ischemic stroke.
Collapse
Affiliation(s)
- Yingqiu Wang
- Department of Nuclear Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, People’s Republic of China
| | - Renhua Hou
- Department of Nuclear Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, People’s Republic of China
| | - Yan Liu
- Department of Nuclear Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, People’s Republic of China
| |
Collapse
|
13
|
Wang R, Wu X, Tian Z, Hu T, Cai C, Wu G, Jiang GB, Liu B. Sustained release of hydrogen sulfide from anisotropic ferrofluid hydrogel for the repair of spinal cord injury. Bioact Mater 2023; 23:118-128. [DOI: 10.1016/j.bioactmat.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
|
14
|
Huang Y, Omorou M, Gao M, Mu C, Xu W, Xu H. Hydrogen sulfide and its donors for the treatment of cerebral ischaemia-reperfusion injury: A comprehensive review. Biomed Pharmacother 2023; 161:114506. [PMID: 36906977 DOI: 10.1016/j.biopha.2023.114506] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
As an endogenous gas signalling molecule, hydrogen sulfide (H2S) is frequently present in a variety of mammals and plays a significant role in the cardiovascular and nervous systems. Reactive oxygen species (ROS) are produced in large quantities as a result of cerebral ischaemia-reperfusion, which is a very serious class of cerebrovascular diseases. ROS cause oxidative stress and induce specific gene expression that results in apoptosis. H2S reduces cerebral ischaemia-reperfusion-induced secondary injury via anti-oxidative stress injury, suppression of the inflammatory response, inhibition of apoptosis, attenuation of cerebrovascular endothelial cell injury, modulation of autophagy, and antagonism of P2X7 receptors, and it plays an important biological role in other cerebral ischaemic injury events. Despite the many limitations of the hydrogen sulfide therapy delivery strategy and the difficulty in controlling the ideal concentration, relevant experimental evidence demonstrating that H2S plays an excellent neuroprotective role in cerebral ischaemia-reperfusion injury (CIRI). This paper examines the synthesis and metabolism of the gas molecule H2S in the brain as well as the molecular mechanisms of H2S donors in cerebral ischaemia-reperfusion injury and possibly other unknown biological functions. With the active development in this field, it is expected that this review will assist researchers in their search for the potential value of hydrogen sulfide and provide new ideas for preclinical trials of exogenous H2S.
Collapse
Affiliation(s)
- Yiwei Huang
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Moussa Omorou
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Meng Gao
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Chenxi Mu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Weijing Xu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
15
|
Rahimi M, Leahy S, Matei N, Burford J, Blair NP, Shahidi M. Impairments of retinal hemodynamics and oxygen metrics in ocular hypertension-induced ischemia-reperfusion. Exp Eye Res 2022; 225:109278. [PMID: 36252653 PMCID: PMC10985794 DOI: 10.1016/j.exer.2022.109278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 12/29/2022]
Abstract
Ischemia-reperfusion (I/R) is an established model for retinal neurodegeneration. However, there is limited knowledge of retinal physiological metrics and their relationships to retinal function and morphology in the I/R model. The purpose of the study was to test the hypotheses that retinal hemodynamic and oxygen metrics are impaired and associated with visual dysfunction, retinal thinning, and retinal ganglion cell (RGC) loss due to I/R injury. Intraocular pressure (IOP) was increased in one eye of 10 rats for 90 min followed by reperfusion. Fellow eyes served as controls. After one week of reperfusion, multimodal imaging was performed to quantify total retinal blood flow (TRBF) and retinal vascular oxygen contents. Retinal oxygen delivery (DO2) and metabolism (MO2) were calculated. Pattern-evoked electroretinography (PERG) and optical coherence tomography were performed to measure RGC function and retinal thicknesses, respectively. RGCs were counted from retina whole mounts. After one week of reperfusion, TRBF was lower in study eyes than in control eyes (p < 0.0003). Similarly, DO2 and MO2 were reduced in study eyes compared to control eyes (p < 0.003). PERG amplitude, TRT, IRT, ORT, and RGCs were also lower in study eyes (p ≤ 0.01). DO2 and MO2 were correlated with PERG amplitude, TRT, IRT, and ORT (r ≥ 0.6, p ≤ 0.005). The findings improve knowledge of physiological metrics affected by I/R injury and have the potential for identifying biomarkers of injury and outcomes for evaluating experimental treatments.
Collapse
Affiliation(s)
- Mansour Rahimi
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Sophie Leahy
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Nathanael Matei
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - James Burford
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Norman P Blair
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mahnaz Shahidi
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
16
|
Design, Synthesis and Evaluation of Novel Molecular Hybrids between Antiglaucoma Drugs and H 2S Donors. Int J Mol Sci 2022; 23:ijms232213804. [PMID: 36430281 PMCID: PMC9695456 DOI: 10.3390/ijms232213804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Glaucoma is a group of eye diseases consisting of optic nerve damage with corresponding loss of field vision and blindness. Hydrogen sulfide (H2S) is a gaseous neurotransmitter implicated in various pathophysiological processes. It is involved in the pathological mechanism of glaucomatous neuropathy and exerts promising effects in the treatment of this disease. In this work, we designed and synthetized new molecular hybrids between antiglaucoma drugs and H2S donors to combine the pharmacological effect of both moieties, providing a heightened therapy. Brinzolamide, betaxolol and brimonidine were linked to different H2S donors. The H2S-releasing properties of the new compounds were evaluated in a phosphate buffer solution by the amperometric approach, and evaluated in human primary corneal epithelial cells (HCEs) by spectrofluorometric measurements. Experimental data showed that compounds 1c, 1d and 3d were the hybrids with the best properties, characterized by a significant and long-lasting production of the gasotransmitter both in the aqueous solution (in the presence of L-cysteine) and in the intracellular environment. Because, to date, the donation of H2S by antiglaucoma H2S donor hybrids using non-immortalized corneal cells has never been reported, these results pave the way to further investigation of the potential efficacy of the newly synthesized compounds.
Collapse
|
17
|
Scheid S, Lejarre A, Wollborn J, Buerkle H, Goebel U, Ulbrich F. Argon preconditioning protects neuronal cells with a Toll-like receptor-mediated effect. Neural Regen Res 2022; 18:1371-1377. [PMID: 36453425 PMCID: PMC9838174 DOI: 10.4103/1673-5374.355978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The noble gas argon has the potential to protect neuronal cells from cell death. So far, this effect has been studied in treatment after acute damage. Preconditioning using argon has not yet been investigated. In this study, human neuroblastoma SH-SY5Y cells were treated with different concentrations of argon (25%, 50%, and 74%; 21% O2, 5% CO2, balance nitrogen) at different time intervals before inflicting damage with rotenone (20 µM, 4 hours). Apoptosis was determined by flow cytometry after annexin V and propidium iodide staining. Surface expressions of Toll-like receptors 2 and 4 were also examined. Cells were also processed for analysis by western blot and qPCR to determine the expression of apoptotic and inflammatory proteins, such as extracellular-signal regulated kinase (ERK1/2), nuclear transcription factor-κB (NF-κB), protein kinase B (Akt), caspase-3, Bax, Bcl-2, interleukin-8, and heat shock proteins. Immunohistochemical staining was performed for TLR2 and 4 and interleukin-8. Cells were also pretreated with OxPAPC, an antagonist of TLR2 and 4 to elucidate the molecular mechanism. Results showed that argon preconditioning before rotenone application caused a dose-dependent but not a time-dependent reduction in the number of apoptotic cells. Preconditioning with 74% argon for 2 hours was used for further experiments showing the most promising results. Argon decreased the surface expression of TLR2 and 4, whereas OxPAPC treatment partially abolished the protective effect of argon. Argon increased phosphorylation of ERK1/2 but decreased NF-κB and Akt. Preconditioning inhibited mitochondrial apoptosis and the heat shock response. Argon also suppressed the expression of the pro-inflammatory cytokine interleukin-8. Immunohistochemistry confirmed the alteration of TLRs and interleukin-8. OxPAPC reversed the argon effect on ERK1/2, Bax, Bcl-2, caspase-3, and interleukin-8 expression, but not on NF-κB and the heat shock proteins. Taken together, argon preconditioning protects against apoptosis of neuronal cells and mediates its action via Toll-like receptors. Argon may represent a promising therapeutic alternative in various clinical settings, such as the treatment of stroke.
Collapse
Affiliation(s)
- Stefanie Scheid
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Adrien Lejarre
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany,Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Hartmut Buerkle
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care Medicine, St. Franziskus-Hospital, Muenster, Germany
| | - Felix Ulbrich
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany,Correspondence to: Felix Ulbrich, .
| |
Collapse
|
18
|
Adel M, Elsayed HRH, El-Nablaway M, Hamed S, Eladl A, Fouad S, El Nashar EM, Al-Otaibi ML, Rabei MR. Targeting Hydrogen Sulfide Modulates Dexamethasone-Induced Muscle Atrophy and Microvascular Rarefaction, through Inhibition of NOX4 and Induction of MGF, M2 Macrophages and Endothelial Progenitors. Cells 2022; 11:cells11162500. [PMID: 36010575 PMCID: PMC9406793 DOI: 10.3390/cells11162500] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Long-term use of Glucocorticoids produces skeletal muscle atrophy and microvascular rarefaction. Hydrogen sulfide (H2S) has a potential role in skeletal muscle regeneration. However, the mechanisms still need to be elucidated. This is the first study to explore the effect of Sodium hydrosulfide (NaHS) H2S donor, against Dexamethasone (Dex)-induced soleus muscle atrophy and microvascular rarefaction and on muscle endothelial progenitors and M2 macrophages. Rats received either; saline, Dex (0.6 mg/Kg/day), Dex + NaHS (5 mg/Kg/day), or Dex + Aminooxyacetic acid (AOAA), a blocker of H2S (10 mg/Kg/day) for two weeks. The soleus muscle was examined for contractile properties. mRNA expression for Myostatin, Mechano-growth factor (MGF) and NADPH oxidase (NOX4), HE staining, and immunohistochemical staining for caspase-3, CD34 (Endothelial progenitor marker), vascular endothelial growth factor (VEGF), CD31 (endothelial marker), and CD163 (M2 macrophage marker) was performed. NaHS could improve the contractile properties and decrease oxidative stress, muscle atrophy, and the expression of NOX4, caspase-3, Myostatin, VEGF, and CD31 and could increase the capillary density and expression of MGF with a significant increase in expression of CD34 and CD163 as compared to Dex group. However, AOAA worsened the studied parameters. Therefore, H2S can be a promising target to attenuate muscle atrophy and microvascular rarefaction.
Collapse
Affiliation(s)
- Mohamed Adel
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hassan Reda Hassan Elsayed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Anatomy, Faculty of Physical therapy, Horus University, New Damietta 34517, Egypt
- Correspondence: ; Tel.: +20-122-9310-701
| | - Mohammad El-Nablaway
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Medical Biochemistry, College of Medicine, Almaarefa University, Riyad 71666, Saudi Arabia
| | - Shereen Hamed
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Amira Eladl
- Department of Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Samah Fouad
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Eman Mohamad El Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13511, Egypt
| | - Mohammed Lafi Al-Otaibi
- Department of Orthopedics, College Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohammed R. Rabei
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Physiology, Faculty of Medicine, King Salman International University, El Tor 46511, Egypt
| |
Collapse
|
19
|
Siracusa R, Voltarelli VA, Trovato Salinaro A, Modafferi S, Cuzzocrea S, Calabrese EJ, Di Paola R, Otterbein LE, Calabrese V. NO, CO and H 2S: A Trinacrium of Bioactive Gases in the Brain. Biochem Pharmacol 2022; 202:115122. [PMID: 35679892 DOI: 10.1016/j.bcp.2022.115122] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Oxygen and carbon dioxide are time honored gases that have direct bearing on almost all life forms, but over the past thirty years, and in large part due to the Nobel Prize Award in Medicine for the elucidation of nitric oxide (NO) as a bioactive gas, the research and medical communities now recognize other gases as critical for survival. In addition to NO, hydrogen sulfide (H2S) and carbon monoxide (CO) have emerged as a triumvirate or Trinacrium of gases with analogous importance and that serve important homeostatic functions. Perhaps, one of the most intriguing aspects of these gases is the functional interaction between them, which is intimately linked by the enzyme systems that produce them. Despite the need to better understand NO, H2S and CO biology, the notion that these are environmental pollutants remains ever present. For this reason, incorporating the concept of hormesis becomes imperative and must be included in discussions when considering developing new therapeutics that involve these gases. While there is now an enormous literature base for each of these gasotransmitters, we provide here an overview of their respective physiologic roles in the brain.
Collapse
Affiliation(s)
- Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, 98166, Italy
| | - Vanessa A Voltarelli
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, 98166, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168, Messina, Italy
| | - Leo E Otterbein
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
20
|
Li S, Yang Q, Zhou Z, Yang X, Liu Y, Hao K, Fu M. Gastrodin protects retinal ganglion cells from ischemic injury by activating phosphatidylinositol 3-kinase/protein kinase B/nuclear factor erythroid 2-related factor 2 (PI3K/AKT/Nrf2) signaling pathway. Bioengineered 2022; 13:12625-12636. [PMID: 35609324 PMCID: PMC9275977 DOI: 10.1080/21655979.2022.2076499] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Glaucoma is a progressive optic neuropathy and improper treatment may cause irreversible damage to visual function. Gastrodin is an effective active substance extracted from Gastrodia elata and possesses antioxidant as well as anti-inflammatory properties. However, the therapeutic potential of gastrodin for retinal ischemia/reperfusion (I/R) injury remains unclear. We adopted oxygen and glucose deprivation/reoxygenation (OGD/R) to induce R28 cells with the aim of simulating glaucomatous neurodegeneration. CCK-8 analysis and TUNEL were applied for examining cell proliferation and apoptosis . In addition, RT-qPCR and ELISA were performed to test the releases of inflammatory factors in cells . Related indicators of intracellular oxidative stress and ROS production were detected by corresponding kits. Moreover, western blot was applied to assay the expressions of PI3K/AKT/Nrf2 pathway-related proteins. OGD/R induction contributed to the decreased cell viability and reduced Bcl-2 protein expression, while the protein contents of Bax, Cyto-C, c-caspase 9 and c-PARP as well as ROS production were ascended. The co-treatment of hypoxia and gastrodin greatly improved R28 cell viability but effectively suppressed cell apoptosis, ROS level and the releases of OGD/R-induced inflammatory factors as well as oxidative stress. In addition, OGD/R stimulation reduced Nrf2, accompanied by a decrease in the phosphorylation levels of PI3K and AKT. Gastrodin significantly promoted the activation of PI3K/AKT/Nrf2 signaling pathway in R28 cells, which was then counteracted by PI3K/AKT inhibitors. In conclusion, the present study suggested that gastrodin has a protective effect on OGD/R-induced R28 cell injury, which is achieved through the activation of the PI3K/AKT/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Sizhen Li
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, P.R. China
| | - Qingsong Yang
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, P.R. China
| | - Zixiu Zhou
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, P.R. China
| | - Xiaodong Yang
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, P.R. China
| | - Yating Liu
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, P.R. China
| | - Kuanxiao Hao
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, P.R. China
| | - Min Fu
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, P.R. China
| |
Collapse
|
21
|
Scheid S, Goeller M, Baar W, Wollborn J, Buerkle H, Schlunck G, Lagrèze W, Goebel U, Ulbrich F. Inhalative as well as Intravenous Administration of H 2S Provides Neuroprotection after Ischemia and Reperfusion Injury in the Rats' Retina. Int J Mol Sci 2022; 23:5519. [PMID: 35628328 PMCID: PMC9143628 DOI: 10.3390/ijms23105519] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neuronal ischemia-reperfusion injury (IRI), such as it can occur in glaucoma or strokes, is associated with neuronal cell death and irreversible loss of function of the affected tissue. Hydrogen sulfide (H2S) is considered a potentially neuroprotective substance, but the most effective route of application and the underlying mechanism remain to be determined. METHODS Ischemia-reperfusion injury was induced in rats by a temporary increase in intraocular pressure (1 h). H2S was then applied by inhalation (80 ppm at 0, 1.5, and 3 h after reperfusion) or by intravenous administration of the slow-releasing H2S donor GYY 4137. After 24 h, the retinas were harvested for Western blotting, qPCR, and immunohistochemical staining. Retinal ganglion cell survival was evaluated 7 days after ischemia. RESULTS Both inhalative and intravenously delivered H2S reduced retinal ganglion cell death with a better result from inhalative application. H2S inhalation for 1.5 h, as well as GYY 4137 treatment, increased p38 phosphorylation. Both forms of application enhanced the extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and inhalation showed a significant increase at all three time points. H2S treatment also reduced apoptotic and inflammatory markers, such as caspase-3, intracellular adhesion molecule 1 (ICAM-1), vascular endothelial growth factor (VEGF), and inducible nitric oxide synthase (iNOS). The protective effect of H2S was partly abolished by the ERK1/2 inhibitor PD98059. Inhalative H2S also reduced the heat shock response including heme oxygenase (HO-1) and heat shock protein 70 (HSP-70) and the expression of radical scavengers such as superoxide dismutases (SOD1, SOD2) and catalase. CONCLUSION Hydrogen sulfide acts, at least in part, via the mitogen-activated protein kinase (MAPK) ERK1/2 to reduce apoptosis and inflammation. Both inhalative H2S and intravenous GYY 4137 administrations can improve neuronal cell survival.
Collapse
Affiliation(s)
- Stefanie Scheid
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.S.); (M.G.); (W.B.); (J.W.); (H.B.)
| | - Max Goeller
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.S.); (M.G.); (W.B.); (J.W.); (H.B.)
| | - Wolfgang Baar
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.S.); (M.G.); (W.B.); (J.W.); (H.B.)
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.S.); (M.G.); (W.B.); (J.W.); (H.B.)
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Woman’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hartmut Buerkle
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.S.); (M.G.); (W.B.); (J.W.); (H.B.)
| | - Günther Schlunck
- Eye-Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (G.S.); (W.L.)
| | - Wolf Lagrèze
- Eye-Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (G.S.); (W.L.)
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care Medicine, St. Franziskus-Hospital, 48145 Muenster, Germany;
| | - Felix Ulbrich
- Department of Anesthesiology and Critical Care, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (S.S.); (M.G.); (W.B.); (J.W.); (H.B.)
| |
Collapse
|
22
|
Gupta R, Sahu M, Tripathi R, Ambasta RK, Kumar P. Protein S-sulfhydration: Unraveling the prospective of hydrogen sulfide in the brain, vasculature and neurological manifestations. Ageing Res Rev 2022; 76:101579. [PMID: 35124235 DOI: 10.1016/j.arr.2022.101579] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) and hydrogen polysulfides (H2Sn) are essential regulatory signaling molecules generated by the entire body, including the central nervous system. Researchers have focused on the classical H2S signaling from the past several decades, whereas the last decade has shown the emergence of H2S-induced protein S-sulfhydration signaling as a potential therapeutic approach. Cysteine S-persulfidation is a critical paradigm of post-translational modification in the process of H2S signaling. Additionally, studies have shown the cross-relationship between S-sulfhydration and other cysteine-induced post-translational modifications, namely nitrosylation and carbonylation. In the central nervous system, S-sulfhydration is involved in the cytoprotection through various signaling pathways, viz. inflammatory response, oxidative stress, endoplasmic reticulum stress, atherosclerosis, thrombosis, and angiogenesis. Further, studies have demonstrated H2S-induced S-sulfhydration in regulating different biological processes, such as mitochondrial integrity, calcium homeostasis, blood-brain permeability, cerebral blood flow, and long-term potentiation. Thus, protein S-sulfhydration becomes a crucial regulatory molecule in cerebrovascular and neurodegenerative diseases. Herein, we first described the generation of intracellular H2S followed by the application of H2S in the regulation of cerebral blood flow and blood-brain permeability. Further, we described the involvement of S-sulfhydration in different biological and cellular functions, such as inflammatory response, mitochondrial integrity, calcium imbalance, and oxidative stress. Moreover, we highlighted the importance of S-sulfhydration in cerebrovascular and neurodegenerative diseases.
Collapse
|
23
|
Juhász L, Tallósy SP, Nászai A, Varga G, Érces D, Boros M. Bioactivity of Inhaled Methane and Interactions With Other Biological Gases. Front Cell Dev Biol 2022; 9:824749. [PMID: 35071248 PMCID: PMC8777024 DOI: 10.3389/fcell.2021.824749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 01/04/2023] Open
Abstract
A number of studies have demonstrated explicit bioactivity for exogenous methane (CH4), even though it is conventionally considered as physiologically inert. Other reports cited in this review have demonstrated that inhaled, normoxic air-CH4 mixtures can modulate the in vivo pathways involved in oxidative and nitrosative stress responses and key events of mitochondrial respiration and apoptosis. The overview is divided into two parts, the first being devoted to a brief review of the effects of biologically important gases in the context of hypoxia, while the second part deals with CH4 bioactivity. Finally, the consequence of exogenous, normoxic CH4 administration is discussed under experimental hypoxia- or ischaemia-linked conditions and in interactions between CH4 and other biological gases, with a special emphasis on its versatile effects demonstrated in pulmonary pathologies.
Collapse
Affiliation(s)
- László Juhász
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Szabolcs Péter Tallósy
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Anna Nászai
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gabriella Varga
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dániel Érces
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Mihály Boros
- Institute of Surgical Research, Faculty of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|