1
|
Oyedokun PA, Akangbe MA, Akhigbe TM, Akhigbe RE. Regulatory Involvement of Kisspeptin in Energy Balance and Reproduction. Cell Biochem Biophys 2024:10.1007/s12013-024-01537-w. [PMID: 39327386 DOI: 10.1007/s12013-024-01537-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
The hypothalamic-pituitary-gonadal axis, which regulates steroidogenesis and germ cell formation, closely regulates the reproduction process. Nonetheless, other chemical mediators, such as kisspeptin, influence this axis. Kisspeptin is a hypothalamic neuropeptide that modulates the function of this axis and also plays a central role in energy balance. The present study reviews the impact and associated mechanisms of kisspeptin on male and female reproduction based on available evidence in the literature. Kisspeptin and its neurons exert anorexigenic activity, thus maintaining adequate energy balance for optimal reproductive function. Also, they stimulate the release of GnRH, resulting in the optimal performance of gonadal physiological processes viz. production of steroid sex hormones and germ cells. However, studies linking kisspeptin to reproduction are yet scanty. Hence, studies exploring the upstream and downstream signaling pathways activated by kisspeptin concerning reproduction in an attempt to better understand the associated mechanisms of the regulatory activities of kisspeptin on reproduction are recommended. In addition, potential factors that may modulate kisspeptin activities may be useful in the management of infertility and perhaps, in the development of contraceptives for those who do not intend to achieve conception.
Collapse
Affiliation(s)
- P A Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - M A Akangbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Nursing, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - T M Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Breeding and Genetic Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
| | - R E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria.
| |
Collapse
|
2
|
Marino M, D’Auria R, Mele E, Pastorino GMG, Di Pietro P, D’Angelo S, Della Rocca N, Operto FF, Vecchione C, Fasano S, Pierantoni R, Viggiano A, Meccariello R, Santoro A. The interplay between kisspeptin and endocannabinoid systems modulates male hypothalamic and gonadic control of reproduction in vivo. Front Endocrinol (Lausanne) 2023; 14:1269334. [PMID: 37900144 PMCID: PMC10602894 DOI: 10.3389/fendo.2023.1269334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/07/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Male reproduction is under the control of the hypothalamus-pituitary-gonadal (HPG) axis. The endocannabinoid system (ECS) and the kisspeptin system (KS) are two major signaling systems in the central and peripheral control of reproduction, but their possible interaction has been poorly investigated in mammals. This manuscript analyzes their possible reciprocal modulation in the control of the HPG axis. Materials and methods Adolescent male rats were treated with kisspeptin-10 (Kp10) and endocannabinoid anandamide (AEA), the latter alone or in combination with the type 1 cannabinoid receptor (CB1) antagonist rimonabant (SR141716A). The hypothalamic KS system and GnRH expression, circulating sex steroids and kisspeptin (Kiss1) levels, and intratesticular KS and ECS were evaluated by immunohistochemical and molecular methods. Non-coding RNAs (i.e., miR145-5p, miR-132-3p, let7a-5p, let7b-5p) were also considered. Results Circulating hormonal values were not significantly affected by Kp10 or AEA; in the hypothalamus, Kp10 significantly increased GnRH mRNA and aromatase Cyp19, Kiss1, and Kiss1 receptor (Kiss1R) proteins. By contrast, AEA treatment affected the hypothalamic KS at the protein levels, with opposite effects on the ligand and receptor, and SR141716A was capable of attenuating the AEA effects. Among the considered non-coding RNA, only the expression of miR145-5p was positively affected by AEA but not by Kp10 treatment. Localization of Kiss1+/Kiss1R+ neurons in the arcuate nucleus revealed an increase of Kiss1R-expressing neurons in Kp10- and AEA-treated animals associated with enlargement of the lateral ventricles in Kp10-treated animals. In the brain and testis, the selected non-coding RNA was differently modulated by Kp10 or AEA. Lastly, in the testis, AEA treatment affected the KS at the protein levels, whereas Kp10 affected the intragonadal levels of CB1 and FAAH, the main modulator of the AEA tone. Changes in pubertal transition-related miRNAs and the intratesticular distribution of Kiss1, Kiss1R, CB1, and CB2 following KP and AEA treatment corroborate the KS-ECS crosstalk also showing that the CB1 receptor is involved in this interplay. Conclusion For the first time in mammals, we report the modulation of the KS in both the hypothalamus and testis by AEA and revealed the KP-dependent modulation of CB1 and FAAH in the testis. KP involvement in the progression of spermatogenesis is also suggested.
Collapse
Affiliation(s)
- Marianna Marino
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | - Raffaella D’Auria
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | - Elena Mele
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Napoli, Italy
| | - Grazia Maria Giovanna Pastorino
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
- Unità Operativa Complessa (U.O.C.) Neuropsichiatria Infantile, Azienda Ospedaliero Universitaria San Giovanni di Dio Ruggi d’Aragona, “Scuola Medica Salernitana”, Salerno, Italy
| | - Paola Di Pietro
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | - Stefania D’Angelo
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Napoli, Italy
| | - Natalia Della Rocca
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | | | - Carmine Vecchione
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Università della Campania L. Vanvitelli, Napoli, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Università della Campania L. Vanvitelli, Napoli, Italy
| | - Andrea Viggiano
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Napoli, Italy
| | - Antonietta Santoro
- Dipartimento di Medicina, Chirurgia e Odontoiatria “Scuola Medica Salernitana” Università di Salerno, Baronissi, Italy
| |
Collapse
|
3
|
Santos LC, Dos Anjos Cordeiro JM, da Silva Santana L, Barbosa EM, Santos BR, Mendonça LD, Cunha MCDSG, Machado WM, Santana LR, Kersul MG, Henriques PC, Lopes RA, Snoeck PPDN, Szawka RE, Silva JF. Kisspeptin treatment reverses high prolactin levels and improves gonadal function in hypothyroid male rats. Sci Rep 2023; 13:16819. [PMID: 37798396 PMCID: PMC10556046 DOI: 10.1038/s41598-023-44056-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
We evaluated whether the administration of kisspeptin-10 (Kp10) is capable of restoring gonadal function in hypothyroid male rats. Hypothyroidism was induced with 6-propyl-2-thiouracil (PTU) for three months. In the last month, half of the hypothyroid animals were treated with Kp10. Hypothyroidism reduced testicular and sex gland mass, decreased the proliferation of the seminiferous epithelium, and compromised sperm morphology, motility, and vigor. A decrease in plasma LH and testosterone levels and an increase in prolactin secretion were observed in the hypothyroid rats. Hypothyroidism reduced Kiss1 and Kiss1r protein and gene expression and Star and Cyp11a1 mRNA levels in the testis. Furthermore, it reduced Lhb, Prl, and Drd2 and increased Tshb and Gnrhr expression in the pituitary. In the hypothalamus, hypothyroidism increased Pdyn and Kiss1r while reducing Gnrh1. Kp10 treatment in hypothyroid rats restored testicular and seminal vesicle morphology, improved sperm morphology and motility, reversed high prolactin levels, and increased LH and testosterone levels. In addition, Kp10 increased testicular expression of Kiss1, Kiss1r, Fshr, and Nr5a1 and pituitary Kiss1 expression. Our findings describe the inhibitory effects of hypothyroidism on the male gonadal axis and sperm quality and demonstrate that Kp10 treatment reverses high prolactin levels and improves gonadal function and sperm quality in hypothyroid rats.
Collapse
Affiliation(s)
- Luciano Cardoso Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Jeane Martinha Dos Anjos Cordeiro
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Larissa da Silva Santana
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Erikles Macêdo Barbosa
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Bianca Reis Santos
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Letícia Dias Mendonça
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Maria Clara da Silva Galrão Cunha
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - William Morais Machado
- Laboratorio de Reprodução Animal, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Larissa Rodrigues Santana
- Laboratorio de Reprodução Animal, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Maíra Guimarães Kersul
- Laboratorio de Reprodução Animal, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Patrícia Costa Henriques
- Laboratorio de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofisica, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Roberta Araújo Lopes
- Laboratorio de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofisica, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Paola Pereira das Neves Snoeck
- Laboratorio de Reprodução Animal, Departamento de Ciencias Agrarias e Ambientais, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil
| | - Raphael Escorsim Szawka
- Laboratorio de Endocrinologia e Metabolismo, Departamento de Fisiologia e Biofisica, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Juneo Freitas Silva
- Centro de Microscopia Eletronica, Departamento de Ciencias Biologicas, Universidade Estadual de Santa Cruz, Campus Soane Nazare de Andrade, Ilheus, 45662-900, Brazil.
| |
Collapse
|
4
|
Kaiser M, Jaillardon L. Pathogenesis of the crosstalk between reproductive function and stress in animals-part 1: Hypothalamo-pituitary-adrenal axis, sympatho-adrenomedullary system and kisspeptin. Reprod Domest Anim 2023; 58 Suppl 2:176-183. [PMID: 37724657 DOI: 10.1111/rda.14444] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/11/2023] [Accepted: 07/23/2023] [Indexed: 09/21/2023]
Abstract
Stress is defined as a disruption of the body homeostasis in response to modest as well as perceived challenge. Two main physiological routes, the hypothalamic-pituitary-adrenal system (HPA) and the sympatho-adrenomedullary system (SAM), aim to maintain or restore homeostasis by mutual interaction. SAM is quickly-reacting as it primarily works through the nervous system-the sympathetic nervous system. In response to stress, signals are sent to activate the adrenal medulla which releases catecholamines (primarily adrenaline and norepinephrine). The catecholamines have a momentary effect on the body's organs that are prepared for a fight situation. At the same time, the stressor activates the HPA axis by signals from the brain causing secretion of the pituitary hormone adrenocorticotropic hormone (ACTH). ACTH acts on the adrenal cortex, which secretes glucocorticoids, including cortisol. Since HPA primarily works through hormones, the system is slightly slower than SAM and gives rise to a metabolic effect. While short-term stress response is an adaptive and beneficial process, chronic or excessive stress can lead to a range of negative health outcomes including reproductive disorders and infertility. Several mechanisms have been proposed to explain the link between stress and reproduction. This includes in particular kisspeptin, which is closely related to reproduction, as it is a powerful stimulator of the Hypothalamic-pituitary-gonadal (HPG) system. The present review, through current knowledge in various male and female species, deals with the role of the SAM and the HPA, including the major action of kisspeptin and glucocorticoids that trigger the consequences of psychological or physiological stress on reproductive function.
Collapse
Affiliation(s)
- Marianne Kaiser
- Management and Modelling, Department of Animal and Veterinary Sciences, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| | - Laetitia Jaillardon
- Oniris, LabOniris, Nantes Atlantic National College of Veterinary Medicine, Food Sciences and Engineering, Nantes, France
| |
Collapse
|
5
|
Kermani T, Hosseini SF, Talaei-Khozani T, Aliabadi E. Effect of Pre-Incubation of Cryopreserved Sperm with either Kisspeptin or Glutathione to Mitigate Freeze-Thaw Damage. IRANIAN JOURNAL OF MEDICAL SCIENCES 2023; 48:198-208. [PMID: 36895454 PMCID: PMC9989238 DOI: 10.30476/ijms.2022.92300.2354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 03/11/2023]
Abstract
Background Sperm cryopreservation reduces sperm quality. Kisspeptin (KP) has beneficial effects on sperm functions. This study compares the effect of KP and Glutathione (GSH) on mitigating the detrimental effects of the freeze-thaw cycle on sperm. Methods An experimental study was conducted in Birjand (Iran) during 2018-2020. Thirty normal swim-up semen samples were treated with Ham's F10 medium (negative control), 1 mM GSH (positive control), or KP (10 µM) for 30 min before freezing. The motility, acrosome reaction, capacitation, and DNA quality of the frozen-thawed sperms were assessed according to the WHO guidelines. Statistical analysis was performed using paired t test, one-way analysis of variance, and least significant difference. Results Pre-incubation with KP significantly increased the percentage of sperm motility (34.00±6.7, P=0.003) compared to the control (20.44±7.4) and GSH-treated (31.25±12.2) aliquots. The frequency of non-capacitated spermatozoa was significantly higher in the KP-treated group (98.73%) than in the control (96.46%) and GSH-treated (96.49%) aliquots (P<0.001). The percentage of acrosome-intact spermatozoa in the KP-treated group (77.44%) was significantly higher than the control (74.3%) and GSH-treated (74.54%) groups (P<0.001). The sperm frequency with normal histone in the KP-treated group (51.86%) and with normal protamine (65.39%) was significantly higher than the controls (P=0.001 and P=0.002, respectively). The percentage of TUNEL-positive sperm was significantly lower in the KP-treated group (9.09±2.71) than both GSH-treated (11.22±2.73) and control (11.31±2.2) groups (both P=0.002). Conclusion Pre-incubation with KP protects sperm motility and DNA integrity from the detrimental effect of the freeze-thaw cycle. KP is suitable as a pre-treatment to control sperm quality during freezing-thawing.
Collapse
Affiliation(s)
- Tayebeh Kermani
- Department of Anatomy, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Syedeh-Fatemeh Hosseini
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Aliabadi
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Carbamate Pesticides: Shedding Light on Their Impact on the Male Reproductive System. Int J Mol Sci 2022; 23:ijms23158206. [PMID: 35897782 PMCID: PMC9332211 DOI: 10.3390/ijms23158206] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Carbamates are widely used and known around the world as pesticides in spite of also having medical applications. This class of chemicals is classified as acetylcholinesterase inhibitors, blocking acetylcholine hydrolyzation in a reversible manner. Their lack of species selectivity and their reported high toxicity can induce, upon exposure, adverse outcomes in male fertility that may lead to infertility. In addition, they are also considered endocrine-disrupting chemicals and can interfere with the hypothalamic–pituitary–testicular axis, essential for the normal function of the male reproductive system, thus being able to provoke male reproductive dysfunctions. Although the molecular mechanisms are not fully understood, various signaling pathways, such as those mediated by acetylcholine or kisspeptin, are affected by exposure to carbamates, thus compromising steroidogenesis and spermatogenesis. Over the last decades, several studies, both in vitro and in vivo, have reported a myriad of negative effects of carbamates on the male reproductive system. In this review, an up-to-date overview of the impact of carbamates on the male reproductive system is discussed, with an emphasis on the role of these compounds on acetylcholine regulation and the male endocrine system.
Collapse
|
7
|
Ricci G, Guillou F, Catizone A, Mele VG, Moggio M, Chioccarelli T, Diano N, Meccariello R, Pierantoni R, Fasano S, Cobellis G, Chianese R, Manfrevola F. KISS1R and ANKRD31 Cooperate to Enhance Leydig Cell Gene Expression via the Cytoskeletal-Nucleoskeletal Pathway. Front Cell Dev Biol 2022; 10:877270. [PMID: 35813201 PMCID: PMC9260857 DOI: 10.3389/fcell.2022.877270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Kisspeptins are involved in the regulation of hypothalamic-pituitary-gonadal axis, Leydig cell functions, and testosterone secretion, acting as endogenous ligands of the KISS1 receptor. ANKRD31 protein participates in male fertility, regulating meiotic progression, and epididymal sperm maturation. Here, we show that in Leydig cells, KISS1 receptor and ANKRD31 proteins physically interact; the formation of this protein complex is enhanced by Kisspeptin-10 that also modulates F-actin synthesis, favoring histone acetylation in chromatin and gene expression via the cytoskeletal–nucleoskeletal pathway. Kp/KISS1R system deregulation, expression impairment of cytoskeletal–nucleoskeletal mediators, Leydig gene targets, and the decreased testosterone secretion in Ankrd31−/− testis strongly supported our hypothesis. Furthermore, cytochalasin D treatment subverted the gene expression induction dependent on Kisspeptin-10 action. In conclusion, the current work highlights a novel role for the Kisspeptin-10 in the induction of the cytoskeletal–nucleoskeletal route, downstream a physical interaction between KISS1 receptor and ANKRD31, with gene expression activation as final effect, in Leydig cells.
Collapse
Affiliation(s)
- Giulia Ricci
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Florian Guillou
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Angela Catizone
- Dipartimento di Scienze Anatomiche, Istologiche, Medico Legali e dell’Apparato Locomotore, “Sapienza” Università di Roma, Roma, Italy
| | - Vincenza Grazia Mele
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Martina Moggio
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Teresa Chioccarelli
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Nadia Diano
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, Napoli, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Gilda Cobellis
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| | - Rosanna Chianese
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
- *Correspondence: Rosanna Chianese,
| | - Francesco Manfrevola
- Dipartimento di Medicina Sperimentale, Università degli Studi della Campania L. Vanvitelli, Naples, Italy
| |
Collapse
|
8
|
Meccariello R. Central and Local Modulators of Reproduction and Fertility: An Update. Int J Mol Sci 2022; 23:ijms23095285. [PMID: 35563677 PMCID: PMC9102892 DOI: 10.3390/ijms23095285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Affiliation(s)
- Rosaria Meccariello
- Department of Movement Sciences and Wellness, University of Naples Parthenope, Via Medina 40, 80133 Naples, Italy
| |
Collapse
|
9
|
Abstract
The kisspeptin system includes the cleavage products Kiss1 precursor and kisspeptin receptor (Kiss1R). It was originally discovered and studied in cancer metastasis, but the identification of KISS1/KISS1R gene mutations causing hypogonadotropic hypogonadism (HH) revealed unexpected effects in reproduction. Nowadays, the kisspeptin system is the main central gatekeeper of the reproductive axis at puberty and adulthood, but it also has a widespread functional role in the control of endocrine functions. At the periphery, Kiss1 and Kiss1R are expressed in the testes, but the need for kisspeptin signaling for spermatogenesis and sperm quality is still unclear and debated. This brief manuscript summarizes the main findings on kisspeptin and male reproduction; upcoming data on sperm maturation are also discussed.
Collapse
|
10
|
Mele E, D’Auria R, Scafuro M, Marino M, Fasano S, Viggiano A, Pierantoni R, Santoro A, Meccariello R. Differential Expression of Kisspeptin System and Kisspeptin Receptor Trafficking during Spermatozoa Transit in the Epididymis. Genes (Basel) 2022; 13:genes13020295. [PMID: 35205340 PMCID: PMC8871750 DOI: 10.3390/genes13020295] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
The hypothalamus–pituitary–testis axis controls the production of spermatozoa, and the kisspeptin system, comprising Kiss1 and Kiss1 receptor (Kiss1R), is the main central gatekeeper. The activity of the kisspeptin system also occurs in testis and spermatozoa, but currently the need of peripheral kisspeptin to produce gametes is not fully understood. Hence, we characterized kisspeptin system in rat spermatozoa and epididymis caput and cauda and analyzed the possible presence of Kiss1 in the epididymal fluid. The presence of Kiss1 and Kiss1R in spermatozoa collected from epididymis caput and cauda was evaluated by Western blot; significant high Kiss1 levels in the caput (p < 0.001 vs. cauda) and constant levels of Kiss1R proteins were observed. Immunofluorescence analysis revealed that the localization of Kiss1R in sperm head shifts from the posterior region in the epididymis caput to perforatorium in the epididymis cauda. In spermatozoa-free epididymis, Western blot revealed higher expression of Kiss1 and Kiss1R in caput (p < 0.05 vs. cauda). Moreover, immunohistochemistry revealed that Kiss1 and Kiss1R proteins were mainly localized in the secretory epithelial cell types and in contractile myoid cells, respectively. Finally, both dot blot and Elisa revealed the presence of Kiss1 in the epididymal fluid collected from epididymis cauda and caput, indicating that rat epididymis and spermatozoa possess a complete kisspeptin system. In conclusion, we reported for the first time in rodents Kiss1R trafficking in spermatozoa during the epididymis transit and Kiss1 measure in the epididymal fluid, thus suggesting a possible role for the system in spermatozoa maturation and storage within the epididymis.
Collapse
Affiliation(s)
- Elena Mele
- Department of Movement Sciences and Wellness, University of Naples Parthenope, Via Medina 40, 80133 Naples, Italy;
| | - Raffaella D’Auria
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Via S. Allende, 84081 Baronissi, Italy; (R.D.); (M.M.); (A.V.)
| | - Marika Scafuro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Costantinopoli 16, 80138 Naples, Italy;
| | - Marianna Marino
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Via S. Allende, 84081 Baronissi, Italy; (R.D.); (M.M.); (A.V.)
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Costantinpoli 16, 80138 Naples, Italy; (S.F.); (R.P.)
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Via S. Allende, 84081 Baronissi, Italy; (R.D.); (M.M.); (A.V.)
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Via Costantinpoli 16, 80138 Naples, Italy; (S.F.); (R.P.)
| | - Antonietta Santoro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, Via S. Allende, 84081 Baronissi, Italy; (R.D.); (M.M.); (A.V.)
- Correspondence: (A.S.); (R.M.)
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellness, University of Naples Parthenope, Via Medina 40, 80133 Naples, Italy;
- Correspondence: (A.S.); (R.M.)
| |
Collapse
|