1
|
Poudel SP, Behura SK. Sex-bias metabolism of fetal organs, and their relationship to the regulation of fetal brain-placental axis. Metabolomics 2024; 20:126. [PMID: 39495316 DOI: 10.1007/s11306-024-02189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION The placenta plays influential role in the fetal development of mammals. But how the metabolic need of the fetal organs is related to that of the placenta, and whether this relationship is influenced by the sex of the fetus remain poorly understood. OBJECTIVES This study used pigs to investigate metabolomic signatures of male and female fetal organs, and determine the relevance of gene expression of the placenta and brain to the metabolism of peripheral organs. METHODS Untargeted metabolomics analysis was performed with the day-45 placenta, kidney, heart, liver, lung and brain of male and female pig fetuses to model sex differences in the metabolism of the peripheral organs relative to that of the brain and placenta. Transcriptomic analysis was performed to investigate the expression of metabolic genes in the placenta and fetal brain of both sexes. RESULTS The results of this study show that the fetoplacental metabolic regulation was not only influenced by the fetal sex but also dependent on the metabolic requirement of the individual organs of the fetus. Neural network modeling of metabolomics data revealed differential relationship of the metabolic changes of the peripheral organs with the placenta and fetal brain between males and females. RNA sequencing further showed that genes associated with the metabolism of the peripheral organs were differentially expressed in the placenta and fetal brain. CONCLUSION The findings of this study suggest a regulatory role of the fetal brain and placenta axis in the sex-bias metabolism of the peripheral organs.
Collapse
Affiliation(s)
- Shankar P Poudel
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA.
- MU Institute for Data Science and Informatics, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA.
- Interdisciplinary Reproduction and Health Group, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA.
- Interdisciplinary Neuroscience Program, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA.
| |
Collapse
|
2
|
Poudel SP, Behura SK. Relevance of the regulation of the brain-placental axis to the nocturnal bottleneck of mammals. Placenta 2024; 155:11-21. [PMID: 39121583 DOI: 10.1016/j.placenta.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Evolutionary theory suggests that the ancestors of all placental animals were nocturnal. Visual perceptive function of mammalian brain has evolved extensively, but nearly 70 % of today's mammals are still nocturnal. While placental influence on brain development is known, if placenta plays a role in the visual perceptive function of mammalian brain remains untested. The present study aims to test this hypothesis. METHODS In this study, single-nuclei RNA sequencing was performed to identify genes expressed in the pig placenta and fetal brain, and then compared with the orthologous genes expressed in the placenta and fetal brain cells of mouse. Differential gene expression analysis was performed to identify placental genes regulated differentially between nocturnal and diurnal animals. Phylogenetic modeling was performed to test correlated evolution between placenta type, and the nocturnal or diurnal activity among different mammals. RESULTS The results showed that genes differentially regulated in the fetal brain were related to visual perception whereas the placental genes were related to the nocturnal or diurnal activity in placental animals. Phylogenetic modeling of these genes in thirty-four diverse mammalian species showed evidence for evolutionary link between placenta and the nocturnal/diurnal activity in animals. DISCUSSION The findings of this study suggest that the placenta plays a role in the evolution of visual perceptive function of brain to shape the nocturnal or diurnal activity of placental animals.
Collapse
Affiliation(s)
- Shankar P Poudel
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA; MU Institute for Data Science and Informatics, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA; Interdisciplinary Reproduction and Health Group, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA; Interdisciplinary Neuroscience Program, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA.
| |
Collapse
|
3
|
Islam M, Behura SK. Single-Cell Transcriptional Response of the Placenta to the Ablation of Caveolin-1: Insights into the Adaptive Regulation of Brain-Placental Axis in Mice. Cells 2024; 13:215. [PMID: 38334607 PMCID: PMC10854826 DOI: 10.3390/cells13030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Caveolin-1 (Cav1) is a major plasma membrane protein that plays important functions in cellular metabolism, proliferation, and senescence. Mice lacking Cav1 show abnormal gene expression in the fetal brain. Though evidence for placental influence on brain development is emerging, whether the ablation of Cav1 affects the regulation of the brain-placental axis remains unexamined. The current study tests the hypothesis that gene expression changes in specific cells of the placenta and the fetal brain are linked to the deregulation of the brain-placental axis in Cav1-null mice. By performing single-nuclei RNA sequencing (snRNA-seq) analyses, we show that the abundance of the extravillious trophoblast (EVT) and stromal cells, but not the cytotrophoblast (CTB) or syncytiotrophoblast (STB), are significantly impacted due to Cav1 ablation in mice. Interestingly, specific genes related to brain development and neurogenesis were significantly differentially expressed in trophoblast cells due to Cav1 deletion. Comparison of single-cell gene expression between the placenta and the fetal brain further showed that specific genes such as plexin A1 (Plxna1), phosphatase and actin regulator 1 (Phactr1) and amyloid precursor-like protein 2 (Aplp2) were differentially expressed between the EVT and STB cells of the placenta, and also, between the radial glia and ependymal cells of the fetal brain. Bulk RNA-seq analysis of the whole placenta and the fetal brain further identified genes differentially expressed in a similar manner between the placenta and the fetal brain due to the absence of Cav1. The deconvolution of reference cell types from the bulk RNA-seq data further showed that the loss of Cav1 impacted the abundance of EVT cells relative to the stromal cells in the placenta, and that of the glia cells relative to the neuronal cells in the fetal brain. Together, the results of this study suggest that the ablation of Cav1 causes deregulated gene expression in specific cell types of the placenta and the fetal brain in mice.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA;
| | - Susanta K. Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA;
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Reproduction and Health Group, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Islam M, Samal A, Davis DJ, Behura SK. Ablation of placental REST deregulates fetal brain metabolism and impacts gene expression of the offspring brain at the postnatal and adult stages. FASEB J 2024; 38:e23349. [PMID: 38069914 DOI: 10.1096/fj.202301344r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
In this study, the transcriptional repressor REST (Repressor Element 1 Silencing Transcription factor) was ablated in the mouse placenta to investigate molecular and cellular impacts on the offspring brain at different life stages. Ablation of placental REST deregulated several brain metabolites, including glucose and lactate that fuel brain energy, vitamin C (ascorbic acid) that functions in the epigenetic programming of the brain during postnatal development, and glutamate and creatine that help the brain to respond to stress conditions during adult life. Bulk RNA-seq analysis showed that a lack of placental REST persistently altered multiple transport genes, including those related to oxygen transportation in the offspring brain. While metabolic genes were impacted in the postnatal brain, different stress response genes were activated in the adult brain. DNA methylation was also impacted in the adult brain due to the loss of placental REST, but in a sex-biased manner. Single-nuclei RNA-seq analysis showed that specific cell types of the brain, particularly those of the choroid plexus and ependyma, which play critical roles in producing cerebrospinal fluid and maintaining metabolic homeostasis, were significantly impacted due to the loss of placental REST. These cells showed significant differential expression of genes associated with the metabotropic (G coupled protein) and ionotropic (ligand-gated ion channel) glutamate receptors, suggesting an impact of ablation of placental REST on the glutamatergic signaling of the offspring brain. The study expands our understanding of placental influences on the offspring brain.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Ananya Samal
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Daniel J Davis
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
- Animal Modeling Core, University of Missouri, Columbia, Missouri, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA
- Interdisciplnary Reproductive and Health Group, University of Missouri, Columbia, Missouri, USA
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
5
|
Islam M, Behura SK. Role of paralogs in the sex-bias transcriptional and metabolic regulation of the brain-placental axis in mice. Placenta 2024; 145:143-150. [PMID: 38134547 DOI: 10.1016/j.placenta.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION Duplicated genes or paralogs play important roles in the adaptive function of eukaryotic genomes. Animal studies have shown evidence for the functional role of paralogs in pregnancy, but our knowledge about the role of paralogs in the fetoplacental regulation remains limited. In particular, if fetoplacental metabolic regulation is modulated by differential expression of paralogs remains unexamined. METHODS In this study, gene expression profiles of day-15 placenta and fetal brain were compared to identify families or groups of paralogous genes expressed in the placenta and brain of male versus female fetuses in mice. A Bayesian modeling was applied to infer directional relationship of transcriptional variation of the paralogs relative to the phylogenetic variation of the genes in each family. Gas chromatography-mass spectrometry (GC-MS) was used to perform untargeted metabolomics analysis of day-15 placenta and fetal brain of both sexes. RESULTS We identified paralog groups that were expressed in a sex and/or tissue biased manner between the placenta and fetal brain. Bayesian modeling showed evidence for directional relationship between expression and phylogeny of specific paralogs. These relationships were sex specific. GC-MS analysis identified metabolites that were expressed in a sex-bias manner between the placenta and fetal brain. By performing integrative analysis of the metabolomics and gene expression data, we showed that specific groups of metabolites and paralogous genes were expressed in a coordinated manner between the placenta and fetal brain. DISCUSSION The findings of this study collectively suggest that paralogs play an influential role in the regulation of the brain-placental axis in mice.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, Missouri, 65211, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, Missouri, 65211, USA; MU Institute for Data Science and Informatics, University of Missouri, USA; Interdisciplinary Reproduction and Health Group, University of Missouri, USA; Interdisciplinary Neuroscience Program, University of Missouri, USA.
| |
Collapse
|
6
|
Islam M, Behura SK. Role of caveolin-1 in metabolic programming of fetal brain. iScience 2023; 26:107710. [PMID: 37720105 PMCID: PMC10500482 DOI: 10.1016/j.isci.2023.107710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Mice lacking caveolin-1 (Cav1), a key protein of plasma membrane, exhibit brain aging at an early adult stage. Here, integrative analyses of metabolomics, transcriptomics, epigenetics, and single-cell data were performed to test the hypothesis that metabolic deregulation of fetal brain due to the ablation of Cav1 is linked to brain aging in these mice. The results of this study show that lack of Cav1 caused deregulation in the lipid and amino acid metabolism in the fetal brain, and genes associated with these deregulated metabolites were significantly altered in the brain upon aging. Moreover, ablation of Cav1 deregulated several metabolic genes in specific cell types of the fetal brain and impacted DNA methylation of those genes in coordination with mouse epigenetic clock. The findings of this study suggest that the aging program of brain is confounded by metabolic abnormalities in the fetal stage due to the absence of Cav1.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, 920 East Campus Drive, University of Missouri, Columbia, MO 65211, USA
| | - Susanta K. Behura
- Division of Animal Sciences, 920 East Campus Drive, University of Missouri, Columbia, MO 65211, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
- Interdisciplinary Reproduction and Health Group, University of Missouri, Columbia, MO, USA
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA
| |
Collapse
|
7
|
Islam M, Strawn M, Behura SK. Fetal origin of sex‐bias brain aging. FASEB J 2022; 36:e22463. [DOI: 10.1096/fj.202200255rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023]
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences University of Missouri Columbia Missouri USA
| | - Monica Strawn
- Division of Animal Sciences University of Missouri Columbia Missouri USA
| | - Susanta K. Behura
- Division of Animal Sciences University of Missouri Columbia Missouri USA
- MU Institute for Data Science and Informatics University of Missouri Columbia Missouri USA
- Interdisciplinary Neuroscience Program University of Missouri Columbia Missouri USA
| |
Collapse
|
8
|
Strawn M, Moraes JGN, Safranski TJ, Behura SK. Sexually Dimorphic Transcriptomic Changes of Developing Fetal Brain Reveal Signaling Pathways and Marker Genes of Brain Cells in Domestic Pigs. Cells 2021; 10:2439. [PMID: 34572090 PMCID: PMC8466205 DOI: 10.3390/cells10092439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022] Open
Abstract
In this study, transcriptomic changes of the developing brain of pig fetuses of both sexes were investigated on gestation days (GD) 45, 60 and 90. Pig fetal brain grows rapidly around GD60. Consequently, gene expression of the fetal brain was distinctly different on GD90 compared to that of GD45 and GD60. In addition, varying numbers of differentially expressed genes (DEGs) were identified in the male brain compared to the female brain during development. The sex of adjacent fetuses also influenced gene expression of the fetal brain. Extensive changes in gene expression at the exon-level were observed during brain development. Pathway enrichment analysis showed that the ionotropic glutamate receptor pathway and p53 pathway were enriched in the female brain, whereas specific receptor-mediated signaling pathways were enriched in the male brain. Marker genes of neurons and astrocytes were significantly differentially expressed between male and female brains during development. Furthermore, comparative analysis of gene expression patterns between fetal brain and placenta suggested that genes related to ion transportation may play a key role in the regulation of the brain-placental axis in pig. Collectively, the study suggests potential application of pig models to better understand influence of fetal sex on brain development.
Collapse
Affiliation(s)
- Monica Strawn
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (M.S.); (T.J.S.); (J.G.N.M.)
| | - Joao G. N. Moraes
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (M.S.); (T.J.S.); (J.G.N.M.)
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74075, USA
| | - Timothy J. Safranski
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (M.S.); (T.J.S.); (J.G.N.M.)
| | - Susanta K. Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (M.S.); (T.J.S.); (J.G.N.M.)
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|