1
|
Zhou L, Luoreng Z, Wang X. Identification of potential key circular RNAs associated with Escherichia coli-infected bovine mastitis using RNA-sequencing: preliminary study results. Vet Res Commun 2024; 49:36. [PMID: 39589641 DOI: 10.1007/s11259-024-10592-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/07/2024] [Indexed: 11/27/2024]
Abstract
Escherichia coli (E. coli) is commonly found in dairy farms and can invade mammary gland tissue, often causing acute clinical mastitis. Mammary infections with E. coli have shown a wide range of clinical signs, causing abnormal appearance of the milk, udder inflammation and systemic signs of illness. Circular RNA is a class of endogenous non-coding RNA that plays an important role in the occurrence and development of various inflammatory diseases. However, there is little information on the circRNA associated with bovine mastitis. In this study investigated the involvement of circRNAs in bovine mastitis through the construction of an E. coli-infected bovine mastitis model by injecting of E. coli into the mammary gland of dairy cows, using healthy gland mammary tissue as a control (M_C). High-throughput RNA-seq was performed on the E. coli-infected mammary gland tissue (M_E) and differentially expressed circRNAs between theM_C and M_E groups, followed by an analysis of their potential functions using bioinformatics methods. A total of 164 differentially expressed circRNAs were identified, including 92 downregulated circRNAs and 72 upregulated circRNAs. As shown by Gene Ontology enrichment analysis these DE circRNAs were mostly enriched in ras protein signal transduction, cytoplasmic vesicle parts, and enzyme binding, and Kyoto Encyclopedia of Genes and genome singal pathway enrichment analysis indicated significant associations with phagosome signal pathway. Additionally, the expression of bovine mastitis-related circRNAs, including novel_circRNA_0000128, novel_circRNA_0011103, novel_circRNA_0012656, novel_circRNA_0015099, novel_circRNA_005648, novel_circRNA_000074, and novel_circRNA_0011796 were verified via quantitative reverse-transcription polymerase chain reaction (RT-qPCR). These results provide a new direction for further investigation of the molecular mechanisms underlying bovine mastitis.
Collapse
Affiliation(s)
- Li Zhou
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, Ningxia Hui Autonomous Region, People's Republic of China
- Key Laboratory of Ruminant Molecular Cell Breeding, Yinchuan, 750021, Ningxia Hui Autonomous Region, People's Republic of China
| | - Zhuoma Luoreng
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, Ningxia Hui Autonomous Region, People's Republic of China.
- Key Laboratory of Ruminant Molecular Cell Breeding, Yinchuan, 750021, Ningxia Hui Autonomous Region, People's Republic of China.
| | - Xingping Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan, 750021, Ningxia Hui Autonomous Region, People's Republic of China.
- Key Laboratory of Ruminant Molecular Cell Breeding, Yinchuan, 750021, Ningxia Hui Autonomous Region, People's Republic of China.
| |
Collapse
|
2
|
Xu H, Wu X, Yang Z, Shi X, Guo A, Hu C. N 6-methyladenosine-modified lncRNA in Staphylococcus aureus-injured bovine mammary epithelial cells. Arch Microbiol 2024; 206:431. [PMID: 39395056 DOI: 10.1007/s00203-024-04156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Staphylococcus aureus-induced mastitis is a serious disease in dairy bovine, with no currently effective treatment. Antibiotics demonstrate certain therapeutic potency in dairy husbandry; they generate drug-resistant bacteria, thereby harming public health. LncRNAs and m6A have been verified as potential targets in infectious diseases and have powerful regulatory capabilities. However, the biological regulation of lncRNAs with m6A modification in mastitis needs further investigation. This study aims to determine the m6A-modified lncRNAs in bovine mammary epithelial cells and their diversity during S. aureus induction. Heat-inactivated S. aureus was used to develop the cell injury model, and we subsequently found low cell viability and different m6A modification levels. Our analysis of m6A-modified lncRNA profiles through MeRIP-seq revealed significant differences in 140 peaks within 130 lncRNAs when cells were injured by S. aureus. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that these differential m6A-modified lncRNAs were mainly enriched in the WNT pathway, and their functions were associated with amino acid metabolism, lipid translocation, and metalloproteinase activity. Here, we report for the first time lncRNAs with m6A modification in regulating S. aureus infection, revealing potential mechanisms and targets of infectious diseases, such as mastitis, from an epigenetics perspective.
Collapse
Affiliation(s)
- Haojun Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiming Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinhuai Shi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changmin Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Shi L, Han X, Liu F, Long J, Jin Y, Chen S, Duan G, Yang H. Review on Long Non-Coding RNAs as Biomarkers and Potentially Therapeutic Targets for Bacterial Infections. Curr Issues Mol Biol 2024; 46:7558-7576. [PMID: 39057090 PMCID: PMC11276060 DOI: 10.3390/cimb46070449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The confrontation between humans and bacteria is ongoing, with strategies for combating bacterial infections continually evolving. With the advancement of RNA sequencing technology, non-coding RNAs (ncRNAs) associated with bacterial infections have garnered significant attention. Recently, long ncRNAs (lncRNAs) have been identified as regulators of sterile inflammatory responses and cellular defense against live bacterial pathogens. They are involved in regulating host antimicrobial immunity in both the nucleus and cytoplasm. Increasing evidence indicates that lncRNAs are critical for the intricate interactions between host and pathogen during bacterial infections. This paper emphatically elaborates on the potential applications of lncRNAs in clinical hallmarks, cellular damage, immunity, virulence, and drug resistance in bacterial infections in greater detail. Additionally, we discuss the challenges and limitations of studying lncRNAs in the context of bacterial infections and highlight clear directions for this promising field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (L.S.); (X.H.); (F.L.); (J.L.); (Y.J.); (S.C.); (G.D.)
| |
Collapse
|
4
|
Wu K, Shang S, Bao L, Zhao Y, Guan Z, Xu J, Sun H, Yuan W, Fu Y, Peng L, Zhao C. Retinoic acid ameliorates low-grade endotoxemia-induced mastitis by limiting inflammatory responses in mice. Microb Pathog 2023; 185:106426. [PMID: 37879450 DOI: 10.1016/j.micpath.2023.106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Mastitis is a serious disease for humans and animals, which causes huge economic losses in the dairy industry and is hard to prevent due to the complex and unclear pathogenesis. Subacute ruminal acidosis (SARA) has contributed to the development of mastitis by inducing ruminal dysbiosis and subsequent low-grade endotoxemia (LGE), however, how ruminal metabolic changes regulate this progress is still unclear. Our previous study revealed that cows with SARA had increased ruminal retinoic acid (RA) levels, a metabolic intermediate of vitamin A that plays an essential role in mucosal immune responses. Hence, the aim of this study was to investigate the protective effect of RA on LGE-induced mastitis and the underlying mechanisms in mice. The results showed that RA alleviated LGE-induced mastitis, as evidenced by RA significantly reduced the increase in mammary proinflammatory cytokines and improved blood-milk barrier injury caused by LGE. In addition, RA increased the expression of tight junction proteins, including ZO-1, occludin and claudin-3. Furthermore, we found that RA limited the mammary inflammatory responses by inhibiting the activation of NF-κB and NLRP3 signaling pathways. These findings suggest that RA effectively alleviates LGE-induced mastitis and implies a potential strategy for the treatment and prevention of mastitis and other diseases.
Collapse
Affiliation(s)
- Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Shan Shang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Yihong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Zhihang Guan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Jiawen Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Hao Sun
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Weijie Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China
| | - Luyuan Peng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China.
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, 130062, China.
| |
Collapse
|
5
|
Xu H, Lin C, Wang C, Zhao T, Yang J, Zhang J, Hu Y, Qi X, Chen X, Chen Y, Chen J, Guo A, Hu C. ALKBH5 Stabilized N 6-Methyladenosine-Modified LOC4191 to Suppress E. coli-Induced Apoptosis. Cells 2023; 12:2604. [PMID: 37998339 PMCID: PMC10670315 DOI: 10.3390/cells12222604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
E. coli is a ubiquitous pathogen that is responsible for over one million fatalities worldwide on an annual basis. In animals, E. coli can cause a variety of diseases, including mastitis in dairy cattle, which represents a potential public health hazard. However, the pathophysiology of E. coli remains unclear. We found that E. coli could induce global upregulation of m6A methylation and cause serious apoptosis in bovine mammary epithelial cells (MAC-T cells). Furthermore, numerous m6A-modified lncRNAs were identified through MeRIP-seq. Interestingly, we found that the expression of LOC4191 with hypomethylation increased in MAC-T cells upon E. coli-induced apoptosis. Knocking down LOC4191 promoted E. coli-induced apoptosis and ROS levels through the caspase 3-PARP pathway. Meanwhile, knocking down ALKBH5 resulted in the promotion of apoptosis through upregulated ROS and arrested the cell cycle in MAC-T cells. ALKBH5 silencing accelerated LOC4191 decay by upregulating its m6A modification level, and the process was recognized by hnRNP A1. Therefore, this indicates that ALKBH5 stabilizes m6A-modified LOC4191 to suppress E. coli-induced apoptosis. This report discusses an initial investigation into the mechanism of m6A-modified lncRNA in cells under E. coli-induced apoptosis and provides novel insights into infectious diseases.
Collapse
Affiliation(s)
- Haojun Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Changjie Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Chao Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Tianrui Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Jinghan Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Junhao Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Yanjun Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Xue Qi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (C.W.); (X.C.); (Y.C.); (J.C.); (A.G.)
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Changmin Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.X.); (C.L.); (T.Z.); (J.Y.); (J.Z.); (Y.H.); (X.Q.)
| |
Collapse
|
6
|
Sharifi S, Pakdel A, Pakdel MH, Tabashiri R, Bakhtiarizadeh MR, Tahmasebi A. Integrated co-expression analysis of regulatory elements (miRNA, lncRNA, and TFs) in bovine monocytes induced by Str. uberis. Sci Rep 2023; 13:15076. [PMID: 37699972 PMCID: PMC10497586 DOI: 10.1038/s41598-023-42067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Non-coding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), together with transcription factors, are critical pre-, co-, and post-transcriptional regulators. In addition to their criteria as ideal biomarkers, they have great potential in disease prognosis, diagnosis, and treatment of complex diseases. Investigation of regulatory mechanisms in the context of bovine mastitis, as most common and economic disease in the dairy industry, to identify elements influencing the expression of candidate genes as key regulators of the mammary immune response is not yet fully understood. Transcriptome profiles (50 RNA-Seq and 50 miRNA-Seq samples) of bovine monocytes induced by Str. uberis were used for co-expression module detection and preservation analysis using the weighted gene co-expression network analysis (WGCNA) approach. Assigned mi-, lnc-, and m-modules used to construct the integrated regulatory networks and miRNA-lncRNA-mRNA regulatory sub-networks. Remarkably, we have identified 18 miRNAs, five lncRNAs, and seven TFs as key regulators of str. uberis-induced mastitis. Most of the genes introduced here, mainly involved in immune response, inflammation, and apoptosis, were new to mastitis. These findings may help to further elucidate the underlying mechanisms of bovine mastitis, and the discovered genes may serve as signatures for early diagnosis and treatment of the disease.
Collapse
Affiliation(s)
- Somayeh Sharifi
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran.
| | - Abbas Pakdel
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran.
| | - Mohammad Hossein Pakdel
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Islamic Republic of Iran
| | - Raana Tabashiri
- Agricultural Biotechnology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Islamic Republic of Iran
| | - Mohammad Reza Bakhtiarizadeh
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, 3391653755, Islamic Republic of Iran
| | - Ahmad Tahmasebi
- Institute of Biotechnology, Shiraz University, Shiraz, 71946-84334, Islamic Republic of Iran
| |
Collapse
|
7
|
Hasankhani A, Bakherad M, Bahrami A, Shahrbabak HM, Pecho RDC, Shahrbabak MM. Integrated analysis of inflammatory mRNAs, miRNAs, and lncRNAs elucidates the molecular interactome behind bovine mastitis. Sci Rep 2023; 13:13826. [PMID: 37620551 PMCID: PMC10449796 DOI: 10.1038/s41598-023-41116-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
Mastitis is known as intramammary inflammation, which has a multifactorial complex phenotype. However, the underlying molecular pathogenesis of mastitis remains poorly understood. In this study, we utilized a combination of RNA-seq and miRNA-seq techniques, along with computational systems biology approaches, to gain a deeper understanding of the molecular interactome involved in mastitis. We retrieved and processed one hundred transcriptomic libraries, consisting of 50 RNA-seq and 50 matched miRNA-seq data, obtained from milk-isolated monocytes of Holstein-Friesian cows, both infected with Streptococcus uberis and non-infected controls. Using the weighted gene co-expression network analysis (WGCNA) approach, we constructed co-expressed RNA-seq-based and miRNA-seq-based modules separately. Module-trait relationship analysis was then performed on the RNA-seq-based modules to identify highly-correlated modules associated with clinical traits of mastitis. Functional enrichment analysis was conducted to understand the functional behavior of these modules. Additionally, we assigned the RNA-seq-based modules to the miRNA-seq-based modules and constructed an integrated regulatory network based on the modules of interest. To enhance the reliability of our findings, we conducted further analyses, including hub RNA detection, protein-protein interaction (PPI) network construction, screening of hub-hub RNAs, and target prediction analysis on the detected modules. We identified a total of 17 RNA-seq-based modules and 3 miRNA-seq-based modules. Among the significant highly-correlated RNA-seq-based modules, six modules showed strong associations with clinical characteristics of mastitis. Functional enrichment analysis revealed that the turquoise module was directly related to inflammation persistence and mastitis development. Furthermore, module assignment analysis demonstrated that the blue miRNA-seq-based module post-transcriptionally regulates the turquoise RNA-seq-based module. We also identified a set of different RNAs, including hub-hub genes, hub-hub TFs (transcription factors), hub-hub lncRNAs (long non-coding RNAs), and hub miRNAs within the modules of interest, indicating their central role in the molecular interactome underlying the pathogenic mechanisms of S. uberis infection. This study provides a comprehensive insight into the molecular crosstalk between immunoregulatory mRNAs, miRNAs, and lncRNAs during S. uberis infection. These findings offer valuable directions for the development of molecular diagnosis and biological therapies for mastitis.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Maryam Bakherad
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Hossein Moradi Shahrbabak
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | | | - Mohammad Moradi Shahrbabak
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
8
|
Wei J, Luo B, Kong S, Liu W, Zhang C, Wei Z, Min X. Screening and identification of multiple abiotic stress responsive candidate genes based on hybrid-sequencing in Vicia sativa. Heliyon 2023; 9:e13536. [PMID: 36816321 PMCID: PMC9929474 DOI: 10.1016/j.heliyon.2023.e13536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023] Open
Abstract
Common vetch is an important leguminous forage for both livestock fodder and green manure and has a tremendous latent capacity in a sustainable agroecosystem. In the present study, a comprehensive transcriptome analysis of the aboveground leaves and underground roots of common vetch under multiple abiotic stress treatments, including NaCl, drought, cold, and cold drought, was performed using hybrid-sequencing technology, i. e. single-molecule real-time sequencing technology (SMRT) and supplemented by next-generation sequencing (NGS) technology. A total of 485,038 reads of insert (ROIs) with a mean length of 2606 bp and 228,261 full-length nonchimeric (FLNC) reads were generated. After deduplication, 39,709 transcripts were generated. Of these transcripts, we identified 1059 alternative splicing (AS) events, 17,227 simple sequence repeats (SSRs), and 1647 putative transcription factors (TFs). Furthermore, 640 candidates long noncoding RNAs (lncRNAs) and 28,256 complete coding sequences (CDSs) were identified. In gene annotation analyses, a total of 38,826 transcripts (97.78%) were annotated in eight public databases. Finally, seven multiple abiotic stress-responsive candidate genes were obtained through gene expression, annotation information, and protein-protein interaction (PPI) networks. Our research not only enriched the structural information of FL transcripts in common vetch, but also provided useful information for exploring the molecular mechanism of multiple abiotic stress tolerance between aboveground and underground tissues in common vetch and related legumes.
Collapse
Affiliation(s)
- Jia Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People’s Republic of China
| | - Bo Luo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People’s Republic of China
| | - Shiyi Kong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People’s Republic of China
| | - Wenxian Liu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Chuanjie Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People’s Republic of China
| | - Zhenwu Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People’s Republic of China
- Corresponding author.
| | - Xueyang Min
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People’s Republic of China
- Corresponding author.
| |
Collapse
|
9
|
The Role of N 6-Methyladenosine in Inflammatory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9744771. [PMID: 36578520 PMCID: PMC9792239 DOI: 10.1155/2022/9744771] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
N6-Methyladenosine (m6A) is the most abundant epigenetic RNA modification in eukaryotes, regulating RNA metabolism (export, stability, translation, and decay) in cells through changes in the activity of writers, erasers, and readers and ultimately affecting human life or disease processes. Inflammation is a response to infection and injury in various diseases and has therefore attracted significant attention. Currently, extensive evidence indicates that m6A plays an essential role in inflammation. In this review, we focus on the mechanisms of m6A in inflammatory autoimmune diseases, metabolic disorder, cardio-cerebrovascular diseases, cancer, and pathogen-induced inflammation, as well as its possible role as targets for clinical diagnosis and treatment.
Collapse
|
10
|
Feng F, Jiao P, Wang J, Li Y, Bao B, Luoreng Z, Wang X. Role of Long Noncoding RNAs in the Regulation of Cellular Immune Response and Inflammatory Diseases. Cells 2022; 11:cells11223642. [PMID: 36429069 PMCID: PMC9688074 DOI: 10.3390/cells11223642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are recently discovered genetic regulatory molecules that regulate immune responses and are closely associated with the occurrence and development of various diseases, including inflammation, in humans and animals. Under specific physiological conditions, lncRNA expression varies at the cell or tissue level, and lncRNAs can bind to specific miRNAs, target mRNAs, and target proteins to participate in certain processes, such as cell differentiation and inflammatory responses, via the corresponding signaling pathways. This review article summarizes the regulatory role of lncRNAs in macrophage polarization, dendritic cell differentiation, T cell differentiation, and endothelial and epithelial inflammation. In addition, it describes the molecular mechanism of lncRNAs in acute kidney injury, hepatitis, inflammatory injury of the lung, osteoarthritis, mastitis, and neuroinflammation to provide a reference for the molecular regulatory network as well as the genetic diagnosis and treatment of inflammatory diseases in humans and animals.
Collapse
Affiliation(s)
- Fen Feng
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Peng Jiao
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jinpeng Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yanxia Li
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Binwu Bao
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
- Correspondence: (Z.L.); (X.W.)
| | - Xingping Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
- Correspondence: (Z.L.); (X.W.)
| |
Collapse
|
11
|
Yang J, Tang Y, Liu X, Zhang J, Zahoor Khan M, Mi S, Wang C, Yu Y. Characterization of peripheral white blood cells transcriptome to unravel the regulatory signatures of bovine subclinical mastitis resistance. Front Genet 2022; 13:949850. [PMID: 36204322 PMCID: PMC9530456 DOI: 10.3389/fgene.2022.949850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Subclinical bovine mastitis is a pathogenic infection of the breast characterized by a marked decrease in milk production and quality. As it has no obvious clinical symptoms, diagnosis and treatment are challenging. Therefore, searching for biomarkers in cows’ peripheral white blood cells is valuable for preventing and treating subclinical mastitis. Thus, in this study, the transcriptome of peripheral blood from healthy and subclinical mastitis cows was characterized to find the regulatory signatures of bovine subclinical mastitis using RNA-seq. A total of 287 differentially expressed genes (DEGs) and 70 differentially expressed lncRNAs (DELs) were detected, and 37 DELs were documented near known Quantitative Trait Loci (QTL) associated with the mastitis of cows. Bioinformatic analysis indicated that lncRNAs MSTRG25101.2, MSTRG.56327.1, and MSTRG.18968.1, which are adjacent to the SCS QTL and SCC QTL, may be candidate lncRNAs that influence the pathogenesis of mastitis in cows by up-regulating the expression of genes TLR4, NOD2, CXCL8, and OAS2. Moreover, the alternative splicing (AS) pattern of transcriptional sequence differences between healthy cows and subclinical mastitis cows suggested a molecular mechanism of mastitis resistance and susceptibility. A total of 2,212 differential alternative splicing (DAS) events, corresponding to 1,621 unique DAS genes, were identified in both groups and significantly enriched in immune and inflammatory pathways. Of these, 29 DAS genes were subject to regulation by 32 alternative splicing SNPs, showing diverse and specific splicing patterns and events. It is hypothesized that the PIK3C2B and PPRPF8 splice variants associated with AS SNPs (rs42705933 and rs133847062) may be risk factors for susceptibility to bovine subclinical mastitis. Altogether, these key blood markers associated with resistance to subclinical mastitis and SNPs associated with alternative splicing of genes provide the basis for genetic breeding for resistance to subclinical mastitis in cows.
Collapse
Affiliation(s)
- Jinyan Yang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongjie Tang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xueqin Liu
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinning Zhang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Muhammad Zahoor Khan
- Department of Animal Sciences, Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan, Pakistan
| | - Siyuan Mi
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chuduan Wang
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ying Yu
- Laboratory of Animal Genetics and Breeding, Ministry of Agriculture and Rural Affairs of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Ying Yu,
| |
Collapse
|
12
|
Xu H, Lin C, Li T, Zhu Y, Yang J, Chen S, Chen J, Chen X, Chen Y, Guo A, Hu C. N 6-Methyladenosine-Modified circRNA in the Bovine Mammary Epithelial Cells Injured by Staphylococcus aureus and Escherichia coli. Front Immunol 2022; 13:873330. [PMID: 35444650 PMCID: PMC9014013 DOI: 10.3389/fimmu.2022.873330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/11/2022] [Indexed: 11/28/2022] Open
Abstract
Mastitis is a common disease that hinders the development of dairy industry and animal husbandry. It leads to the abuse of antibiotics and the emergence of super drug-resistant bacteria, and poses a great threat to human food health and safety. Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) are the most common pathogens of mastitis in dairy cows and usually cause subclinical or clinical mastitis. CircRNAs and N6-methyladenosine (m6A) play important roles in immunological diseases. However, the mechanisms by which m6A modifies circRNA in bovine mammary epithelial cells remain poorly understood. The aim of our study was to investigate m6A-modified circRNAs in bovine mammary epithelial cells (MAC-T cells) injured by S. aureus and E. coli. The profile of m6A-modified circRNA showed a total of 1,599 m6A peaks within 1,035 circRNAs in the control group, 35 peaks within 32 circRNAs in the S. aureus group, and 1,016 peaks within 728 circRNAs in the E. coli group. Compared with the control group, 67 peaks within 63 circRNAs were significantly different in the S. aureus group, and 192 peaks within 137 circRNAs were significantly different in the E. coli group. Furthermore, we found the source genes of these differentially m6A-modified circRNAs in the S. aureus and E. coli groups with similar functions according to GO and KEGG analyses, which were mainly associated with cell injury, such as inflammation, apoptosis, and autophagy. CircRNA–miRNA–mRNA interaction networks predicted the potential circRNA regulation mechanism in S. aureus- and E. coli-induced cell injury. We found that the mRNAs in the networks, such as BCL2, MIF, and TNFAIP8L2, greatly participated in the MAPK, WNT, and inflammation pathways. This is the first report on m6A-modified circRNA regulation of cells under S. aureus and E. coli treatment, and sheds new light on potential mechanisms and targets from the perspective of epigenetic modification in mastitis and other inflammatory diseases.
Collapse
Affiliation(s)
- Haojun Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Changjie Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Ting Li
- The Center for Animal Disease Control and Prevention in Wuhan, Wuhan Bureau of Agriculture and Rural Bureau Affairs, Wuhan, China
| | - Yifan Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinghan Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Sijie Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Yang J, Liu Y, Lin C, Yan R, Li Z, Chen Q, Zhang H, Xu H, Chen X, Chen Y, Guo A, Hu C. Regularity of Toll-Like Receptors in Bovine Mammary Epithelial Cells Induced by Mycoplasma bovis. Front Vet Sci 2022; 9:846700. [PMID: 35464378 PMCID: PMC9021453 DOI: 10.3389/fvets.2022.846700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Mastitis is one of the most common and significant infectious diseases in dairy cattle and is responsible for significant financial losses for the dairy industry globally. An important pathogen of bovine mastitis, Mycoplasma bovis (M. bovis) has a high infection rate, requires a long course of treatment, and is difficult to cure. Bovine mammary epithelial cells (BMECs) are the first line of defense of the mammary gland, and their natural immune system plays a critical role in resisting M. bovis infection. This study aimed to explore and demonstrate the regularity of Toll-like receptors (TLRs) activation during M. bovis infection and their function during M. bovis mastitis. An in vitro model of M. bovis-induced mastitis showed that the expression of IL-6, IL-8, and TNF-α increased significantly following infection. M. bovis infection also upregulated the expression of TLR1/2/6 on the cell membrane and TLR3/9 in the cytoplasm. There is a crosstalk effect between TLR1–TLR2 and TLR2–TLR6. Furthermore, M. bovis infection was found to activate the TLR1/2/6/9/MyD88/NF-κB and TLR3/TRIF/IRF signal transduction pathways, which in turn activate inflammatory factors. These findings lay the theoretical foundation for understanding the pathogenesis of M. bovis, permitting the development of effective measures for preventing and controlling M. bovis mastitis.
Collapse
Affiliation(s)
- Jinghan Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuhui Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changjie Lin
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Yan
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhengzhi Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiuhui Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haiyan Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haojun Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Changmin Hu
| |
Collapse
|
14
|
N6-Methyladenosine Modification Profile in Bovine Mammary Epithelial Cells Treated with Heat-Inactivated Staphylococcus aureus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1704172. [PMID: 35251466 PMCID: PMC8890870 DOI: 10.1155/2022/1704172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/04/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022]
Abstract
The symptoms of mastitis caused by Staphylococcus aureus (S. aureus) in dairy cows are not obvious and difficult to identify, resulting in major economic losses. N6-Methyladenosine (m6A) modification has been reported to be closely associated with the occurrence of many diseases. However, only a few reports have described the role of m6A modification in S. aureus-induced mastitis. In this study, after 24 h of treatment with inactivated S. aureus, MAC-T cells (an immortalized bovine mammary epithelial cell line) showed increased expression levels of the inflammatory factors IL-1β, IL-6, TNF-α, and reactive oxygen species. We found that the mRNA levels of METLL3, METLL14, WTAP, and ALKBH5 were also upregulated. Methylated RNA immunoprecipitation sequencing analysis revealed that 133 genes were m6A hypermethylated, and 711 genes were m6A hypomethylated. Biological functional analysis revealed that the differential m6A methylated genes were mainly related to oxidative stress, lipid metabolism, inflammatory response, and so on. In the present study, we also identified 62 genes with significant changes in m6A modification and mRNA expression levels. These findings elucidated the m6A modification spectrum induced by S. aureus in MAC-T cells and provide the basis for subsequent m6A research on mastitis.
Collapse
|