1
|
Listro R, Marra A, Cavalloro V, Rossino G, Linciano P, Rossi D, Casali E, De Amici M, Mazzeo G, Longhi G, Fusè M, Dondio G, Pellavio G, Laforenza U, Schepmann D, Wünsch B, Collina S. Sigma receptor and aquaporin modulators: chiral resolution, configurational assignment, and preliminary biological profile of RC752 enantiomers. J Pharm Biomed Anal 2024; 239:115902. [PMID: 38101238 DOI: 10.1016/j.jpba.2023.115902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
The key role of chiral small molecules in drug discovery programs has been deeply investigated throughout last decades. In this context, our previous studies highlighted the influence of the absolute configuration of different stereocenters on the pharmacokinetic, pharmacodynamic and functional properties of promising Sigma receptor (SR) modulators. Thus, starting from the racemic SR ligand RC752, we report herein the isolation of the enantiomers via enantioselective separation with both HPLC and SFC. After optimization of the eco-sustainable chiral SFC method, both enantiomers were obtained in sufficient amount (tens of mg) and purity (ee up to 95%) to allow their characterization and initial biological investigation. Both enantiomers a) displayed a high affinity for the S1R subtype (Ki = 15.0 ± 1.7 and 6.0 ± 1.2 nM for the (S)- and (R)-enantiomer, respectively), but only negligible affinity toward the S2R (> 350 nM), and b) were rapidly metabolized when incubated with mouse and human hepatic microsomes. Furthermore, the activity on AQP-mediated water permeability indicated a different functional profile for the enantiomers in terms of modulatory effect on the peroxiporins gating.
Collapse
Affiliation(s)
- Roberta Listro
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Annamaria Marra
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Valeria Cavalloro
- Department of Earth and Environmental Sciences, University of Pavia, Via Sant 'Epifanio 14, 27100 Pavia, Italy
| | - Giacomo Rossino
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Pasquale Linciano
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Daniela Rossi
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Emanuele Casali
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Marco De Amici
- Department of Pharmaceutical Sciences, University of Milan, Via Luigi Mangiagalli 25, 20133 Milan, Italy
| | - Giuseppe Mazzeo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giovanna Longhi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Marco Fusè
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giulio Dondio
- Aphad SrL, Via della Resistenza, 65, Buccinasco 20090, Italy
| | - Giorgia Pellavio
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
| | - Dirk Schepmann
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, Münster D-48149, Germany
| | - Bernhard Wünsch
- Westfälische Wilhelms-Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, Corrensstraße 48, Münster D-48149, Germany; Institut für Pharmazeutische und Medizinische Chemie, Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
2
|
Cavalloro V, Marchesi N, Linciano P, Rossi D, Campagnoli LIM, Fossati A, Ahmed KM, Malacrida A, Miloso M, Mazzeo G, Abbate S, Longhi G, Ambrosio FA, Costa G, Alcaro S, Pascale A, Martino E, Collina S. Neurodegeneration: can metabolites from Eremurus persicus help? Front Pharmacol 2024; 15:1309766. [PMID: 38370479 PMCID: PMC10873958 DOI: 10.3389/fphar.2024.1309766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024] Open
Abstract
The number of patients affected by neurodegenerative diseases is increasing worldwide, and no effective treatments have been developed yet. Although precision medicine could represent a powerful tool, it remains a challenge due to the high variability among patients. To identify molecules acting with innovative mechanisms of action, we performed a computational investigation using SAFAN technology, focusing specifically on HuD. This target belongs to the human embryonic lethal abnormal visual-like (ELAV) proteins and plays a key role in neuronal plasticity and differentiation. The results highlighted that the molecule able to bind the selected target was (R)-aloesaponol-III-8-methyl ether [(R)-ASME], a metabolite extracted from Eremurus persicus. Notably, this molecule is a TNF-α inhibitor, a cytokine involved in neuroinflammation. To obtain a suitable amount of (R)-ASME to confirm its activity on HuD, we optimized the extraction procedure. Together with ASME, another related metabolite, germichrysone, was isolated. Both ASME and germichrysone underwent biological investigation, but only ASME confirmed its ability to bind HuD. Given the multifactorial nature of neurodegenerative diseases, we decided to investigate ASME as a proteasome activator, being molecules endowed with this kind of activity potentially able to counteract aggregations of dysregulated proteins. ASME was able to activate the considered target both in enzymatic and cellular assays. Therefore, ASME may be considered a promising hit in the fight against neurodegenerative diseases.
Collapse
Affiliation(s)
- Valeria Cavalloro
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
- National Biodiversity Future Center, Palermo, Italy
| | | | | | - Daniela Rossi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | | - Alice Fossati
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Karzan Mahmood Ahmed
- Department of Chemistry, College of Education, University of Garmian, Kalar, Iraq
| | - Alessio Malacrida
- School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| | - Mariarosaria Miloso
- School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
- Experimental Neurology Unit, University of Milano-Bicocca, Monza, Italy
| | - Giuseppe Mazzeo
- Department of Molecular and Translational Medicine, Università di Brescia, Brescia, Italy
| | - Sergio Abbate
- Department of Molecular and Translational Medicine, Università di Brescia, Brescia, Italy
| | - Giovanna Longhi
- Department of Molecular and Translational Medicine, Università di Brescia, Brescia, Italy
| | - Francesca Alessandra Ambrosio
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Catanzaro, Italy
| | - Giosuè Costa
- Department of Health Sciences, Campus “S. Venuta”, “Magna Græcia” University of Catanzaro, Catanzaro, Italy
- Net4Science Academic Spin-Off, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Catanzaro, Italy
| | - Stefano Alcaro
- Department of Health Sciences, Campus “S. Venuta”, “Magna Græcia” University of Catanzaro, Catanzaro, Italy
- Net4Science Academic Spin-Off, University “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Catanzaro, Italy
- Associazione CRISEA–Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Italy
| | - Alessia Pascale
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Emanuela Martino
- Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
3
|
Li Z, Zhou J, Cui S, Hu S, Li B, Liu X, Zhang C, Zou Y, Hu Y, Yu Y, Shen B, Yang B. Activation of sigma-1 receptor ameliorates sepsis-induced myocardial injury by mediating the Nrf2/HO1 signaling pathway to attenuate mitochondrial oxidative stress. Int Immunopharmacol 2024; 127:111382. [PMID: 38141412 DOI: 10.1016/j.intimp.2023.111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Sepsis is a condition that triggers the release of large amounts of reactive oxygen species and inflammatory factors in the body, leading to myocardial injury and cardiovascular dysfunction - an important contributor to the high mortality rate associated with sepsis. Although it has been demonstrated that the sigma-1 receptor (S1R) is essential for preventing oxidative stress, its effectiveness in treating sepsis is yet unknown. AIM This study aimed to investigate the role and mechanisms of S1R activation in sepsis-induced myocardial injury. METHODS A model of sepsis-induced myocardial injury was constructed by performing cecum ligation and puncture(CLP) surgery on rats. Flv or BD1047 were intraperitoneally injected into rats for one consecutive week before performing CLP, and then intraperitoneally injected into the rats again 1 h after the surgery.The effects of Flv and BD1047 were detected by HE staining, immunofluorescence staining, IHC staining, echocardiography measurements,TUNEL, oxidative stress detection, TEM, flow cytometry and western blot. We further validated the mechanism in vitro using neonatal rat cardiomyocites and H9C2 cells. RESULTS S1R protein level was reduced in the hearts of septic rats, whereas administration of Flv, an S1R activator, ameliorated myocardial injury, mitochondrial oxidative stress, and pathological manifestations of sepsis. On the other hand, administration of the S1R inhibitor BD1047 exacerbated the mitochondrial oxidative stress, and apoptosis, as well as symptoms and pathological manifestations of sepsis. In addition, we found that up-regulation of S1R activated the Nrf2/HO1 signaling pathway and promoted nuclear translocation of Nrf2, which activated downstream proteins to generate antioxidant factors, such as HO1, in turn alleviating oxidative stress and countering myocardial damage. CONCLUSION By scavenging ROS accumulation and reducing mitochondrial oxidative stress via the Nrf2/HO1 signaling pathway, activation of S1R improves cardiac function, mitigates death of cardiomyocytes, and attenuates sepsis-induced myocardial injury.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Jining Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shengyu Cui
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Bin Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Cui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Ying Zou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yiqian Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Yi Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Bo Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
4
|
Wang Z, Zhang S, Liu Z, Chang Z, Hu H. Gut Bacteria Promote Phosphine Susceptibility of Tribolium castaneum by Aggravating Oxidative Stress and Fitness Costs. INSECTS 2023; 14:815. [PMID: 37887827 PMCID: PMC10607109 DOI: 10.3390/insects14100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023]
Abstract
Knowledge about resistance mechanisms can provide ideas for pesticide resistance management. Although several studies have unveiled the positive or negative impacts of gut microbes on host pesticide resistance, minimal research is available regarding the association between gut microbes and host phosphine resistance. To explore the influence of gut bacteria on host phosphine susceptibility and its molecular basis, mortality, fitness, redox responses, and immune responses of adult Tribolium castaneum were determined when it was challenged by phosphine exposure and/or gut bacteria inoculation. Five cultivable gut bacteria were excised from a population of phosphine-resistant T. castaneum. Among them, only Enterococcus sp. inoculation significantly promoted host susceptibility to phosphine, while inoculation of any other gut bacteria had no significant effect on host phosphine susceptibility. Furthermore, when T. castaneum was exposed to phosphine, Enterococcus sp. inoculation decreased the female fecundity, promoted host oxidative stress, and suppressed the expression and activity of host superoxide dismutase, catalase, and peroxidase. In the absence of phosphine, Enterococcus sp. inoculation also elicited overactive immune responses in T. castaneum, including the immune deficiency and Toll signaling pathways and the dual oxidase-reactive oxygen species system. These results indicate that Enterococcus sp. likely promotes host phosphine susceptibility by aggravating oxidative stress and fitness costs.
Collapse
Affiliation(s)
- Zhengyan Wang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (S.Z.); (Z.L.); (Z.C.); (H.H.)
| | | | | | | | | |
Collapse
|
5
|
Rossino G, Marra A, Listro R, Peviani M, Poggio E, Curti D, Pellavio G, Laforenza U, Dondio G, Schepmann D, Wünsch B, Bedeschi M, Marino N, Tesei A, Ha HJ, Kim YH, Ann J, Lee J, Linciano P, Di Giacomo M, Rossi D, Collina S. Discovery of RC-752, a Novel Sigma-1 Receptor Antagonist with Antinociceptive Activity: A Promising Tool for Fighting Neuropathic Pain. Pharmaceuticals (Basel) 2023; 16:962. [PMID: 37513874 PMCID: PMC10386076 DOI: 10.3390/ph16070962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Neuropathic pain (NP) is a chronic condition resulting from damaged pain-signaling pathways. It is a debilitating disorder that affects up to 10% of the world's population. Although opioid analgesics are effective in reducing pain, they present severe risks; so, there is a pressing need for non-opioid pain-relieving drugs. One potential alternative is represented by sigma-1 receptor (S1R) antagonists due to their promising analgesic effects. Here, we report the synthesis and biological evaluation of a series of S1R antagonists based on a 2-aryl-4-aminobutanol scaffold. After assessing affinity toward the S1R and selectivity over the sigma-2 receptor (S2R), we evaluated the agonist/antagonist profile of the compounds by investigating their effects on nerve growth factor-induced neurite outgrowth and aquaporin-mediated water permeability in the presence and absence of oxidative stress. (R/S)-RC-752 emerged as the most interesting compound for S1R affinity (Ki S1R = 6.2 ± 0.9) and functional antagonist activity. Furthermore, it showed no cytotoxic effect in two normal human cell lines or in an in vivo zebrafish model and was stable after incubation in mouse plasma. (R/S)-RC-752 was then evaluated in two animal models of NP: the formalin test and the spinal nerve ligation model. The results clearly demonstrated that compound (R/S)-RC-752 effectively alleviated pain in both animal models, thus providing the proof of concept of its efficacy as an antinociceptive agent.
Collapse
Affiliation(s)
- Giacomo Rossino
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Annamaria Marra
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Roberta Listro
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Marco Peviani
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Elena Poggio
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Daniela Curti
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Giorgia Pellavio
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Umberto Laforenza
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Giulio Dondio
- Aphad SrL, Via della Resistenza, 65, 20090 Buccinasco, Italy
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Martina Bedeschi
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Noemi Marino
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Anna Tesei
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola, Italy
| | - Hee-Jin Ha
- Medifron DBT, Seoul 08502, Republic of Korea
| | | | - Jihyae Ann
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- JMackem Co. Ltd., Seoul 08826, Republic of Korea
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- JMackem Co. Ltd., Seoul 08826, Republic of Korea
| | - Pasquale Linciano
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | | | - Daniela Rossi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
6
|
Pagano K, Listro R, Linciano P, Rossi D, Longhi E, Taraboletti G, Molinari H, Collina S, Ragona L. Identification of a novel extracellular inhibitor of FGF2/FGFR signaling axis by combined virtual screening and NMR spectroscopy approach. Bioorg Chem 2023; 136:106529. [PMID: 37084585 DOI: 10.1016/j.bioorg.2023.106529] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 04/23/2023]
Abstract
The aberrant activation of the fibroblast growth factor 2 (FGF2)/fibroblast growth factor receptor (FGFR) signalling pathway drives severe pathologies, including cancer development and angiogenesis-driven pathologies. The perturbation of the FGF2/FGFR axis via extracellular allosteric small inhibitors is a promising strategy for developing FGFR inhibitors with improved safety and efficacy for cancer treatment. We have previously investigated the role of new extracellular inhibitors, such as rosmarinic acid (RA), which bind the FGFR-D2 domain and directly compete with FGF2 for the same binding site, enabling the disruption of the functional FGF2/FGFR interaction. To select ligands for the previously identified FGF2/FGFR RA binding site, NMR data-driven virtual screening has been performed on an in-house library of non-commercial small molecules and metabolites. A novel drug-like compound, a resorcinol derivative named RBA4 has been identified. NMR interaction studies demonstrate that RBA4 binds the FGF2/FGFR complex, in agreement with docking prediction. Residue-level NMR perturbations analysis highlights that the mode of action of RBA4 is similar to RA in terms of its ability to target the FGF2/FGFR-D2 complex, inducing perturbations on both proteins and triggering complex dissociation. Biological assays proved that RBA4 inhibited FGF2 proliferative activity at a level comparable to the previously reported natural product, RA. Identification of RBA4 chemical groups involved in direct interactions represents a starting point for further optimization of drug-like extracellular inhibitors with improved activity.
Collapse
Affiliation(s)
- Katiuscia Pagano
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, via Corti 12, 20133 Milano, Italy
| | - Roberta Listro
- University of Pavia, Department of Drug Sciences, Via Taramelli 12, 27100 Pavia, Italy
| | - Pasquale Linciano
- University of Pavia, Department of Drug Sciences, Via Taramelli 12, 27100 Pavia, Italy
| | - Daniela Rossi
- University of Pavia, Department of Drug Sciences, Via Taramelli 12, 27100 Pavia, Italy.
| | - Elisa Longhi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche, Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Giulia Taraboletti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche, Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Henriette Molinari
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, via Corti 12, 20133 Milano, Italy
| | - Simona Collina
- University of Pavia, Department of Drug Sciences, Via Taramelli 12, 27100 Pavia, Italy
| | - Laura Ragona
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), Consiglio Nazionale delle Ricerche, via Corti 12, 20133 Milano, Italy.
| |
Collapse
|
7
|
Linciano P, Sorbi C, Rossino G, Rossi D, Marsala A, Denora N, Bedeschi M, Marino N, Miserocchi G, Dondio G, Peviani M, Tesei A, Collina S, Franchini S. Novel S1R agonists counteracting NMDA excitotoxicity and oxidative stress: A step forward in the discovery of neuroprotective agents. Eur J Med Chem 2023; 249:115163. [PMID: 36716640 DOI: 10.1016/j.ejmech.2023.115163] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
Sigma-1 receptor (S1R) has been considered a promising therapeutic target for several neurodegenerative diseases and S1R agonists have shown neuroprotective activity against glutamate excitotoxicity and oxidative stress. Starting from a previously identified low nanomolar S1R agonist, in this work we prepared and tested novel benzylpiperidine/benzylpiperazine-based compounds designed by applying a ring opening strategy. Among them, 4-benzyl-1-(2-phenoxyethyl)piperidine 6b (S1R Ki = 0.93 nM) and 4-benzyl-1-(3-phenoxypropyl)piperidine 8b (S1R Ki = 1.1 nM) emerged as high affinity S1R ligands and showed selectivity over S2R and N-methyl-d-aspartate receptor (NMDAR). Candidate compounds behaved as potent S1R agonists being able to enhance the neurite outgrowth induced by nerve growth factor (NGF) in PC12 cell lines. In SH-SY5Y neuroblastoma cell lines they exhibited a neuroprotective effect against rotenone- and NMDA-mediated toxic insults. The neuroprotective activity of 6b and 8b was reverted by co-treatment with an S1R antagonist, PB212. Compounds 6b and 8b were tested for cytotoxicity in-vitro against three human cancer cell lines (A549, LoVo and Panc-1) and in-vivo zebrafish model, resulting in a good efficacy/safety profile, comparable or superior to the reference drug memantine. Overall, these results encourage further preclinical investigations of 6b and 8b on in-vivo models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Claudia Sorbi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Giacomo Rossino
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Daniela Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Andrea Marsala
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Nunzio Denora
- Dipartimento di Farmacia - Scienze del Farmaco, Università, degli Studi di Bari Aldo Moro, 70126, Bari, Italy
| | - Martina Bedeschi
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Noemi Marino
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Giacomo Miserocchi
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Giulio Dondio
- Aphad SrL, Via della Resistenza, 65, Buccinasco, 20090, Italy
| | - Marco Peviani
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Anna Tesei
- BioScience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Silvia Franchini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy.
| |
Collapse
|
8
|
Pellavio G, Sommi P, Anselmi-Tamburini U, DeMichelis MP, Coniglio S, Laforenza U. Cerium Oxide Nanoparticles Regulate Oxidative Stress in HeLa Cells by Increasing the Aquaporin-Mediated Hydrogen Peroxide Permeability. Int J Mol Sci 2022; 23:ijms231810837. [PMID: 36142747 PMCID: PMC9506032 DOI: 10.3390/ijms231810837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Some aquaporins (AQPs) allow the diffusion of hydrogen peroxide (H2O2), the most abundant ROS, through the cell membranes. Therefore, the possibility of regulating the AQP-mediated permeability to H2O2, and thus ROS scavenging, appears particularly important for controlling the redox state of cells in physiological and pathophysiological conditions. Several compounds have been screened and characterized for this purpose. This study aimed to analyze the effect of cerium oxide nanoparticles (CNPs) presenting antioxidant activity on AQP functioning. HeLa cells express AQP3, 6, 8, and 11, able to facilitate H2O2. AQP3, 6, and 8 are expressed in the plasma membrane and intracellularly, while AQP11 resides only in intracellular structures. CNPs but not cerium ions treatment significantly increased the water and H2O2 permeability by interacting with AQP3, 6, and especially with AQP8. CNPs increased considerably the AQP-mediated water diffusion in cells with oxidative stress. Functional experiments with silenced HeLa cells revealed that CNPs increased the H2O2 diffusion mainly by modulating the AQP8 permeability but also the AQP3 and AQP6, even if to a lesser extent. Current findings suggest that CNPs represent a promising pharmaceutical agent that might potentially be used in numerous pathologies involving oxidative stress as tumors and neurodegenerative diseases.
Collapse
Affiliation(s)
- Giorgia Pellavio
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
| | - Patrizia Sommi
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
| | | | | | - Stefania Coniglio
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
| | - Umberto Laforenza
- Department of Molecular Medicine, Human Physiology Unit, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-98-7568
| |
Collapse
|
9
|
Repurposing the Antiplatelet Agent Ticlopidine to Counteract the Acute Phase of ER Stress Condition: An Opportunity for Fighting Coronavirus Infections and Cancer. Molecules 2022; 27:molecules27144327. [PMID: 35889200 PMCID: PMC9322847 DOI: 10.3390/molecules27144327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Different pathological conditions, including viral infections and cancer, can have a massive impact on the endoplasmic reticulum (ER), causing severe damage to the cell and exacerbating the disease. In particular, coronavirus infections, including SARS coronavirus-2 (SARS-CoV-2), responsible for COVID-19, cause ER stress as a consequence of the enormous amounts of viral glycoproteins synthesized, the perturbation of ER homeostasis and the modification of ER membranes. Therefore, ER has a central role in the viral life cycle, thus representing one of the Achilles’ heels on which to focus therapeutic intervention. On the other hand, prolonged ER stress has been demonstrated to promote many pro-tumoral attributes in cancer cells, having a key role in tumor growth, metastasis and response to therapies. In this report, adopting a repurposing approach of approved drugs, we identified the antiplatelet agent ticlopidine as an interferent of the unfolded protein response (UPR) via sigma receptors (SRs) modulation. The promising results obtained suggest the potential use of ticlopidine to counteract ER stress induced by viral infections, such as COVID-19, and cancer.
Collapse
|