1
|
Lakli M, Onnée M, Carrez T, Becq F, Falguières T, Fanen P. ABC transporters involved in respiratory and cholestatic diseases: From rare to very rare monogenic diseases. Biochem Pharmacol 2024; 229:116468. [PMID: 39111603 DOI: 10.1016/j.bcp.2024.116468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/16/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024]
Abstract
ATP-binding cassette (ABC) transporters constitute a 49-member superfamily in humans. These proteins, most of them being transmembrane, allow the active transport of an important variety of substrates across biological membranes, using ATP hydrolysis as an energy source. For an important proportion of these ABC transporters, genetic variations of the loci encoding them have been correlated with rare genetic diseases, including cystic fibrosis and interstitial lung disease (variations in CFTR/ABCC7 and ABCA3) as well as cholestatic liver diseases (variations in ABCB4 and ABCB11). In this review, we first describe these ABC transporters and how their molecular dysfunction may lead to human diseases. Then, we propose a classification of the genetic variants according to their molecular defect (expression, traffic, function and/or stability), which may be considered as a general guideline for all ABC transporters' variants. Finally, we discuss recent progress in the field of targeted pharmacotherapy, which aim to correct specific molecular defects using small molecules. In conclusion, we are opening the path to treatment repurposing for diseases involving similar deficiencies in other ABC transporters.
Collapse
Affiliation(s)
- Mounia Lakli
- Inserm, Université Paris-Saclay, Physiopathogenèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, 91400 Orsay, France
| | - Marion Onnée
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Créteil, France
| | - Thomas Carrez
- Université de Poitiers, Laboratoire Physiopathologie et Régulation des Transports Ioniques, Pôle Biologie Santé, 86000 Poitiers, France; ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, 29680, Roscoff, France
| | - Frédéric Becq
- Université de Poitiers, Laboratoire Physiopathologie et Régulation des Transports Ioniques, Pôle Biologie Santé, 86000 Poitiers, France
| | - Thomas Falguières
- Inserm, Université Paris-Saclay, Physiopathogenèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, 91400 Orsay, France
| | - Pascale Fanen
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Créteil, France; AP-HP, Département de Génétique Médicale, Hôpital Henri Mondor, F-94010, Créteil, France.
| |
Collapse
|
2
|
Ognean ML, Anciuc-Crauciuc M, Galiș R, Stepan AE, Stepan MD, Bănescu C, Grosu F, Kramer BW, Cucerea M. ABCA3 c.838C>T (p.Arg280Cys, R280C) and c.697C>T (p.Gln233Ter, Q233X, Q233*) as Causative Variants for RDS: A Family Case Study and Literature Review. Biomedicines 2024; 12:2390. [PMID: 39457702 PMCID: PMC11505159 DOI: 10.3390/biomedicines12102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Respiratory distress syndrome (RDS) is the primary cause of respiratory failure in preterm infants, but it also affects 5-7% of term infants. Dysfunctions in pulmonary surfactant metabolism, resulting from mutations of the lung surfactant genes, are rare diseases, ranging from fatal neonatal RDS to interstitial lung disease, associated with increased morbidity and mortality. This study aims to clarify the clinical significance of ABCA3 variants found in a specific family case, as existing data in the literature are inconsistent. Material and Methods: A family case report was conducted; targeted panel genetic testing identified a variant of the SFTPB gene and two variants of ABCA3 genes. Comprehensive research involving a systematic review of PubMed, Google Scholar databases, and genome browsers was used to clarify the pathogenicity of the two ABCA3 variants found in the index patient. Advanced prediction tools were employed to assess the pathogenicity of the two ABCA3 variants, ensuring the validity and reliability of our findings. Results: The index case exhibited fatal neonatal RDS. Genetic testing revealed the presence of the SFTPB p.Val267Ile variant, which was not previously reported but is a benign variant based on family genetic testing and history. Additionally, two ABCA3 gene variants were identified: c.697C>T, not yet reported, and c.838C>T. These variants were found to affect ABCA3 protein function and were likely associated with neonatal RDS. Prediction tools and data from nine other cases in the literature supported this conclusion. Conclusions: Based on in silico predictors, an analysis of the presented family, and cases described in the literature, it is reasonable to consider reclassifying the two ABCA3 variants identified in the index case as pathogenic/pathogenic. Reclassification will improve genetic counseling accuracy and facilitate correct diagnosis.
Collapse
Affiliation(s)
- Maria Livia Ognean
- Faculty of Medicine, Lucian Blaga University, 550169 Sibiu, Romania; (M.L.O.)
- Neonatology Department, Clinical County Emergency Hospital, 550245 Sibiu, Romania
| | - Mădălina Anciuc-Crauciuc
- Department of Neonatology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Targu Mures, Romania;
| | - Radu Galiș
- Department of Neonatology, Emergency County Hospital Bihor, Oradea University, 410087 Oradea, Romania;
- Department of Neonatology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Alex-Emilian Stepan
- Department of Pathology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania
| | - Mioara Desdemona Stepan
- Department of Infant Care-Pediatrics-Neonatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Claudia Bănescu
- Genetic Department, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Street No. 38, 540136 Targu Mures, Romania
| | - Florin Grosu
- Faculty of Medicine, Lucian Blaga University, 550169 Sibiu, Romania; (M.L.O.)
- Imaging Department, Lucian Blaga University, 550169 Sibiu, Romania
| | - Boris W. Kramer
- Department of Neonatology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Manuela Cucerea
- Department of Neonatology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Targu Mures, Romania;
| |
Collapse
|
3
|
Diehl N, Kibiryeva N, Marshall J, Tsai SL, Farias JS, Silva-Gburek J, Erickson LA. SNARE-ing the Reason for Post-Cardiac Surgery Critical Illness-Related Corticosteroid Insufficiency. Genes (Basel) 2024; 15:128. [PMID: 38275610 PMCID: PMC10815126 DOI: 10.3390/genes15010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Critical illness-related corticosteroid insufficiency (CIRCI) can cause hemodynamic instability in neonates after congenital heart surgery with manifestations that increase morbidity and potential mortality. We retrospectively reviewed neonates who underwent cardiac surgery between August 2018 and July 2020 at a freestanding children's hospital, had next-generation sequencing performed, and had their cortisol levels drawn as standard clinical care after cardiac surgery. The groups were defined as CIRCI (with a cortisol level ≤ 4.5 mcg/dL) and non-CIRCI (level > 4.5 mcg/dL). The CIRCI group (n = 8) had a 100% incidence of heterozygous gene mutation on STX1A with splicing or loss of function, and this mutation was not found in the non-CIRCI group (n = 8). Additional gene mutations were found in the CIRCI group on RAB6A, ABCA3, SIDT2, and LILRB3, with no incidence in the non-CIRCI group. Three additional mutations were found across the CIRCI group in INPPL1 and FAM189A2 (both splicing and missense), with 12-25% of patients in the non-CIRCI group also displaying these mutations. Novel genetic abnormalities were seen in neonates with symptoms of CIRCI with potential cardiac implications from a gene mutation for STX1A. Compounding effects of additional gene mutations need to be confirmed and explored for potential predisposition to hemodynamic instability during times of stress.
Collapse
Affiliation(s)
- Nicholas Diehl
- Graduate Medical Education, Kansas City University, Kansas City, MO 64106, USA
| | - Natalia Kibiryeva
- Biosciences, Kansas City University, Kansas City, MO 64106, USA;
- Ward Family Heart Center, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
| | - Jennifer Marshall
- Strategy, Innovation, and Partnerships, Children’s Mercy Kansas City, Kansas City, MO 64108, USA;
| | - Sarah L. Tsai
- Endocrinology, Children’s Mercy Kansas City, Kansas City, MO 64108, USA;
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA;
| | - Juan S. Farias
- Graduate Medical Education, Children’s Mercy Kansas City, Kansas City, MO 64108, USA;
| | - Jaime Silva-Gburek
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA;
- Department of Critical Care, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
| | - Lori A. Erickson
- Ward Family Heart Center, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
- Strategy, Innovation, and Partnerships, Children’s Mercy Kansas City, Kansas City, MO 64108, USA;
| |
Collapse
|
4
|
Fu T, Zeng S, Zheng Q, Zhu F. The Important Role of Transporter Structures in Drug Disposition, Efficacy, and Toxicity. Drug Metab Dispos 2023; 51:1316-1323. [PMID: 37295948 DOI: 10.1124/dmd.123.001275] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
The ATP-binding cassette (ABC) and solute carrier (SLC) transporters are critical determinants of drug disposition, clinical efficacy, and toxicity as they specifically mediate the influx and efflux of various substrates and drugs. ABC transporters can modulate the pharmacokinetics of many drugs via mediating the translocation of drugs across biologic membranes. SLC transporters are important drug targets involved in the uptake of a broad range of compounds across the membrane. However, high-resolution experimental structures have been reported for a very limited number of transporters, which limits the study of their physiologic functions. In this review, we collected structural information on ABC and SLC transporters and described the application of computational methods in structure prediction. Taking P-glycoprotein (ABCB1) and serotonin transporter (SLC6A4) as examples, we assessed the pivotal role of structure in transport mechanisms, details of ligand-receptor interactions, drug selectivity, the molecular mechanisms of drug-drug interactions, and differences caused by genetic polymorphisms. The data collected contributes toward safer and more effective pharmacological treatments. SIGNIFICANCE STATEMENT: The experimental structure of ATP-binding cassette and solute carrier transporters was collected, and the application of computational methods in structure prediction was described. P-glycoprotein and serotonin transporter were used as examples to reveal the pivotal role of structure in transport mechanisms, drug selectivity, the molecular mechanisms of drug-drug interactions, and differences caused by genetic polymorphisms.
Collapse
Affiliation(s)
- Tingting Fu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| | - Su Zeng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| | - Qingchuan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China (F.Z.); School of Pharmaceutical Sciences, Jilin University, Changchun, China (T.F., Q.Z.); College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (S.Z., F.Z.); and Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China (F.Z.)
| |
Collapse
|
5
|
Yang X, Rapp CK, Li Y, Forstner M, Griese M. Quantifying Functional Impairment of ABCA3 Variants Associated with Interstitial Lung Disease. Int J Mol Sci 2023; 24:ijms24087554. [PMID: 37108718 PMCID: PMC10141231 DOI: 10.3390/ijms24087554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
ATP-binding cassette subfamily A member 3 (ABCA3) is a lipid transporter within alveolar type II cells. Patients with bi-allelic variants in ABCA3 may suffer from a variable severity of interstitial lung disease. We characterized and quantified ABCA3 variants' overall lipid transport function by assessing the in vitro impairment of its intracellular trafficking and pumping activity. We expressed the results relative to the wild type, integrated the quantitative readouts from eight different assays and used newly generated data combined with previous results to correlate the variants' function and clinical phenotype. We differentiated normal (within 1 normalized standard deviation (nSD) of the wild-type mean), impaired (within 1 to 3 nSD) and defective (beyond 3 nSD) variants. The transport of phosphatidylcholine from the recycling pathway into ABCA3+ vesicles proved sensitive to the variants' dysfunction. The sum of the quantitated trafficking and pumping predicted a clinical outcome. More than an approximately 50% loss of function was associated with considerable morbidity and mortality. The in vitro quantification of ABCA3 function enables detailed variant characterization, substantially improves the phenotype prediction of genetic variants and possibly supports future treatment decisions.
Collapse
Affiliation(s)
- Xiaohua Yang
- Dr. von Haunersches Kinderspital, German Center for Lung Research (DZL), University of Munich, Lindwurmstr. 4a, D-80337 Munich, Germany
| | - Christina K Rapp
- Dr. von Haunersches Kinderspital, German Center for Lung Research (DZL), University of Munich, Lindwurmstr. 4a, D-80337 Munich, Germany
| | - Yang Li
- Dr. von Haunersches Kinderspital, German Center for Lung Research (DZL), University of Munich, Lindwurmstr. 4a, D-80337 Munich, Germany
- Medical College, Chongqing University, Chongqing 400030, China
| | - Maria Forstner
- Dr. von Haunersches Kinderspital, German Center for Lung Research (DZL), University of Munich, Lindwurmstr. 4a, D-80337 Munich, Germany
| | - Matthias Griese
- Dr. von Haunersches Kinderspital, German Center for Lung Research (DZL), University of Munich, Lindwurmstr. 4a, D-80337 Munich, Germany
| |
Collapse
|
6
|
Xiao GL, Gao Y, Hao H, Wei T, Hong C, Wang Y, Lin YY, Chi XF, Liu Y, Gao HY, Nie C. Novel insights into congenital surfactant dysfunction disorders by in silico analysis of ABCA3 proteins. World J Pediatr 2023; 19:293-301. [PMID: 36404394 PMCID: PMC9974682 DOI: 10.1007/s12519-022-00645-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/18/2022] [Indexed: 11/21/2022]
Affiliation(s)
- Guo-Liang Xiao
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China
- Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, 511442, China
| | - Yuan Gao
- Department of Marine Science, College of Oceanography, South China Agricultural University, Guangzhou, China
| | - Hu Hao
- Department of Neonatology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tao Wei
- Department of Bioengineering, College of Food Science and Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Chun Hong
- Department of Thoracic Surgery, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yue Wang
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China
- Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, 511442, China
| | - Ying-Yi Lin
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China
- Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, 511442, China
| | - Xiu-Fang Chi
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China
- Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, 511442, China
| | - Ying Liu
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China
- Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, 511442, China
| | - Hong-Yi Gao
- Department of Pathology, Guangdong Women and Children Hospital, Guangzhou, 511442, Guangzhou, China.
| | - Chuan Nie
- Department of Neonatology, Guangdong Women and Children Hospital, Guangzhou, 511442, China.
- Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, 511442, China.
| |
Collapse
|
7
|
Li Y, Seidl E, Knoflach K, Gothe F, Forstner ME, Michel K, Pawlita I, Gesenhues F, Sattler F, Yang X, Kroener C, Reu-Hofer S, Ley-Zaporozhan J, Kammer B, Krüger-Stollfuß I, Dinkel J, Carlens J, Wetzke M, Moreno-Galdó A, Torrent-Vernetta A, Lange J, Krenke K, Rumman N, Mayell S, Sismanlar T, Aslan A, Regamey N, Proesmans M, Stehling F, Naehrlich L, Ayse K, Becker S, Koerner-Rettberg C, Plattner E, Manali ED, Papiris SA, Campo I, Kappler M, Schwerk N, Griese M. ABCA3 -related interstitial lung disease beyond infancy. Thorax 2023; 78:587-595. [PMID: 36808083 DOI: 10.1136/thorax-2022-219434] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/30/2022] [Indexed: 02/22/2023]
Abstract
BACKGROUND The majority of patients with childhood interstitial lung disease (chILD) caused by pathogenic variants in ATP binding cassette subfamily A member 3 (ABCA3) develop severe respiratory insufficiency within their first year of life and succumb to disease if not lung transplanted. This register-based cohort study reviews patients with ABCA3 lung disease who survived beyond the age of 1 year. METHOD Over a 21-year period, patients diagnosed as chILD due to ABCA3 deficiency were identified from the Kids Lung Register database. 44 patients survived beyond the first year of life and their long-term clinical course, oxygen supplementation and pulmonary function were reviewed. Chest CT and histopathology were scored blindly. RESULTS At the end of the observation period, median age was 6.3 years (IQR: 2.8-11.7) and 36/44 (82%) were still alive without transplantation. Patients who had never received supplemental oxygen therapy survived longer than those persistently required oxygen supplementation (9.7 (95% CI 6.7 to 27.7) vs 3.0 years (95% CI 1.5 to 5.0), p=0.0126). Interstitial lung disease was clearly progressive over time based on lung function (forced vital capacity % predicted absolute loss -1.1% /year) and on chest CT (increasing cystic lesions in those with repetitive imaging). Lung histology pattern were variable (chronic pneumonitis of infancy, non-specific interstitial pneumonia, and desquamative interstitial pneumonia). In 37/44 subjects, the ABCA3 sequence variants were missense variants, small insertions or deletions with in-silico tools predicting some residual ABCA3 transporter function. CONCLUSION The natural history of ABCA3-related interstitial lung disease progresses during childhood and adolescence. Disease-modifying treatments are desirable to delay such disease course.
Collapse
Affiliation(s)
- Yang Li
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany.,Medical college, Chongqing University, Chongqing, China
| | - Elias Seidl
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Katrin Knoflach
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Florian Gothe
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Maria Elisabeth Forstner
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Katarzyna Michel
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Ingo Pawlita
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Florian Gesenhues
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Franziska Sattler
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Xiaohua Yang
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Carolin Kroener
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | | | - Julia Ley-Zaporozhan
- Department of Radiology, Pediatric Radiology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Birgit Kammer
- Department of Radiology, Pediatric Radiology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Ingrid Krüger-Stollfuß
- Department of Radiology, Pediatric Radiology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Julien Dinkel
- German Center for Lung Research (DZL), Munich, Germany.,Department of Radiology, Pediatric Radiology, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Julia Carlens
- Department of Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hanover, Germany.,German Center for Lung Research (DZL), BREATH Hannover, Hanover, Germany
| | - Martin Wetzke
- German Center for Lung Research (DZL), BREATH Hannover, Hanover, Germany.,Department of Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Antonio Moreno-Galdó
- Department of Pediatrics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain and CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Alba Torrent-Vernetta
- Department of Pediatrics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain and CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Joanna Lange
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Krenke
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Nisreen Rumman
- Department of Pediatrics, Makassed Charitable Society Hospital, East Jerusalem, Palestine
| | - Sarah Mayell
- Regional Paediatric CF Centre, Alder Hey Children's Hospital, Liverpool, UK
| | - Tugba Sismanlar
- Department of Pediatric Pulmonology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ayse Aslan
- Department of Pediatric Pulmonology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Nicolas Regamey
- Pediatric Respiratory Medicine, Children's Hospital, Luzern, Switzerland
| | - Marijke Proesmans
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Florian Stehling
- Children's Hospital, Department of Pneumology, University Hospital Essen, Essen, Germany
| | - Lutz Naehrlich
- Department of Pediatrics, Justus-Liebig-University Giessen, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | | | - Sebastian Becker
- Darmstädter Kinderkliniken Prinzessin Margaret, Darmstadt, Germany
| | | | - Erika Plattner
- Universitätsklinikum Erlangen, Children's Hospital, Erlangen, Germany
| | - Effrosyni D Manali
- 2nd Pulmonary Medicine Department, National and Kapodistrian University of Athens, Medical School, "ATTIKON" University Hospital, Haidari, Greece
| | - Spyridon A Papiris
- 2nd Pulmonary Medicine Department, National and Kapodistrian University of Athens, Medical School, "ATTIKON" University Hospital, Haidari, Greece
| | - Ilaria Campo
- SC Pneumologia - Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Matthias Kappler
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Nicolaus Schwerk
- German Center for Lung Research (DZL), BREATH Hannover, Hanover, Germany.,Department of Pediatric Pulmonology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Matthias Griese
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University, Munich, Germany .,German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
8
|
Xie T, Zhang Z, Yue J, Fang Q, Gong X. Cryo-EM structures of the human surfactant lipid transporter ABCA3. SCIENCE ADVANCES 2022; 8:eabn3727. [PMID: 35394827 PMCID: PMC8993109 DOI: 10.1126/sciadv.abn3727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter ABCA3 plays a critical role in pulmonary surfactant biogenesis. Mutations in human ABCA3 have been recognized as the most frequent causes of inherited surfactant dysfunction disorders. Despite two decades of research, in vitro biochemical and structural studies of ABCA3 are still lacking. Here, we report the cryo-EM structures of human ABCA3 in two distinct conformations, both at resolution of 3.3 Å. In the absence of ATP, ABCA3 adopts a "lateral-opening" conformation with the lateral surfaces of transmembrane domains (TMDs) exposed to the membrane and features two positively charged cavities within the TMDs as potential substrate binding sites. ATP binding induces pronounced conformational changes, resulting in the collapse of the potential substrate binding cavities. Our results help to rationalize the disease-causing mutations in human ABCA3 and suggest a conserved "lateral access and extrusion" mechanism for both lipid export and import mediated by ABCA transporters.
Collapse
|