1
|
Cheng SS, Mody AC, Woo CM. Opportunities for Therapeutic Modulation of O-GlcNAc. Chem Rev 2024. [PMID: 39509538 DOI: 10.1021/acs.chemrev.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is an essential, dynamic monosaccharide post-translational modification (PTM) found on serine and threonine residues of thousands of nucleocytoplasmic proteins. The installation and removal of O-GlcNAc is controlled by a single pair of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery four decades ago, O-GlcNAc has been found on diverse classes of proteins, playing important functional roles in many cellular processes. Dysregulation of O-GlcNAc homeostasis has been implicated in the pathogenesis of disease, including neurodegeneration, X-linked intellectual disability (XLID), cancer, diabetes, and immunological disorders. These foundational studies of O-GlcNAc in disease biology have motivated efforts to target O-GlcNAc therapeutically, with multiple clinical candidates under evaluation. In this review, we describe the characterization and biochemistry of OGT and OGA, cellular O-GlcNAc regulation, development of OGT and OGA inhibitors, O-GlcNAc in pathophysiology, clinical progress of O-GlcNAc modulators, and emerging opportunities for targeting O-GlcNAc. This comprehensive resource should motivate further study into O-GlcNAc function and inspire strategies for therapeutic modulation of O-GlcNAc.
Collapse
Affiliation(s)
- Steven S Cheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alison C Mody
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Affiliate member of the Broad Institute, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Sun K, Zhi Y, Ren W, Li S, Zheng J, Gao L, Zhi K. Crosstalk between O-GlcNAcylation and ubiquitination: a novel strategy for overcoming cancer therapeutic resistance. Exp Hematol Oncol 2024; 13:107. [PMID: 39487556 PMCID: PMC11529444 DOI: 10.1186/s40164-024-00569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024] Open
Abstract
Developing resistance to cancer treatments is a major challenge, often leading to disease recurrence and metastasis. Understanding the underlying mechanisms of therapeutic resistance is critical for developing effective strategies. O-GlcNAcylation, a post-translational modification that adds GlcNAc from the donor UDP-GlcNAc to serine and threonine residues of proteins, plays a crucial role in regulating protein function and cellular signaling, which are frequently dysregulated in cancer. Similarly, ubiquitination, which involves the attachment of ubiquitin to to proteins, is crucial for protein degradation, cell cycle control, and DNA repair. The interplay between O-GlcNAcylation and ubiquitination is associated with cancer progression and resistance to treatment. This review discusses recent discoveries regarding the roles of O-GlcNAcylation and ubiquitination in cancer resistance, their interactions, and potential mechanisms. It also explores how targeting these pathways may provide new opportunities to overcome cancer treatment resistance in cancer, offering fresh insights and directions for research and therapeutic development.
Collapse
Affiliation(s)
- Kai Sun
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Yuan Zhi
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China
| | - Wenhao Ren
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China
| | - Shaoming Li
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China
| | - Jingjing Zheng
- School of Stomatology, Qingdao University, Qingdao, 266003, China
- Department of Endodontics, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Ling Gao
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China.
| | - Keqian Zhi
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China.
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
- Key Lab of Oral Clinical Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Huangdao Distract, Qingdao, 266003, Shandong, China.
| |
Collapse
|
3
|
Yan S, Yuan K, Yao X, Chen Q, Li J, Sun J. 14-3-3ε augments OGT stability by binding with S20-phosphorylated OGT. J Biol Chem 2024; 300:107774. [PMID: 39276932 PMCID: PMC11490702 DOI: 10.1016/j.jbc.2024.107774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024] Open
Abstract
The relationship between O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) and mitosis is intertwined. Besides the numerous mitotic OGT substrates that have been identified, OGT itself is also a target of the mitotic machinery. Previously, our investigations have shown that Checkpoint kinase 1 (Chk1) phosphorylates OGT at Ser-20 to increase OGT levels during cytokinesis, suggesting that OGT levels oscillate as mitosis progresses. Herein we studied its underlying mechanism. We set out from an R17C mutation of OGT, which is a uterine carcinoma mutation in The Cancer Genome Atlas. We found that R17C abolishes the S20 phosphorylation of OGT, as it lies in the Chk1 phosphorylating consensus motif. Consistent with our previous report that pSer-20 is essential for OGT level increases during cytokinesis, we further demonstrate that the R17C mutation renders OGT less stable, decreases vimentin phosphorylation levels and results in cytokinesis defects. Based on bioinformatic predictions, pSer-20 renders OGT more likely to interact with 14-3-3 proteins, the phospho-binding signal adaptor/scaffold protein family. By screening the seven isoforms of 14-3-3 family, we show that 14-3-3ε specifically associates with Ser-20-phosphorylated OGT. Moreover, we studied the R17C and S20A mutations in xenograft models and demonstrated that they both inhibit uterine carcinoma compared to wild-type OGT, probably due to less cellular reproduction. Our work is a sequel of our previous report on pS20 of OGT and is in line with the notion that OGT is intricately regulated by the mitotic network.
Collapse
Affiliation(s)
- Sheng Yan
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Kemeng Yuan
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Xinyi Yao
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qiang Chen
- Department of Gastrointestinal Surgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China.
| | - Jianwei Sun
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| |
Collapse
|
4
|
Zhou L, Liu R, Pathak H, Wang X, Jeong GH, Kumari P, Kumar M, Yin J. Ubiquitin Ligase Parkin Regulates the Stability of SARS-CoV-2 Main Protease and Suppresses Viral Replication. ACS Infect Dis 2024; 10:879-889. [PMID: 38386664 PMCID: PMC10928718 DOI: 10.1021/acsinfecdis.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
The highly infectious coronavirus SARS-CoV-2 relies on the viral main protease (Mpro, also known as 3CLpro or Nsp5) to proteolytically process the polyproteins encoded by the viral genome for the release of functional units in the host cells to initiate viral replication. Mpro also interacts with host proteins of the innate immune pathways, such as IRF3 and STAT1, to suppress their activities and facilitate virus survival and proliferation. To identify the host mechanism for regulating Mpro, we screened various classes of E3 ubiquitin ligases and found that Parkin of the RING-between-RING family can induce the ubiquitination and degradation of Mpro in the cell. Furthermore, when the cells undergo mitophagy, the PINK1 kinase activates Parkin and enhances the ubiquitination of Mpro. We also found that elevated expression of Parkin in the cells significantly decreased the replication of SARS-CoV-2 virus. Interestingly, SARS-CoV-2 infection downregulates Parkin expression in the mouse lung tissues compared to healthy controls. These results suggest an antiviral role of Parkin as a ubiquitin ligase targeting Mpro and the potential for exploiting the virus-host interaction mediated by Parkin to treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Li Zhou
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ruochuan Liu
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Heather Pathak
- Department
of Biology and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xiaoyu Wang
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Geon H. Jeong
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Pratima Kumari
- Department
of Biology and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Mukesh Kumar
- Department
of Biology and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jun Yin
- Department
of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
5
|
Ming A, Zhao J, Liu Y, Wang Y, Wang X, Li J, Zhang L. O-glycosylation in viruses: A sweet tango. MLIFE 2024; 3:57-73. [PMID: 38827513 PMCID: PMC11139210 DOI: 10.1002/mlf2.12105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 06/04/2024]
Abstract
O-glycosylation is an ancient yet underappreciated protein posttranslational modification, on which many bacteria and viruses heavily rely to perform critical biological functions involved in numerous infectious diseases or even cancer. But due to the innate complexity of O-glycosylation, research techniques have been limited to study its exact role in viral attachment and entry, assembly and exit, spreading in the host cells, and the innate and adaptive immunity of the host. Recently, the advent of many newly developed methodologies (e.g., mass spectrometry, chemical biology tools, and molecular dynamics simulations) has renewed and rekindled the interest in viral-related O-glycosylation in both viral proteins and host cells, which is further fueled by the COVID-19 pandemic. In this review, we summarize recent advances in viral-related O-glycosylation, with a particular emphasis on the mucin-type O-linked α-N-acetylgalactosamine (O-GalNAc) on viral proteins and the intracellular O-linked β-N-acetylglucosamine (O-GlcNAc) modifications on host proteins. We hope to provide valuable insights into the development of antiviral reagents or vaccines for better prevention or treatment of infectious diseases.
Collapse
Affiliation(s)
- Annan Ming
- Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Jianxin Zhao
- Beijing Key Laboratory of DNA Damage Response and College of Life SciencesCapital Normal UniversityBeijingChina
| | - Yihan Liu
- Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Yibo Wang
- Laboratory of Chemical BiologyChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchunChina
| | - Xiaohui Wang
- Laboratory of Chemical BiologyChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchunChina
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiChina
- Beijing National Laboratory for Molecular SciencesBeijingChina
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life SciencesCapital Normal UniversityBeijingChina
| | - Leiliang Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
6
|
Fang S, Chen G, Wang Y, Ganti R, Chernova TA, Zhou L, Jacobs SE, Duong D, Kiyokawa H, Chernoff YO, Li M, Shcherbik N, Zhao B, Yin J. Profiling and verifying the substrates of E3 ubiquitin ligase Rsp5 in yeast cells. STAR Protoc 2023; 4:102489. [PMID: 37561636 PMCID: PMC10440593 DOI: 10.1016/j.xpro.2023.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/07/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
Yeast is an essential model organism for studying protein ubiquitination pathways; however, identifying the direct substrates of E3 in the cell presents a challenge. Here, we present a protocol for using the orthogonal ubiquitin transfer (OUT) cascade to profile the substrate specificity of yeast E3 Rsp5. We describe steps for OUT profiling, proteomics analysis, in vitro and in cell ubiquitination, and stability assay. The protocol can be adapted for identifying and verifying the ubiquitination targets of other E3s in yeast. For complete details on the use and execution of this protocol, please refer to Wang et al.1.
Collapse
Affiliation(s)
- Shuai Fang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Geng Chen
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Yiyang Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Rakhee Ganti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Li Zhou
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Savannah E Jacobs
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Duc Duong
- Integrated Proteomics Core, Emory University, Atlanta, GA 30322, USA
| | - Hiroaki Kiyokawa
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ming Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48019, USA
| | - Natalia Shcherbik
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.
| | - Jun Yin
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
7
|
Zhang Y, Yuan Y, Jiang L, Liu Y, Zhang L. The emerging role of E3 ubiquitin ligase RNF213 as an antimicrobial host determinant. Front Cell Infect Microbiol 2023; 13:1205355. [PMID: 37655297 PMCID: PMC10465799 DOI: 10.3389/fcimb.2023.1205355] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/24/2023] [Indexed: 09/02/2023] Open
Abstract
Ring finger protein 213 (RNF213) is a large E3 ubiquitin ligase with a molecular weight of 591 kDa that is associated with moyamoya disease, a rare cerebrovascular disease. It is located in the cytosol and perinuclear space. Missense mutations in this gene have been found to be more prevalent in patients with moyamoya disease compared with that in healthy individuals. Understanding the molecular function of RNF213 could provide insights into moyamoya disease. RNF213 contains a C3HC4-type RING finger domain with an E3 ubiquitin ligase domain and six AAA+ adenosine triphosphatase (ATPase) domains. It is the only known protein with both AAA+ ATPase and ubiquitin ligase activities. Recent studies have highlighted the role of RNF213 in fighting against microbial infections, including viruses, parasites, bacteria, and chlamydiae. This review aims to summarize the recent research progress on the mechanisms of RNF213 in pathogenic infections, which will aid researchers in understanding the antimicrobial role of RNF213.
Collapse
Affiliation(s)
- Yulu Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yupei Yuan
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lu Jiang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yihan Liu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
8
|
Peng K, Wang S, Liu R, Zhou L, Jeong GH, Jeong IH, Liu X, Kiyokawa H, Xue B, Zhao B, Shi H, Yin J. Effects of UBE3A on Cell and Liver Metabolism through the Ubiquitination of PDHA1 and ACAT1. Biochemistry 2023; 62:1274-1286. [PMID: 36920305 PMCID: PMC10077595 DOI: 10.1021/acs.biochem.2c00624] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/03/2023] [Indexed: 03/16/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is substantiated by the reprogramming of liver metabolic pathways that disrupts the homeostasis of lipid and glucose metabolism and thus promotes the progression of the disease. The metabolic pathways associated with NAFLD are regulated at different levels from gene transcription to various post-translational modifications including ubiquitination. Here, we used a novel orthogonal ubiquitin transfer platform to identify pyruvate dehydrogenase A1 (PDHA1) and acetyl-CoA acetyltransferase 1 (ACAT1), two important enzymes that regulate glycolysis and ketogenesis, as substrates of E3 ubiquitin ligase UBE3A/E6AP. We found that overexpression of UBE3A accelerated the degradation of PDHA1 and promoted glycolytic activities in HEK293 cells. Furthermore, a high-fat diet suppressed the expression of UBE3A in the mouse liver, which was associated with increased ACAT1 protein levels, while forced expression of UBE3A in the mouse liver resulted in decreased ACAT1 protein contents. As a result, the mice with forced expression of UBE3A in the liver exhibited enhanced accumulation of triglycerides, cholesterol, and ketone bodies. These results reveal the role of UBE3A in NAFLD development by inducing the degradation of ACAT1 in the liver and promoting lipid storage. Overall, our work uncovers an important mechanism underlying the regulation of glycolysis and lipid metabolism through UBE3A-mediated ubiquitination of PDHA1 and ACAT1 to regulate their stabilities and enzymatic activities in the cell.
Collapse
Affiliation(s)
- Kangli Peng
- Engineering
Research Center of Cell and Therapeutic Antibody, Ministry of Education,
and School of Pharmacy, Shanghai Jiao Tong
University, Shanghai 200240, China
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Shirong Wang
- Department
of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ruochuan Liu
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Li Zhou
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Geon H. Jeong
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - In Ho Jeong
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xianpeng Liu
- Department
of Pharmacology, Northwestern University, Chicago, Illinois 60611, United States
| | - Hiroaki Kiyokawa
- Department
of Pharmacology, Northwestern University, Chicago, Illinois 60611, United States
| | - Bingzhong Xue
- Department
of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Bo Zhao
- Engineering
Research Center of Cell and Therapeutic Antibody, Ministry of Education,
and School of Pharmacy, Shanghai Jiao Tong
University, Shanghai 200240, China
| | - Hang Shi
- Department
of Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jun Yin
- Department
of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
9
|
Xi X, Xiao G, An G, Liu L, Liu X, Hao P, Wang JY, Song D, Yu W, Gu Y. A novel shark single-domain antibody targeting OGT as a tool for detection and intracellular localization. Front Immunol 2023; 14:1062656. [PMID: 36855630 PMCID: PMC9968394 DOI: 10.3389/fimmu.2023.1062656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/09/2023] [Indexed: 02/14/2023] Open
Abstract
Introduction O-GlcNAcylation is a type of reversible post-translational modification on Ser/Thr residues of intracellular proteins in eukaryotic cells, which is generated by the sole O-GlcNAc transferase (OGT) and removed by O-GlcNAcase (OGA). Thousands of proteins, that are involved in various physiological and pathological processes, have been found to be O-GlcNAcylated. However, due to the lack of favorable tools, studies of the O-GlcNAcylation and OGT were impeded. Immunoglobulin new antigen receptor (IgNAR) derived from shark is attractive to research tools, diagnosis and therapeutics. The variable domain of IgNARs (VNARs) have several advantages, such as small size, good stability, low-cost manufacture, and peculiar paratope structure. Methods We obtained shark single domain antibodies targeting OGT by shark immunization, phage display library construction and panning. ELISA and BIACORE were used to assess the affinity of the antibodies to the antigen and three shark single-domain antibodies with high affinity were successfully screened. The three antibodies were assessed for intracellular function by flow cytometry and immunofluorescence co-localization. Results In this study, three anti-OGT VNARs (2D9, 3F7 and 4G2) were obtained by phage display panning. The affinity values were measured using surface plasmon resonance (SPR) that 2D9, 3F7 and 4G2 bound to OGT with KD values of 35.5 nM, 53.4 nM and 89.7 nM, respectively. Then, the VNARs were biotinylated and used for the detection and localization of OGT by ELISA, flow cytometry and immunofluorescence. 2D9, 3F7 and 4G2 were exhibited the EC50 values of 102.1 nM, 40.75 nM and 120.7 nM respectively. VNAR 3F7 was predicted to bind the amino acid residues of Ser375, Phe377, Cys379 and Tyr 380 on OGT. Discussion Our results show that shark single-domain antibodies targeting OGT can be used for in vitro detection and intracellular co-localization of OGT, providing a powerful tool for the study of OGT and O-GlcNAcylation.
Collapse
Affiliation(s)
- Xiaozhi Xi
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| | - Guokai Xiao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| | - Guiqi An
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Lin Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiaochun Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Peiyu Hao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| | - Jennifer Yiyang Wang
- College of Letters and Science Dept. of Microbiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Dandan Song
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| | - Yuchao Gu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, China
| |
Collapse
|
10
|
Wang HF, Wang YX, Zhou YP, Wei YP, Yan Y, Zhang ZJ, Jing ZC. Protein O-GlcNAcylation in cardiovascular diseases. Acta Pharmacol Sin 2023; 44:8-18. [PMID: 35817809 PMCID: PMC9813366 DOI: 10.1038/s41401-022-00934-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023] Open
Abstract
O-GlcNAcylation is a post-translational modification of protein in response to genetic variations or environmental factors, which is controlled by two highly conserved enzymes, i.e. O-GlcNAc transferase (OGT) and protein O-GlcNAcase (OGA). Protein O-GlcNAcylation mainly occurs in the cytoplasm, nucleus, and mitochondrion, and it is ubiquitously implicated in the development of cardiovascular disease (CVD). Alterations of O-GlcNAcylation could cause massive metabolic imbalance and affect cardiovascular function, but the role of O-GlcNAcylation in CVD remains controversial. That is, acutely increased O-GlcNAcylation is an adaptive heart response, which temporarily protects cardiac function. While it is harmful to cardiomyocytes if O-GlcNAcylation levels remain high in chronic conditions or in the long run. The underlying mechanisms include regulation of transcription, energy metabolism, and other signal transduction reactions induced by O-GlcNAcylation. In this review, we will focus on the interactions between protein O-GlcNAcylation and CVD, and discuss the potential molecular mechanisms that may be able to pave a new avenue for the treatment of cardiovascular events.
Collapse
Affiliation(s)
- Hui-Fang Wang
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, China
| | - Yi-Xuan Wang
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, China
| | - Yu-Ping Zhou
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yun-Peng Wei
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yi Yan
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Ze-Jian Zhang
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zhi-Cheng Jing
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
11
|
Lu Q, Zhang X, Liang T, Bai X. O-GlcNAcylation: an important post-translational modification and a potential therapeutic target for cancer therapy. Mol Med 2022; 28:115. [PMID: 36104770 PMCID: PMC9476278 DOI: 10.1186/s10020-022-00544-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023] Open
Abstract
O-linked β-d-N-acetylglucosamine (O-GlcNAc) is an important post-translational modification of serine or threonine residues on thousands of proteins in the nucleus and cytoplasm of all animals and plants. In eukaryotes, only two conserved enzymes are involved in this process. O-GlcNAc transferase is responsible for adding O-GlcNAc to proteins, while O-GlcNAcase is responsible for removing it. Aberrant O-GlcNAcylation is associated with a variety of human diseases, such as diabetes, cancer, neurodegenerative diseases, and cardiovascular diseases. Numerous studies have confirmed that O-GlcNAcylation is involved in the occurrence and progression of cancers in multiple systems throughout the body. It is also involved in regulating multiple cancer hallmarks, such as metabolic reprogramming, proliferation, invasion, metastasis, and angiogenesis. In this review, we first describe the process of O-GlcNAcylation and the structure and function of O-GlcNAc cycling enzymes. In addition, we detail the occurrence of O-GlcNAc in various cancers and the role it plays. Finally, we discuss the potential of O-GlcNAc as a promising biomarker and novel therapeutic target for cancer diagnosis, treatment, and prognosis.
Collapse
|
12
|
Liu X, Chiu JC. Nutrient-sensitive protein O-GlcNAcylation shapes daily biological rhythms. Open Biol 2022; 12:220215. [PMID: 36099933 PMCID: PMC9470261 DOI: 10.1098/rsob.220215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 11/12/2022] Open
Abstract
O-linked-N-acetylglucosaminylation (O-GlcNAcylation) is a nutrient-sensitive protein modification that alters the structure and function of a wide range of proteins involved in diverse cellular processes. Similar to phosphorylation, another protein modification that targets serine and threonine residues, O-GlcNAcylation occupancy on cellular proteins exhibits daily rhythmicity and has been shown to play critical roles in regulating daily rhythms in biology by modifying circadian clock proteins and downstream effectors. We recently reported that daily rhythm in global O-GlcNAcylation observed in Drosophila tissues is regulated via the integration of circadian and metabolic signals. Significantly, mistimed feeding, which disrupts coordination of these signals, is sufficient to dampen daily O-GlcNAcylation rhythm and is predicted to negatively impact animal biological rhythms and health span. In this review, we provide an overview of published and potential mechanisms by which metabolic and circadian signals regulate hexosamine biosynthetic pathway metabolites and enzymes, as well as O-GlcNAc processing enzymes to shape daily O-GlcNAcylation rhythms. We also discuss the significance of functional interactions between O-GlcNAcylation and other post-translational modifications in regulating biological rhythms. Finally, we highlight organ/tissue-specific cellular processes and molecular pathways that could be modulated by rhythmic O-GlcNAcylation to regulate time-of-day-specific biology.
Collapse
Affiliation(s)
- Xianhui Liu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA
- Department of Pharmacology, School of Medicine, University of California Davis, Davis, CA, USA
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA, USA
| |
Collapse
|
13
|
De Jesus JC, Noguchi HK, Toledo MFZJ, Burrow RA, Pimenta DC, Stefani HA. Synthesis of Glycal Amides from Amino Acid Esters by Carbonylative Coupling Reaction. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jessica C. De Jesus
- Departamento de Farmácia Faculdade de Ciências Farmacêuticas Universidade de São Paulo Av. Prof. Lineu Prestes, 580 05580-000 São Paulo – SP Brasil
| | - Henrique K. Noguchi
- Departamento de Farmácia Faculdade de Ciências Farmacêuticas Universidade de São Paulo Av. Prof. Lineu Prestes, 580 05580-000 São Paulo – SP Brasil
| | - Mônica F. Z. J. Toledo
- Departamento de Farmácia Faculdade de Ciências Farmacêuticas Universidade de São Paulo Av. Prof. Lineu Prestes, 580 05580-000 São Paulo – SP Brasil
| | - Robert A. Burrow
- Departamento de Química Universidade Federal de Santa Maria Santa Maria – RS 97105-340 Brazil
| | | | - Hélio A. Stefani
- Departamento de Farmácia Faculdade de Ciências Farmacêuticas Universidade de São Paulo Av. Prof. Lineu Prestes, 580 05580-000 São Paulo – SP Brasil
| |
Collapse
|