1
|
Guo X, Geng R, Li C, Ma Z, Chen Y, Liu Y, Li S, Kang X, Guo S. Structural and theoretical basis for drug development targeting TMEM16A: Inhibition mechanism of tracheloside analogs. Int J Biol Macromol 2024; 277:134057. [PMID: 39038568 DOI: 10.1016/j.ijbiomac.2024.134057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Ion channels play a crucial role in the electrophysiological activities of organisms. The calcium-activated chloride channel TMEM16A is involved in various physiological processes. Therefore, inhibitors of TMEM16A are used to treat diseases caused by TMEM16A dysfunction. However, the unclear inhibition mechanism hinders the progress of drug development. Based on our previous study, we found that the molecular structures of TMEM16A inhibitors tracheloside, matairesinoside and arctigenin are similar. In this study, we conducted a structure-based virtual screening of tracheloside analogs from the PubChem database. The six tracheloside analogs with the highest affinity to TMEM16A were selected, and their inhibitory effects were detected by fluorescence and electrophysiological experiments. Subsequently, the interaction between the tracheloside analogs and TMEM16A was investigated through molecular docking and site-directed mutagenesis. Based on the above results, the mechanism of inhibition of TMEM16A gated conformation by tracheloside analogs was proposed. These findings provide a structural and theoretical basis for drug development targeting TMEM16A.
Collapse
Affiliation(s)
- Xiaomeng Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Ruili Geng
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Chao Li
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Zhouye Ma
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Yue Chen
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Yinuo Liu
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Shaochun Li
- School of Basic Medical Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Xianjiang Kang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Collaborative Innovation Center for Baiyangdian Basin Ecological Protection and Beijing-Tianjin-Hebei Sustainable Development, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, Hebei, China.
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Collaborative Innovation Center for Baiyangdian Basin Ecological Protection and Beijing-Tianjin-Hebei Sustainable Development, Hebei University, Baoding 071002, Hebei, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, Hebei, China.
| |
Collapse
|
2
|
Prome AA, Robin TB, Ahmed N, Rani NA, Ahmad I, Patel H, Bappy MNI, Zinnah KMA. A reverse docking approach to explore the anticancer potency of natural compounds by interfering metastasis and angiogenesis. J Biomol Struct Dyn 2024; 42:7174-7189. [PMID: 37526218 DOI: 10.1080/07391102.2023.2240895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/14/2023] [Indexed: 08/02/2023]
Abstract
Angiogenesis, which results in the formation of new blood and lymph vessels, is required to serve metastatic cancer progression. Cancer medications may target these two interconnected pathways. Phytocompounds have emerged as promising options for treating cancer. In this study, we used a reverse docking strategy to find new candidate molecules for cancer treatment that target both pathways. Following a literature study, the important cancer-causing proteins vascular endothelial growth factor D (VEGF-D) and basic fibroblast growth factor (bFGF) for angiogenesis and matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) for the metastatic pathway were targeted. Protein Data Bank was used to retrieve the structures of chosen proteins. 22 significant plant metabolites were identified as having anticancer activity. To determine the important protein binding residues, active site prediction was used. Using Lenvatinib and Withaferin A as reference ligands, the binding affinity of certain proteins for plant metabolites was determined by docking analysis. Homoharringtonine and viniferin, both have higher binding affinities when compared to reference ligands, with docking scores of -180.96 and -180.36 against the protein MMP-9, respectively. Moreover, Viniferin showed the highest binding affinity with both MMP-9 and MMP-2 proteins, which were then subjected to a 100-ns molecular dynamic simulation. where they were found to be significantly stable. In pharmacoinformatics investigations, the majority of our compounds were found to be non-toxic for the host. In this study, we suggested natural substances as cutting-edge anticancer treatments that target both angiogenesis and metastasis, which may aid in accelerating drug development and identifying viable therapeutic candidates.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anindita Ash Prome
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Tanjin Barketullah Robin
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Nadim Ahmed
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Nurul Amin Rani
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Dhule, Maharashtra, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Md Nazmul Islam Bappy
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Kazi Md Ali Zinnah
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
3
|
Zangari M, Zabucchi G, Conti M, Lorenzon P, Borelli V, Constanti A, Dellisanti F, Leone S, Vaccari L, Bernareggi A. Effect of Synthetic Vitreous Fiber Exposure on TMEM16A Channels in a Xenopus laevis Oocyte Model. Int J Mol Sci 2024; 25:8661. [PMID: 39201347 PMCID: PMC11354525 DOI: 10.3390/ijms25168661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
Many years ago, asbestos fibers were banned and replaced by synthetic vitreous fibers because of their carcinogenicity. However, the toxicity of the latter fibers is still under debate, especially when it concerns the early fiber interactions with biological cell membranes. Here, we aimed to investigate the effects of a synthetic vitreous fiber named FAV173 on the Xenopus laevis oocyte membrane, the cell model we have already used to characterize the effect of crocidolite asbestos fiber exposure. Using an electrophysiological approach, we found that, similarly to crocidolite asbestos, FAV173 was able to stimulate a chloride outward current evoked by step membrane depolarizations, that was blocked by the potent and specific TMEM16A channel antagonist Ani9. Exposure to FAV173 fibers also altered the oocyte cell membrane microvilli morphology similarly to crocidolite fibers, most likely as a consequence of the TMEM16A protein interaction with actin. However, FAV173 only partially mimicked the crocidolite fibers effects, even at higher fiber suspension concentrations. As expected, the crocidolite fibers' effect was more similar to that induced by the co-treatment with (Fe3+ + H2O2), since the iron content of asbestos fibers is known to trigger reactive oxygen species (ROS) production. Taken together, our findings suggest that FAV173 may be less harmful that crocidolite but not ineffective in altering cell membrane properties.
Collapse
Affiliation(s)
- Martina Zangari
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (M.Z.); (P.L.); (V.B.)
- CERIC-ERIC, Strada Statale 14, Km 163.5, AREA Science Park, 34149 Trieste, Italy
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, Km 163.5, AREA Science Park, Basovizza, 34149 Trieste, Italy;
| | - Giuliano Zabucchi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (M.Z.); (P.L.); (V.B.)
| | - Martina Conti
- CNR-IOM—Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Area Science Park, Basovizza, Strada Statale 14, Km 163.5, 34149 Trieste, Italy;
| | - Paola Lorenzon
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (M.Z.); (P.L.); (V.B.)
| | - Violetta Borelli
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (M.Z.); (P.L.); (V.B.)
| | - Andrew Constanti
- Department of Pharmacology, UCL School of Pharmacy, London WC1N 1AX, UK;
| | - Francesco Dellisanti
- ANALITICA—Mineralogical and Envirnomental Laboratory, San Lazzaro di Savena, 40068 Bologna, Italy;
| | - Sara Leone
- S.C. Prevenzione e Sicurezza negli Ambienti di Lavoro Laboratorio Fibre, ASUGI—Azienda Sanitaria Universitaria Giuliano Isontina, Via Sai, 34128 Trieste, Italy;
| | - Lisa Vaccari
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, Km 163.5, AREA Science Park, Basovizza, 34149 Trieste, Italy;
| | - Annalisa Bernareggi
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (M.Z.); (P.L.); (V.B.)
| |
Collapse
|
4
|
Qiu X, Zhang H, Tang Z, Fan Y, Yuan W, Feng C, Chen C, Cui P, Cui Y, Qi Z, Li T, Zhu Y, Xie L, Peng F, Deng T, Jiang X, Peng L, Dai H. Homoharringtonine promotes heart allograft acceptance by enhancing regulatory T cells induction in a mouse model. Chin Med J (Engl) 2024; 137:1453-1464. [PMID: 37962205 PMCID: PMC11188914 DOI: 10.1097/cm9.0000000000002813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Homoharringtonine (HHT) is an effective anti-inflammatory, anti-viral, and anti-tumor protein synthesis inhibitor that has been applied clinically. Here, we explored the therapeutic effects of HHT in a mouse heart transplant model. METHODS Healthy C57BL/6 mice were used to observe the toxicity of HHT in the liver, kidney, and hematology. A mouse heart transplantation model was constructed, and the potential mechanism of HHT prolonging allograft survival was evaluated using Kaplan-Meier analysis, immunostaining, and bulk RNA sequencing analysis. The HHT-T cell crosstalk was modeled ex vivo to further verify the molecular mechanism of HHT-induced regulatory T cells (Tregs) differentiation. RESULTS HHT inhibited the activation and proliferation of T cells and promoted their apoptosis ex vivo . Treatment of 0.5 mg/kg HHT for 10 days significantly prolonged the mean graft survival time of the allografts from 7 days to 48 days ( P <0.001) without non-immune toxicity. The allografts had long-term survival after continuous HHT treatment for 28 days. HHT significantly reduced lymphocyte infiltration in the graft, and interferon-γ-secreting CD4 + and CD8 + T cells in the spleen ( P <0.01). HHT significantly increased the number of peripheral Tregs (about 20%, P <0.001) and serum interleukin (IL)-10 levels. HHT downregulated the expression of T cell receptor (TCR) signaling pathway-related genes ( CD4 , H2-Eb1 , TRAT1 , and CD74 ) and upregulated the expression of IL-10 and transforming growth factor (TGF)-β pathway-related genes and Treg signature genes ( CTLA4 , Foxp3 , CD74 , and ICOS ). HHT increased CD4 + Foxp3 + cells and Foxp3 expression ex vivo , and it enhanced the inhibitory function of inducible Tregs. CONCLUSIONS HHT promotes Treg cell differentiation and enhances Treg suppressive function by attenuating the TCR signaling pathway and upregulating the expression of Treg signature genes and IL-10 levels, thereby promoting mouse heart allograft acceptance. These findings may have therapeutic implications for organ transplant recipients, particularly those with viral infections and malignancies, which require a more suitable anti-rejection medication.
Collapse
Affiliation(s)
- Xia Qiu
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Hedong Zhang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhouqi Tang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yuxi Fan
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Chen Feng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Chao Chen
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Pengcheng Cui
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yan Cui
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Tengfang Li
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yuexing Zhu
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Liming Xie
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Fenghua Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xin Jiang
- Department of Organ Transplantation, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan 450000, China
| | - Longkai Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Helong Dai
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Department of Organ Transplantation, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan 450000, China
| |
Collapse
|
5
|
Khatua S, Nandi S, Nag A, Sen S, Chakraborty N, Naskar A, Gürer ES, Calina D, Acharya K, Sharifi-Rad J. Homoharringtonine: updated insights into its efficacy in hematological malignancies, diverse cancers and other biomedical applications. Eur J Med Res 2024; 29:269. [PMID: 38704602 PMCID: PMC11069164 DOI: 10.1186/s40001-024-01856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
HHT has emerged as a notable compound in the realm of cancer treatment, particularly for hematological malignancies. Its multifaceted pharmacological properties extend beyond traditional applications, warranting an extensive review of its mechanisms and efficacy. This review aims to synthesize comprehensive insights into the efficacy of HHT in treating hematological malignancies, diverse cancers, and other biomedical applications. It focuses on elucidating the molecular mechanisms, therapeutic potential, and broader applications of HHT. A comprehensive search for peer-reviewed papers was conducted across various academic databases, including ScienceDirect, Web of Science, Scopus, American Chemical Society, Google Scholar, PubMed/MedLine, and Wiley. The review highlights HHT's diverse mechanisms of action, ranging from its role in leukemia treatment to its emerging applications in managing other cancers and various biomedical conditions. It underscores HHT's influence on cellular processes, its efficacy in clinical settings, and its potential to alter pathological pathways. HHT demonstrates significant promise in treating various hematological malignancies and cancers, offering a multifaceted approach to disease management. Its ability to impact various physiological pathways opens new avenues for therapeutic applications. This review provides a consolidated foundation for future research and clinical applications of HHT in diverse medical fields.
Collapse
Affiliation(s)
- Somanjana Khatua
- Department of Botany, Faculty of Science, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Sudeshna Nandi
- Department of Botany, Molecular and Applied Mycology and Plant Pathology Laboratory, University of Calcutta, 35, Ballygung Circular Road, Kolkata, India
| | - Anish Nag
- Department of Life Sciences, CHRIST (Deemed to Be University), Bangalore Central Campus, Bangalore, Karnataka, India
| | - Surjit Sen
- Department of Botany, Fakir Chand College, Diamond Harbour, South 24-Parganas, Kolkata, India
| | | | - Arghya Naskar
- Department of Botany, Molecular and Applied Mycology and Plant Pathology Laboratory, University of Calcutta, 35, Ballygung Circular Road, Kolkata, India
| | - Eda Sönmez Gürer
- Department of Pharmacognosy, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Krishnendu Acharya
- Department of Botany, Molecular and Applied Mycology and Plant Pathology Laboratory, University of Calcutta, 35, Ballygung Circular Road, Kolkata, India.
| | | |
Collapse
|
6
|
Chen D, Ma X, Zhu J, Wang Y, Guo S, Qin J. Pectin based hydrogel with covalent coupled doxorubicin and limonin loading for lung tumor therapy. Colloids Surf B Biointerfaces 2024; 234:113670. [PMID: 38042108 DOI: 10.1016/j.colsurfb.2023.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Self-healing hydrogels have shown great application potential in drug delivery for anti-tumor therapy and tissue engineering. In this research, Doxorubicin (DOX) was coupled onto the oxidized pectin (pec-Ald) to prepare DOX grafted pec-AD and used to fabricate self-healing hydrogel for lung cancer therapy combined with novel herbal medicine extract limonin targeting lung cancer cells. The hydrogel was prepared with P(NIPAM195-co-AH54) cross-linking and the hydrazone bond cross-linked hydrogel showed good mechanical property and self-healing behavior. With pectin composition, the hydrogel was still biodegradable catalyzed by enzyme and in vivo. The hydrogel formed fast fit for injectable application and the hydrogel itself showed moderate lung cancer inhibition activity. With limonin loading, the hydrogel showed synergistic lung cancer therapy with the tumor growth greatly inhibited. The covalent coupling of DOX and loaded limonin in the hydrogel decreased in vivo toxicity and the hydrogel degraded on time. With biodegradability and improved lung cancer therapy efficiency, this DOX grafted self-healing hydrogel could find great potential application in cancer therapy in near future.
Collapse
Affiliation(s)
- Danyang Chen
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Xiangbo Ma
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Jingjing Zhu
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yong Wang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding City, Hebei Province 071002, China; Postdoctoral Research Station of Biology, Hebei University, Baoding City, Hebei Province 071002, China.
| | - Jianglei Qin
- College of Chemistry and Materials Science, Hebei University, Baoding City, Hebei Province 071002, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China.
| |
Collapse
|
7
|
Arreola J, Pérez-Cornejo P, Segura-Covarrubias G, Corral-Fernández N, León-Aparicio D, Guzmán-Hernández ML. Function and Regulation of the Calcium-Activated Chloride Channel Anoctamin 1 (TMEM16A). Handb Exp Pharmacol 2024; 283:101-151. [PMID: 35768554 DOI: 10.1007/164_2022_592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Various human tissues express the calcium-activated chloride channel Anoctamin 1 (ANO1), also known as TMEM16A. ANO1 allows the passive chloride flux that controls different physiological functions ranging from muscle contraction, fluid and hormone secretion, gastrointestinal motility, and electrical excitability. Overexpression of ANO1 is associated with pathological conditions such as hypertension and cancer. The molecular cloning of ANO1 has led to a surge in structural, functional, and physiological studies of the channel in several tissues. ANO1 is a homodimer channel harboring two pores - one in each monomer - that work independently. Each pore is activated by voltage-dependent binding of two intracellular calcium ions to a high-affinity-binding site. In addition, the binding of phosphatidylinositol 4,5-bisphosphate to sites scattered throughout the cytosolic side of the protein aids the calcium activation process. Furthermore, many pharmacological studies have established ANO1 as a target of promising compounds that could treat several illnesses. This chapter describes our current understanding of the physiological roles of ANO1 and its regulation under physiological conditions as well as new pharmacological compounds with potential therapeutic applications.
Collapse
Affiliation(s)
- Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Guadalupe Segura-Covarrubias
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Nancy Corral-Fernández
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Daniel León-Aparicio
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | |
Collapse
|
8
|
Cao J, Tao X, Shi B, Wang J, Ma R, Zhao J, Tian J, Huang Q, Yu J, Wang L. NKD1 targeting PCM1 regulates the therapeutic effects of homoharringtonine on colorectal cancer. Mol Biol Rep 2023; 50:6543-6556. [PMID: 37338734 DOI: 10.1007/s11033-023-08572-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is the most common primary malignancy. Recently, antineoplastic attributes of homoharringtonine (HHT) have attracted lots of attention. This study investigated the molecular target and underlying mechanism of HHT in the CRC process by using a cellular and animal models. METHODS This study first detected the effects of HHT on the proliferation, cell cycle and apoptosis ability of CRC cells using CCK-8, Edu staining, flow cytometry and Western blotting assay. In vitro recovery experiment and in vivo tumorigenesis experiment were used to detect the targeted interaction between HHT and NKD1. After that, the downstream target and mechanism of action of HHT targeting NKD1 was determined using quantitative proteomics combined with co-immunoprecipitation/immunofluorescence assay. RESULTS HHT suppressed CRC cells proliferation by inducing cell cycle arrest and apoptosis in vitro and vivo. HHT inhibited NKD1 expression in a concentration and time dependent manner. NKD1 was overexpressed in CRC and its depletion enhanced the therapeutic sensitivity of HHT on CRC, which indicating that NKD1 plays an important role in the development of CRC as the drug delivery target of HHT. Furthermore, proteomic analysis revealed that PCM1 participated the process of NKD1-regulated cell proliferation and cell cycle. NKD1 interacted with PCM1 and promoted PCM1 degradation through the ubiquitin-proteasome pathway. The overexpression of PCM1 effectively reversed the inhibition of siNKD1 on cell cycle. CONCLUSIONS The present findings revealed that HHT blocked NKD1 expression to participate in inhibiting cell proliferation and inducing cell apoptosis, ultimately leading to obstruction of CRC development through NKD1/PCM1 dependent mechanism. Our research provide evidence for clinical application of NKD1-targeted therapy in improving HHT sensitivity for CRC treatment.
Collapse
Affiliation(s)
- Jia Cao
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiang Tao
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Bin Shi
- Department of Emergency, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jia Wang
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Rong Ma
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jufen Zhao
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jinhai Tian
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qi Huang
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jingjing Yu
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Libin Wang
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
9
|
Chiliquinga AJ, Acosta B, Ogonaga-Borja I, Villarruel-Melquiades F, de la Garza J, Gariglio P, Ocádiz-Delgado R, Ramírez A, Sánchez-Pérez Y, García-Cuellar CM, Bañuelos C, Camacho J. Ion Channels as Potential Tools for the Diagnosis, Prognosis, and Treatment of HPV-Associated Cancers. Cells 2023; 12:1376. [PMID: 37408210 PMCID: PMC10217072 DOI: 10.3390/cells12101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The human papilloma virus (HPV) group comprises approximately 200 genetic types that have a special affinity for epithelial tissues and can vary from producing benign symptoms to developing into complicated pathologies, such as cancer. The HPV replicative cycle affects various cellular and molecular processes, including DNA insertions and methylation and relevant pathways related to pRb and p53, as well as ion channel expression or function. Ion channels are responsible for the flow of ions across cell membranes and play very important roles in human physiology, including the regulation of ion homeostasis, electrical excitability, and cell signaling. However, when ion channel function or expression is altered, the channels can trigger a wide range of channelopathies, including cancer. In consequence, the up- or down-regulation of ion channels in cancer makes them attractive molecular markers for the diagnosis, prognosis, and treatment of the disease. Interestingly, the activity or expression of several ion channels is dysregulated in HPV-associated cancers. Here, we review the status of ion channels and their regulation in HPV-associated cancers and discuss the potential molecular mechanisms involved. Understanding the dynamics of ion channels in these cancers should help to improve early diagnosis, prognosis, and treatment in the benefit of HPV-associated cancer patients.
Collapse
Affiliation(s)
| | - Brenda Acosta
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ingrid Ogonaga-Borja
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Fernanda Villarruel-Melquiades
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Jaime de la Garza
- Unidad de Oncología Torácica y Laboratorio de Medicina Personalizada, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Rodolfo Ocádiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ana Ramírez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Tijuana 22390, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Claudia M. García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Cecilia Bañuelos
- Programa Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| |
Collapse
|
10
|
Wu J, Li Y, He Q, Yang X. Exploration of the Use of Natural Compounds in Combination with Chemotherapy Drugs for Tumor Treatment. Molecules 2023; 28:molecules28031022. [PMID: 36770689 PMCID: PMC9920618 DOI: 10.3390/molecules28031022] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Currently, chemotherapy is the main treatment for tumors, but there are still problems such as unsatisfactory chemotherapy results, susceptibility to drug resistance, and serious adverse effects. Natural compounds have numerous pharmacological activities which are important sources of drug discovery for tumor treatment. The combination of chemotherapeutic drugs and natural compounds is gradually becoming an important strategy and development direction for tumor treatment. In this paper, we described the role of natural compounds in combination with chemotherapeutic drugs in synergizing, reducing drug resistance, mitigating adverse effects and related mechanisms, and providing new insights for future oncology research.
Collapse
Affiliation(s)
- Jianping Wu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunheng Li
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Correspondence: ; Tel.: +86-571-8820-8076
| |
Collapse
|
11
|
Bai X, Cheng Y, Wan H, Li S, Kang X, Guo S. Natural Compound Allicin Containing Thiosulfinate Moieties as Transmembrane Protein 16A (TMEM16A) Ion Channel Inhibitor for Food Adjuvant Therapy of Lung Cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:535-545. [PMID: 36574498 DOI: 10.1021/acs.jafc.2c06723] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cancer is one of the most serious malignant diseases, and chemotherapy is cancer's main clinical treatment method. However, chemotherapy inevitably produces drug resistance, and side effects accompany them. Adjuvant therapy is an effective way to enhance chemotherapeutic drug sensitivity and reduce side effects. This study found allicin, garlic's active ingredient, is an inhibitor of transmembrane protein 16A (TMEM16A), a novel drug target of lung adenocarcinoma. Allicin concentration-dependently inhibited TMEM16A currents with an IC50 of 24.35 ± 4.14 μM. Allicin thiosulfinate moieties bound with R535A/E624A/E633A residues of TMEM16A blocked the ion transport function and downregulated TMEM16A protein expression affecting the mitogen-activated protein kinase signal transduction. Then, allicin reduced the viability and migration of LA795 cells, and induced cell apoptosis. Moreover, multitarget combination administration results indicated that the therapeutic effect of 3.56 mg/kg allicin and 3 mg/kg cisplatin combined administration was superior to the superposition of the two drugs alone, demonstrating that the anticancer effects of allicin and cisplatin were synergistic. In addition, low-concentration combined administration also avoided the side effects of cisplatin in mice. Based on the good tumor suppressor effect and high biosafety of allicin and cisplatin combination in vivo, allicin can be used for food adjuvant therapy of cisplatin chemotherapy.
Collapse
Affiliation(s)
- Xue Bai
- School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Yana Cheng
- School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Haifu Wan
- School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
- Postdoctoral Research Station of Biology, Hebei University, Baoding City, Hebei Province 071002, China
| | - Shuting Li
- School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Xianjiang Kang
- School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding, Hebei 071002, China
- Postdoctoral Research Station of Biology, Hebei University, Baoding City, Hebei Province 071002, China
| |
Collapse
|
12
|
Molecular mechanism of ion channel protein TMEM16A regulated by natural product of narirutin for lung cancer adjuvant treatment. Int J Biol Macromol 2022; 223:1145-1157. [PMID: 36400205 DOI: 10.1016/j.ijbiomac.2022.11.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
Abstract
Cancer chemotherapy drugs are widely criticized for their serious side effects and low cure rate. Therefore, adjuvant therapy as a combination with chemotherapy administration is being accepted by many patients. However, unclear drug targets and mechanisms limit the application of adjuvant treatment. In this study, we confirmed TMEM16A is a key drug target for lung adenocarcinoma, and narirutin is an effective anti-lung adenocarcinoma natural product. Virtual screening and fluorescence experiments confirmed that narirutin inhibits the molecular target TMEM16A, which is specific high-expression in lung adenocarcinoma. Molecular dynamics simulations and electrophysiological experiments revealed the precise molecular mechanism of narirutin regulating TMEM16A. The anticancer effect of narirutin and its synergistic effect on cisplatin were explored by cell proliferation, migration, and apoptosis assays. The signaling pathways regulated by narirutin were analyzed by western blot. Tumor xenograft mice experiments demonstrated the synergistic anticancer effect of narirutin and cisplatin, and the side effects of high concentrations of cisplatin were almost eliminated. Pharmacokinetic experiments showed the biological safety of narirutin is satisfactory in vivo. Based on the significant anticancer effect and high biosafety, naringin has great potential as a functional food in the adjuvant treatment of lung cancer.
Collapse
|
13
|
A Review of Medicinal Plants of the Himalayas with Anti-Proliferative Activity for the Treatment of Various Cancers. Cancers (Basel) 2022; 14:cancers14163898. [PMID: 36010892 PMCID: PMC9406073 DOI: 10.3390/cancers14163898] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Drugs are used to treat cancer. Most drugs available in the market are chemosynthetic drugs and have side effects on the patient during and after the treatment, in addition to cancer itself. For instance, hair loss, loss of skin color and texture, loss of energy, nausea, infertility, etc. To overcome these side effects, naturally obtained drugs from medicinal plants are preferred. Our review paper aims to encourage the study of anticancer medicinal plants by giving detailed information on thirty-three medicinal plants and parts that constitute the phytochemicals responsible for the treatment of cancer. The development of plant-based drugs could be a game changer in treating cancer as well as boosting the immune system. Abstract Cancer is a serious and significantly progressive disease. Next to cardiovascular disease, cancer has become the most common cause of mortality in the entire world. Several factors, such as environmental factors, habitual activities, genetic factors, etc., are responsible for cancer. Many cancer patients seek alternative and/or complementary treatments because of the high death rate linked with cancer and the adverse side effects of chemotherapy and radiation therapy. Traditional medicine has a long history that begins with the hunt for botanicals to heal various diseases, including cancer. In the traditional medicinal system, several plants used to treat diseases have many bioactive compounds with curative capability, thereby also helping in disease prevention. Plants also significantly contributed to the modern pharmaceutical industry throughout the world. In the present review, we have listed 33 medicinal plants with active and significant anticancer activity, as well as their anticancer compounds. This article will provide a basic set of information for researchers interested in developing a safe and nontoxic active medicinal plant-based treatment for cancer. The research will give a scientific foundation for the traditional usage of these medicinal herbs to treat cancer.
Collapse
|
14
|
Watari A, Fujiwara K, Yagi K, Tachibana K, Katsurada T, Myoui A, Kondoh M. Homoharringtonine is a transdermal granular permeation enhancer. Biochem Biophys Res Commun 2022; 616:140-144. [PMID: 35679696 DOI: 10.1016/j.bbrc.2022.04.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/02/2022]
Abstract
Although modulation of claudin-1-based tight junction (TJ) in stratum granulosum is an option for transdermal absorption of drugs, granular permeation enhancers have never been developed. We previously found that homoharringtonine (HHT), a natural alkanoid, weakened intestinal epithelial barrier with changing expression and cellular localization of TJ components such as claudin-1 and claudin-4. In the present study, we investigated whether HHT is an epidermal granular permeation enhancer. Treatment of normal human epidermal keratinocytes (NHEK) cells with HHT decreased claudin-1 and claudin-4 but not zonula occludens-1 and E-cadherin. HHT lowered TJ-integrity in NHEK cells, accompanied by permeation-enhancement of dextran (4 kDa) in a dose-dependent manner. Transdermal treatment of mice with HHT weakened epidermal barrier. HHT treatment enhanced transdermal absorption of dextran with a molecular mass of up to 10 kDa. Together, HHT may be a transdermal absorption enhancer.
Collapse
Affiliation(s)
- Akihiro Watari
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Department of Medical Innovation, Osaka University Hospital, Osaka, Japan.
| | - Kana Fujiwara
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | - Akira Myoui
- Department of Medical Innovation, Osaka University Hospital, Osaka, Japan
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| |
Collapse
|
15
|
Bai X, Li S, Liu X, An H, Kang X, Guo S. Caffeic Acid, an Active Ingredient in Coffee, Combines with DOX for Multitarget Combination Therapy of Lung Cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8326-8337. [PMID: 35772797 DOI: 10.1021/acs.jafc.2c03009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Adjuvant diet therapy is an important means of comprehensive treatment of cancer. It is recognized by patients for its high safety, painlessness, and ease to operate. However, the development of adjuvant dietary therapy is limited by unclear targets and unclear anticancer mechanisms. In this work, caffeic acid was found as an inhibitor of TMEM16A with an IC50 of 29.47 ± 3.19 μM by fluorescence quenching and whole-cell patch-clamp experiments. Caffeic acid regulated the proliferation, migration, and apoptosis of lung cancer cells targeting TMEM16A, which was detected by CCK-8, colony formation, wound healing, and Annexin V assays. In addition, molecular docking combined with site-directed mutagenesis confirmed that the binding sites of caffeic acid to TMEM16A were D439, E448, and R753. Western blot results indicated that caffeic acid regulated the growth of lung cancer through the MAPK pathway. In vitro experiments showed that the inhibitory effect of caffeic acid combined with hydroxydaunorubicin (DOX) on lung cancer cell growth was better than a double concentration of any single dose. In vivo pharmacokinetic experiments and tumor xenograft experiments indicated that the combination of 5.4 mg/kg caffeic acid and 4.1 mg/kg DOX achieved 85.6% tumor suppression rate and offset the side effects. Therefore, caffeic acid is a safe and efficient antitumor active ingredient of food that can enhance the antitumor effect of DOX.
Collapse
Affiliation(s)
- Xue Bai
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Shuting Li
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Xinyi Liu
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Xianjiang Kang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| |
Collapse
|
16
|
Guo S, Bai X, Shi S, Li S, Liu X, An H, Kang X. Multi-target tracheloside and doxorubicin combined treatment of lung adenocarcinoma. Biomed Pharmacother 2022; 153:113392. [PMID: 35834992 DOI: 10.1016/j.biopha.2022.113392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy is one of the main methods for malignant lung cancer treatment. However, the side effects of chemotherapy drugs are serious and it is prone to drug resistance. Therefore, multi-drug combination chemotherapy is popular in lung cancer treatment. This study found that tracheloside (TCS) was a novel inhibitor of TMEM16A which was specific high expressed in lung cancer tissues. TCS concentration dependently inhibited TMEM16A with an IC50 of 3.09 ± 0.21 μM. It inhibited lung cancer cells proliferation, migration, and induced cells apoptosis targeting TMEM16A. In addition, molecular docking combined with site-directed mutagenesis confirmed that the binding sites of TCS to TMEM16A were S387, E623, E624. Subsequently, multi-target combined drug administration was conducted based on the different drug targets of TCS and doxorubicin (DOX). Both in vitro and in vivo experiments indicated that the combined administration of low concentration of TCS and DOX achieved satisfactory anticancer effect, and it offset the side effects caused by high concentration of DOX. Therefore, TCS is a safe and efficient anticancer lead compound which can enhance the effect of DOX.
Collapse
Affiliation(s)
- Shuai Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China; Postdoctoral Research Station of Biology, Hebei University, Baoding 071002, Hebei, China.
| | - Xue Bai
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China.
| | - Sai Shi
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, China
| | - Shuting Li
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Xinyi Liu
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, China
| | - Xianjiang Kang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China.
| |
Collapse
|
17
|
TMEM16A as a potential treatment target for head and neck cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:196. [PMID: 35668455 PMCID: PMC9172006 DOI: 10.1186/s13046-022-02405-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/26/2022] [Indexed: 01/02/2023]
Abstract
Transmembrane protein 16A (TMEM16A) forms a plasma membrane-localized Ca2+-activated Cl- channel. Its gene has been mapped to an area on chromosome 11q13, which is amplified in head and neck squamous cell carcinoma (HNSCC). In HNSCC, TMEM16A overexpression is associated with not only high tumor grade, metastasis, low survival, and poor prognosis, but also deterioration of clinical outcomes following platinum-based chemotherapy. Recent study revealed the interaction between TMEM16A and transforming growth factor-β (TGF-β) has an indirect crosstalk in clarifying the mechanism of TMEM16A-induced epithelial-mesenchymal transition. Moreover, human papillomavirus (HPV) infection can modulate TMEM16A expression along with epidermal growth factor receptor (EGFR), whose phosphorylation has been reported as a potential co-biomarker of HPV-positive cancers. Considering that EGFR forms a functional complex with TMEM16A and is a co-biomarker of HPV, there may be crosstalk between TMEM16A expression and HPV-induced HNSCC. EGFR activation can induce programmed death ligand 1 (PD-L1) synthesis via activation of the nuclear factor kappa B pathway and JAK/STAT3 pathway. Here, we describe an interplay among EGFR, PD-L1, and TMEM16A. Combination therapy using TMEM16A and PD-L1 inhibitors may improve the survival rate of HNSCC patients, especially those resistant to anti-EGFR inhibitor treatment. To the best of our knowledge, this is the first review to propose a biological validation that combines immune checkpoint inhibition with TMEM16A inhibition.
Collapse
|
18
|
Bai X, Liu X, Li S, An H, Kang X, Guo S. Nuciferine Inhibits TMEM16A in Dietary Adjuvant Therapy for Lung Cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3687-3696. [PMID: 35298888 DOI: 10.1021/acs.jafc.1c08375] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lung cancer is a malignant tumor with the highest morbidity and mortality rates. Food therapy is a common adjuvant treatment for lung cancer due to its safety and painlessness. Developing new functional food and exploring novel drug targets is important for lung cancer adjuvant therapy. This study confirmed that the active ingredient nuciferine of the lotus leaf was a novel TMEM16A inhibitor by whole-cell patch clamp experiments and site-directed mutagenesis experiments. CCK8 assay, colony formation assay, wound healing assay, and Annexin-V assay were combined to prove that nuciferine inhibited the proliferation and migration of lung cancer cells and promoted cancer cell apoptosis by targeting TMEM16A. Moreover, the combination of nuciferine and cisplatin significantly enhanced the anti-cancer effect of cisplatin. In addition, the signal transduction pathway of nuciferine regulating LA795 cell proliferation, migration, and apoptosis was confirmed by western blot experiments. In vivo experiments showed that nuciferine was a safe and effective natural anti-cancer product for lung cancer. Tissue section pathological detection and pharmacokinetic experiments verified that intragastric administration of nuciferine significantly enhanced the cancer therapy effect of cisplatin and counteracted the toxicity of high concentrations of cisplatin. Therefore, nuciferine is an ideal functional food for adjuvant lung cancer treatment.
Collapse
Affiliation(s)
- Xue Bai
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Xinyi Liu
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Shuting Li
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Hailong An
- Key Laboratory of Molecular Biophysics, Institute of Biophysics, School of Sciences, Hebei University of Technology, Tianjin 300401, Hebei Province, China
| | - Xianjiang Kang
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| | - Shuai Guo
- School of Life Sciences, Hebei University, Baoding 071002, Hebei, China
| |
Collapse
|