1
|
Ajmal M, Mahato AK, Khan M, Rawat S, Husain A, Almalki EB, Alzahrani MA, Haque A, Hakme MJM, Albalawi AS, Rashid M. Significance of Triazole in Medicinal Chemistry: Advancement in Drug Design, Reward and Biological Activity. Chem Biodivers 2024; 21:e202400637. [PMID: 38740555 DOI: 10.1002/cbdv.202400637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
One of the triazole tautomers, 1,2,4-triazole derivatives, has a wide range of biological activities that suggest its potential therapeutic utility in medicinal chemistry. These actions include anti-inflammatory, anti-cancer, anti-bacterial, anti-tuberculosis, and anti-diabetic effects. Using computational simulations and models, we investigate the structure-activity relationships of 1,2,4-triazoles, showing how various modifications to the triazole core yield a variety of clinical therapeutic benefits. The review highlights the anti-inflammatory effect of 1,2,4-triazoles in relation to their ability to disrupt significant inflammatory mediators and pathways. We present in-silico data that illuminate the triazoles' capacity to inhibit cell division, encourage apoptosis, and stop metastasis in a range of cancer models. This review looks at the bactericidal and bacteriostatic properties of 1,2,4-triazole derivatives, with a focus on their potential efficacy against multi-drug resistant bacterial infections and their usage in tuberculosis therapy. In order to better understand these substances' potential anti-diabetic benefits, this review also looks at how they affect glucose metabolism regulation and insulin responsiveness. Coordinated efforts are required to translate the efficacy of 1,2,4-triazole compounds in preclinical models into practical therapeutic benefits. Based on the information provided, it can be concluded that 1,2,4-triazole derivatives are a promising class of diverse therapeutic agents with potential utility in a range of disorders. Their development and improvement might herald a new era of medical care that will be immensely advantageous to both patients and the medical community as a whole. This comprehensive research, which is further reinforced by in-silico investigations, highlights the great medicinal potential of 1,2,4-triazoles. Additionally, this study encourages more research into these substances and their enhancement for use in pharmaceutical development.
Collapse
Affiliation(s)
- Mohammad Ajmal
- School of Pharmaceutical Sciences & Technology, Sardar Bhagwan Singh University, Dehradun, 248001, Uttarakhand, India
| | - Arun Kumar Mahato
- School of Pharmaceutical Sciences & Technology, Sardar Bhagwan Singh University, Dehradun, 248001, Uttarakhand, India
| | - Mausin Khan
- School of Pharmaceutical Sciences & Technology, Sardar Bhagwan Singh University, Dehradun, 248001, Uttarakhand, India
| | - Shivani Rawat
- School of Pharmaceutical Sciences & Technology, Sardar Bhagwan Singh University, Dehradun, 248001, Uttarakhand, India
| | - Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110064, India
| | | | | | - Anzarul Haque
- Central Laboratories Unit, Qatar University, Doha, 2713, Qatar
| | | | - Ahmed Suleman Albalawi
- Tabuk Health Cluster, Erada Mental Health Complex, Tabuk, 47717, Kingdom of Saudi Arabia
| | - Mohammad Rashid
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia
| |
Collapse
|
2
|
Nawaz Z, Riaz N, Saleem M, Iqbal A, Abida Ejaz S, Bashir B, Muzaffar S, Ashraf M, Aziz-Ur-Rehman, Sajjad Bilal M, Krishna Prabhala B, Sajid S. Molecular hybrids of substituted phenylcarbamoylpiperidine and 1,2,4-triazole methylacetamide as potent 15-LOX inhibitors: Design, synthesis, DFT calculations and molecular docking studies. Bioorg Chem 2024; 143:106984. [PMID: 38056389 DOI: 10.1016/j.bioorg.2023.106984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023]
Abstract
Inflammation is a multifaceted phenomenon triggered by potentially active mediators acutely released arachidonic acid metabolites partially in lipoxygenase (LOX) pathway which are primarily accountable for causing several diseases in humans. It is widely believed that an inhibitor of the LOX pathway represents a rational approach for designing more potent antiinflammatory leads with druggable super safety profiles. In our continual efforts in search for anti-LOX molecules, the present work was to design a new series of N-alkyl/aralkyl/aryl derivatives (7a-o) of 4-phenyl-5-(1-phenylcarbamoylpiperidine)-4H-1,2,4-triazole-3-thiol which was commenced in seriate formation of phenylcarbamoyl derivative (1), hydrazide (2), semicarbazide (3) and 4-phenyl-5-(1-phenylcarbamoylpiperidine)-4H-1,2,4-triazole-3-thiol (4). The aimed compounds were obtained by reacting 4-phenyl-5-(1-phenylcarbamoylpiperidine)-4H-1,2,4-triazole-3-thiol with assorted N-alkyl/aralkyl/aryl electrophiles. All compounds were characterized by FTIR, 1H-, 13C-NMR spectroscopy, EI-MS and HR-EI-MS spectrometry and screened against soybean 15-LOX for their inhibitory potential using chemiluminescence method. All the compounds except 7m and 7h inhibited the said enzyme remarkably. Compounds 7c,7l, 7j and 7a displayed potent inhibitions ranging from IC50 1.92 ± 0.13 µM to 7.65 ± 0.12 µM. Other analogues 7g, 7o, 7e, 7b, 7d, 7k and 7n revealed excellent inhibitory values ranging from IC50 12.45 ± 0.38 µM to 24.81 ± 0.47 µM. All these compounds did not reveal DPPH radical scavenging activity. Compounds 7i-o maintained > 90 % human blood mononuclear cells (MNCs) viability at 0.125 mM as assayed by MTT whilst others were found toxic. Pharmacokinetic profiles predicted good oral bioavailability and drug-likeness properties of the active scaffolds. SAR investigations showed that phenyl substituted analogue on amide side decreased inhibitory activity due to inductive and mesomeric effects while the mono-alkyl substituted analogues were more active than disubstituted ones and ortho substituted analogues were more potent than meta substituted ones. MD simulation predicted the stability of the 7c ligand and receptor complex as shown by their relative RMSD (root mean square deviation) values. Molecular docking studies displayed hydrogen bonding between the compounds and the enzyme with Arg378 which was common in 7n, 7g, 7h and baicalein. In 7a and quercetin, hydrogen bonding was established through Asn375. RMSD values exhibited good inhibitory profiles in the order quercetin (0.73 Å) < 7 g < baicalein < 7a < 7n < 7 h (1.81 Å) and the binding free energies followed similar pattern. Density functional theory (DFT) data established good correlation between the active compounds and significant activity was associated with more stabilized LUMO (lowest unoccupied molecular orbitals) orbitals. Nevertheless, the present studies declare active analogues like 7c, 7 l, 7a, 7j as leads. Work is ongoing in derivatizing active molecules to explore more effective leads as 15-LOX inhibitors as antiinflammatory agents.
Collapse
Affiliation(s)
- Zahid Nawaz
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Naheed Riaz
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Muhammad Saleem
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ambar Iqbal
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics (IBBB), Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Khawaja Fareed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Bushra Bashir
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Saima Muzaffar
- Department of Chemistry, Division of Sceience and Technology, University of Education, 54770 Lahore, Vehari Campus, Pakistan
| | - Muhammad Ashraf
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Aziz-Ur-Rehman
- Department of Chemistry, Government College University Lahore, Lahore 54000, Pakistan
| | - Muhammad Sajjad Bilal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Khawaja Fareed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Bala Krishna Prabhala
- Institute of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230M, Denmark
| | - Salvia Sajid
- Department of Drug Design and Pharmacology, University of Copenhagen 2, DK-2100 Kobenhavn O, Denmark
| |
Collapse
|
3
|
Ait Lahcen M, Adardour M, Mortada S, Oubahmane M, Hmaimou S, Loughzail M, Hdoufane I, Lahmidi S, Faouzi MEA, Cherqaoui D, Mague JT, Baouid A. Synthesis, characterization, X-ray, α-glucosidase inhibition and molecular docking study of new triazolic systems based on 1,5-benzodiazepine via 1,3-dipolar cycloaddition reactions. J Biomol Struct Dyn 2024; 42:1985-1998. [PMID: 37098807 DOI: 10.1080/07391102.2023.2203263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/09/2023] [Indexed: 04/27/2023]
Abstract
We report in this work a synthesis of novel triazolo[1,5]benzodiazepine derivatives by the 1,3-dipolar cycloaddition reaction of N-aryl-C-ethoxycarbonylnitrilimines with 1,5-benzodiazepines. All the structures of the new compounds were determined from their NMR (1H and 13C) and HRMS. Then, X-ray crystallography analysis of compound 4d confirmed the stereochemistry of cycloadducts. The compounds 1, 4a-d, 5a-d, 6c, 7 and 8 were evaluated for their in vitro anti-diabetic activity against α-glucosidase. The compounds 1, 4d, 5a and 5b showed potential inhibitory activities compared to standard acarbose. Additionally, an in silico docking study was conducted to look into the active binding mode of the synthesized compounds within the target enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Marouane Ait Lahcen
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Mohamed Adardour
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Salma Mortada
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Mehdi Oubahmane
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Samir Hmaimou
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Mohamed Loughzail
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Ismail Hdoufane
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Sanae Lahmidi
- Laboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, Pôle de Compétences Pharmacochimie, URAC 21, Faculté des Sciences, Mohammed V University Rabat, Rabat, Morocco
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Driss Cherqaoui
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA, USA
| | - Abdesselam Baouid
- Molecular Chemistry Laboratory, Department of Chemistry, Semlalia Faculty of Sciences, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
4
|
Ewieda SY, Ahmed EM, Hassan RA, Hassan MSA. Pyridazine derivatives as selective COX-2 inhibitors: A review on recent updates. Drug Dev Res 2023; 84:1595-1623. [PMID: 37751330 DOI: 10.1002/ddr.22118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
Selective cyclooxygenase (COX)-2 inhibitors have several advantages over nonselective COX inhibitors (nonsteroidal anti-inflammatory drugs [NSAIDs]), including the absence of adverse effects (renal and hepatic disorders) associated with the long-term use of standard NSAIDs, as well as an improved gastrointestinal profile. The pyridazine nucleus is regarded as a promising scaffold for the development of powerful COX-2 inhibitors, particularly when selectively functionalized. This article summarizes some methods for the synthesis of pyridazine derivatives. Furthermore, it covers all of the pyridazine derivatives that have appeared as selective COX-2 inhibitors, making it useful as a reference for the rational design of novel selective COX-2 inhibitors.
Collapse
Affiliation(s)
- Sara Y Ewieda
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Eman M Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Marwa S A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Strzelecka M, Wiatrak B, Jawień P, Czyżnikowska Ż, Świątek P. New Schiff bases derived from dimethylpyridine-1,2,4-triazole hybrid as cytotoxic agents targeting gastrointestinal cancers: Design, synthesis, biological evaluation and molecular docking studies. Bioorg Chem 2023; 139:106758. [PMID: 37540951 DOI: 10.1016/j.bioorg.2023.106758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
In this research, a series of novel hybrid structures of dimethylpyridine-1,2,4-triazole Schiff bases were designed, synthesized, and evaluated for their in vitro cytotoxic potency on several human gastrointestinal cancer cells (EPG, Caco-2, LoVo, LoVo/Dx, HT29) and normal colonic epithelial cells (CCD 841 CoN). Schiff base 4h was the most potent compound against gastric EPG cancer cells (CC50 = 12.10 ± 3.10 μM), being 9- and 21-fold more cytotoxic than 5-FU and cisplatin, respectively. Moreover, it was not toxic to normal cells. Regarding the cytotoxicity against colorectal cancer cells, compounds 4d and 4l exhibited good activity against HT29 cells (CC50 = 52.80 ± 2.80 μM and 61.40 ± 10.70 μM, respectively), and were comparable to or more potent than cisplatin and 5-FU. Also, they were less toxic to normal cells with a higher selectivity index (SI, CCD 841 CoN/HT29 = 4.20 and 2.85, respectively) than reference drugs (SI, CCD 841 CoN/HT29 < 1). Selected Schiff bases were subjected to the P-glycoprotein inhibition assay. Schiff bases 4d, 4e, and 4l influenced P-gp efflux function, significantly increasing the accumulation of rhodamine 123 in colon cancer cell lines. Further mechanistic studies showed that compound 4l induced apoptotic cell death through a caspase-dependent mechanism and by regulating the p53-MDM2 signaling pathway in HT29 cells. Also, physicochemical predictions of compounds 4d, 4e, 4h, and 4i were examined in silico. The results revealed that the compounds possessed promising drug-likeness profiles.
Collapse
Affiliation(s)
- Małgorzata Strzelecka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, J. Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Paulina Jawień
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wroclaw, Poland
| | - Żaneta Czyżnikowska
- Department of Basic Chemical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| | - Piotr Świątek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland.
| |
Collapse
|
6
|
Mikus J, Świątek P, Przybyła P, Krzyżak E, Marciniak A, Kotynia A, Redzicka A, Wiatrak B, Jawień P, Gębarowski T, Szczukowski Ł. Synthesis, Biological, Spectroscopic and Computational Investigations of Novel N-Acylhydrazone Derivatives of Pyrrolo[3,4- d]pyridazinone as Dual COX/LOX Inhibitors. Molecules 2023; 28:5479. [PMID: 37513351 PMCID: PMC10383271 DOI: 10.3390/molecules28145479] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Secure and efficient treatment of diverse pain and inflammatory disorders is continually challenging. Although NSAIDs and other painkillers are well-known and commonly available, they are sometimes insufficient and can cause dangerous adverse effects. As yet reported, derivatives of pyrrolo[3,4-d]pyridazinone are potent COX-2 inhibitors with a COX-2/COX-1 selectivity index better than meloxicam. Considering that N-acylhydrazone (NAH) moiety is a privileged structure occurring in many promising drug candidates, we decided to introduce this pharmacophore into new series of pyrrolo[3,4-d]pyridazinone derivatives. The current paper presents the synthesis and in vitro, spectroscopic, and in silico studies evaluating the biological and physicochemical properties of NAH derivatives of pyrrolo[3,4-d]pyridazinone. Novel compounds 5a-c-7a-c were received with high purity and good yields and did not show cytotoxicity in the MTT assay. Their COX-1, COX-2, and 15-LOX inhibitory activities were estimated using enzymatic tests and molecular docking studies. The title N-acylhydrazones appeared to be promising dual COX/LOX inhibitors. Moreover, spectroscopic and computational methods revealed that new compounds form stable complexes with the most abundant plasma proteins-AAG and HSA, but do not destabilize their secondary structure. Additionally, predicted pharmacokinetic and drug-likeness properties of investigated molecules suggest their potentially good membrane permeability and satisfactory bioavailability.
Collapse
Affiliation(s)
- Jakub Mikus
- Student Science Club of Medicinal Chemistry, Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (J.M.); (P.P.)
| | - Piotr Świątek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland;
| | - Patrycja Przybyła
- Student Science Club of Medicinal Chemistry, Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland; (J.M.); (P.P.)
| | - Edward Krzyżak
- Department of Basic Chemical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland; (E.K.); (A.M.); (A.K.)
| | - Aleksandra Marciniak
- Department of Basic Chemical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland; (E.K.); (A.M.); (A.K.)
| | - Aleksadra Kotynia
- Department of Basic Chemical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland; (E.K.); (A.M.); (A.K.)
| | - Aleksandra Redzicka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland;
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland;
| | - Paulina Jawień
- Department of Biostructure and Animal Physiology, Division of Animal Anatomy, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Kożuchowska 1, 51-631 Wrocław, Poland; (P.J.); (T.G.)
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, Division of Animal Anatomy, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Kożuchowska 1, 51-631 Wrocław, Poland; (P.J.); (T.G.)
| | - Łukasz Szczukowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland;
| |
Collapse
|
7
|
Musfiroh I, Kartasasmita RE, Ibrahim S, Muchtaridi M, Hidayat S, Ikram NKK. Stability Analysis of the Asiatic Acid-COX-2 Complex Using 100 ns Molecular Dynamic Simulations and Its Selectivity against COX-2 as a Potential Anti-Inflammatory Candidate. Molecules 2023; 28:molecules28093762. [PMID: 37175172 PMCID: PMC10180211 DOI: 10.3390/molecules28093762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Asiatic acid, a triterpenoid compound, has been shown to have anti-inflammatory activity through the inhibition of the formation of cyclooxygenase-2 (COX-2) in vitro and in vivo. This study was conducted to determine the binding stability and the inhibitory potential of asiatic acid as an anti-inflammatory candidate. The study involved in vitro testing utilizing a colorimetric kit as well as in silico testing for the pharmacophore modeling and molecular dynamic (MD) simulation of asiatic acid against COX-2 (PDB ID: 3NT1). The MD simulations showed a stable binding of asiatic acid to COX-2 and an RMSD range of 1-1.5 Å with fluctuations at the residues of Phe41, Leu42, Ile45, Arg44, Asp367, Val550, Glu366, His246, and Gly227. The total binding energy of the asiatic acid-COX-2 complex is -7.371 kcal/mol. The anti-inflammatory activity of the asiatic acid inhibition of COX-2 was detected at IC50 values of 120.17 µM. Based on pharmacophore modeling, we discovered that carboxylate and hydroxyl are the two main functional groups that act as hydrogen bond donors and acceptors interacting with the COX-2 enzyme. From the results, it is evident that asiatic acid is a potential anti-inflammatory candidate with high inhibitory activity in relation to the COX-2 enzyme.
Collapse
Affiliation(s)
- Ida Musfiroh
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Rahmana E Kartasasmita
- Department of Pharmacochemistry, School of Pharmacy, Institute Technology Bandung, Bandung 40132, Indonesia
| | - Slamet Ibrahim
- Faculty of Pharmacy, Universitas Jenderal Ahmad Yani, Bandung 40285, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Syahrul Hidayat
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Nur Kusaira Khairul Ikram
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
8
|
Interaction of Positively Charged Oligopeptides with Blood Plasma Proteins. Int J Mol Sci 2023; 24:ijms24032836. [PMID: 36769160 PMCID: PMC9918186 DOI: 10.3390/ijms24032836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
In this project, we combine two areas of research, experimental characterization and molecular docking studies of the interaction of positively charged oligopeptides with crucial blood plasma proteins. The investigated peptides are rich in NH2 groups of amino acid side chains from Dap, Orn, Lys, and Arg residues, which are relevant in protein interaction. The peptides are 9- and 11-mer with the following sequences: (Lys-Dab-Dab-Gly-Orn-Pro-His-Lys-Arg-Lys-Dbt), (Lys-Dab-Ala-Gly-Orn-Pro-His-Lys-Arg), and (Lys-Dab-Dab-Gly-Orn-Pro-Phe(2-F)-Lys-Arg). The net charge of the compound strongly depends on the pH environment and it is an important aspect of protein binding. The studied oligopeptides exhibit therapeutic properties: anti-inflammatory activity and the capacity to diminish reactive oxygen species (ROS). Therefore, the mechanism of potential binding with blood plasma components is the next challenge. The binding interaction has been investigated under pseudo-physiological conditions with the main blood plasma proteins: albumin (BSA), α1-acid glycoprotein (AAG), and γ-globulin fraction (GGF). The biomolecular quenching constant (kq) and binding constant (Kb) were obtained by fluorescence spectroscopy at various temperatures. Simultaneously, the changes in the secondary structure of proteins were monitored by circular dichroism (CD) and infrared spectroscopy (IR) by quantity analysis. Moreover, molecular docking studies were conducted to estimate the binding affinity, the binding domain, and the chemical nature of these interactions. The results show that the investigated oligopeptides could be mainly transported by albumin, and the binding domain I is the most favored cavity. The BSA and GGF are able to form stable complexes with the studied compounds as opposed to AAG. The binding reactions are spontaneous processes. The highest binding constants were determined for Lys-Dab-Dab-Gly-Orn-Pro-His-Lys-Arg-Lys-Dbt peptide, in which the values of the binding constants Kb to BSA and GGF were 10.1 × 104 dm3mol-1 and 3.39 × 103 dm3mol-1, respectively. The positively charged surface of peptides participated in salt bridge interaction with proteins; however, hydrogen bonds were also formed. The secondary structure of BSA and GGF after contact with peptides was changed. A reduction in the α-helix structure was observed with an increase in the β-sheet and β-turn and random coil structures.
Collapse
|
9
|
Synthesis, Anticancer Activity and Molecular Docking Studies of Novel N-Mannich Bases of 1,3,4-Oxadiazole Based on 4,6-Dimethylpyridine Scaffold. Int J Mol Sci 2022; 23:ijms231911173. [PMID: 36232475 PMCID: PMC9570134 DOI: 10.3390/ijms231911173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer is one of the greatest challenges in modern medicine today. Difficult and long-term treatment, the many side effects of the drugs used and the growing resistance to treatment of neoplastic cells necessitate new approaches to therapy. A very promising targeted therapy is based on direct impact only on cancer cells. As a continuation of our research on new biologically active molecules, we report herein the design, synthesis and anticancer evaluation of a new series of N-Mannich-base-type hybrid compounds containing morfoline or different substituted piperazines moieties, a 1,3,4-oxadiazole ring and a 4,6-dimethylpyridine core. All compounds were tested for their potential cytotoxicity against five human cancer cell lines, A375, C32, SNB-19, MCF-7/WT and MCF-7/DX. Two of the active N-Mannich bases (compounds 5 and 6) were further evaluated for growth inhibition effects in melanoma (A375 and C32), and normal (HaCaT) cell lines using clonogenic assay and a population doubling time test. The apoptosis was determined with the neutral version of comet assay. The confocal microscopy method enabled the visualization of F-actin reorganization. The obtained results demonstrated that compounds 5 and 6 have cytotoxic and proapoptotic effects on melanoma cells and are capable of inducing F-actin depolarization in a dose-dependent manner. Moreover, computational chemistry approaches, molecular docking and electrostatic potential were employed to study non-covalent interactions of the investigated compounds with four receptors. It was found that all the examined molecules exhibit a similar binding affinity with respect to the chosen reference drugs.
Collapse
|
10
|
Kutner A, Brown G, Kallay E. Novel Strategies in the Development of New Therapies, Drug Substances, and Drug Carriers Volume I. Int J Mol Sci 2022; 23:ijms23126635. [PMID: 35743075 PMCID: PMC9224470 DOI: 10.3390/ijms23126635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- Andrzej Kutner
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland
- Correspondence:
| | - Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Enikö Kallay
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria;
| |
Collapse
|
11
|
Hassan MSA, Ahmed EM, El-Malah AA, Kassab AE. Anti-inflammatory activity of pyridazinones: A review. Arch Pharm (Weinheim) 2022; 355:e2200067. [PMID: 35532263 DOI: 10.1002/ardp.202200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/06/2022]
Abstract
The pyridazinone core has emerged as a leading structure for fighting inflammation, with low ulcerogenic effects. Moreover, easy functionalization of various ring positions of the pyridazinone core structure makes it an attractive synthetic and therapeutic target for the design and synthesis of anti-inflammatory agents. The present review surveys the recent advances of pyridazinone derivatives as potential anti-inflammatory agents to provide insights into the rational design of more effective anti-inflammatory pyridazinones.
Collapse
Affiliation(s)
- Marwa S A Hassan
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Eman M Ahmed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Afaf A El-Malah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
12
|
Świątek P, Glomb T, Dobosz A, Gębarowski T, Wojtkowiak K, Jezierska A, Panek JJ, Świątek M, Strzelecka M. Biological Evaluation and Molecular Docking Studies of Novel 1,3,4-Oxadiazole Derivatives of 4,6-Dimethyl-2-sulfanylpyridine-3-carboxamide. Int J Mol Sci 2022; 23:ijms23010549. [PMID: 35008977 PMCID: PMC8745710 DOI: 10.3390/ijms23010549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
To date, chronic inflammation is involved in most main human pathologies such as cancer, and autoimmune, cardiovascular or neurodegenerative disorders. Studies suggest that different prostanoids, especially prostaglandin E2, and their own synthase (cyclooxygenase enzyme-COX) can promote tumor growth by activating signaling pathways which control cell proliferation, migration, apoptosis, and angiogenesis. Non-steroidal anti-inflammatory drugs (NSAIDs) are used, alongside corticosteroids, to treat inflammatory symptoms particularly in all chronic diseases. However, their toxicity from COX inhibition and the suppression of physiologically important prostaglandins limits their use. Therefore, in continuation of our efforts in the development of potent, safe, non-toxic chemopreventive compounds, we report herein the design, synthesis, biological evaluation of new series of Schiff base-type hybrid compounds containing differently substituted N-acyl hydrazone moieties, 1,3,4-oxadiazole ring, and 4,6-dimethylpyridine core. The anti-COX-1/COX-2, antioxidant and anticancer activities were studied. Schiff base 13, containing 2-bromobenzylidene residue inhibited the activity of both isoenzymes, COX-1 and COX-2 at a lower concentration than standard drugs, and its COX-2/COX-1 selectivity ratio was similar to meloxicam. Furthermore, the results of cytotoxicity assay indicated that all of the tested compounds exhibited potent anti-cancer activity against A549, MCF-7, LoVo, and LoVo/Dx cell lines, compared with piroxicam and meloxicam. Moreover, our experimental study was supported by density functional theory (DFT) and molecular docking to describe the binding mode of new structures to cyclooxygenase.
Collapse
Affiliation(s)
- Piotr Świątek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Correspondence: (P.Ś.); (T.G.); Tel.: +48-717840391 (P.Ś. & T.G.)
| | - Teresa Glomb
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Correspondence: (P.Ś.); (T.G.); Tel.: +48-717840391 (P.Ś. & T.G.)
| | - Agnieszka Dobosz
- Department of Medical Science Foundation, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wroclaw, Poland;
| | - Kamil Wojtkowiak
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland; (K.W.); (A.J.); (J.J.P.)
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland; (K.W.); (A.J.); (J.J.P.)
| | - Jarosław J. Panek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland; (K.W.); (A.J.); (J.J.P.)
| | - Małgorzata Świątek
- Hospital Pharmacy, University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland;
| | - Małgorzata Strzelecka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|