1
|
Fang H, Yu E, Liu C, Eapen C, Cheng C, Hu T. Metabolic landscape and rewiring in normal hematopoiesis, leukemia and aging. Semin Cancer Biol 2025; 111:1-15. [PMID: 39933639 DOI: 10.1016/j.semcancer.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/06/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
Recent advancements in metabolism research have demonstrated its critical roles in a lot of critical biological processes, including stemness maintenance, cell differentiation, proliferation, and function. Hematopoiesis is the fundamental cell differentiation process with the production of millions of red blood cells per second in carrying oxygen and white blood cells in fighting infection and cancers. The differentiation processes of hematopoietic stem and progenitor cells (HSPCs) are accompanied by significant metabolic reprogramming. In hematological malignancy, metabolic reprogramming is also essential to the malignant hematopoiesis processes. The metabolic rewiring is driven by distinct molecular mechanisms that meet the specific demands of different target cells. Leukemic cells, for instance, adopt unique metabolic profiles to support their heightened energy needs for survival and proliferation. Moreover, aging HSPCs exhibit altered energy consumption compared to their younger counterparts, often triggering protective mechanisms at the cellular level. In this review, we provide a comprehensive analysis of the metabolic processes involved in hematopoiesis and the metabolic rewiring that occurs under adverse conditions. In addition, we highlight current research directions and discuss the potential of targeting metabolic pathways for the management of hematological malignancies and aging.
Collapse
Affiliation(s)
- Hui Fang
- Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA 30912, United States; Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Enze Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa 999078, Macao
| | - Chang Liu
- Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA 30912, United States; Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Christy Eapen
- Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA 30912, United States
| | - Chunming Cheng
- Stephenson Cancer Center at Oklahoma University, Oklahoma City, OK 73104, United States.
| | - Tianxiang Hu
- Georgia Cancer Center, 1410 Laney Walker Blvd, Augusta, GA 30912, United States.
| |
Collapse
|
2
|
Xue T, Tao Y, Wu Z, Yuan C, Wang Y, Xu H, Cai S, Wang Z, Lu J. Realgar induces apoptosis by inhibiting glycolysis via regulating STAT3 in myelodysplastic syndrome. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119339. [PMID: 39788167 DOI: 10.1016/j.jep.2025.119339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myelodysplastic syndrome (MDS) is a hematologic malignancy that presents a unique opportunity for traditional Chinese medicine (TCM) to demonstrate its distinctive value in treatment. Realgar, a component of TCM, has shown notable potential in alleviating clinical symptoms and improving the prognosis of MDS patients. However, the precise mechanisms underlying the treatment of MDS with realgar, particularly its effects on apoptosis-related pathways, remain poorly understood. AIM OF THE STUDY This study aimed to investigate the pro-apoptotic effects of realgar on MDS cells and to elucidate the underlying molecular mechanisms. MATERIALS AND METHODS We explored the targets and pathways of realgar's action on MDS using public databases, network pharmacology, and RNA sequencing. Various techniques were employed, including cell transfection, Cell Counting Kit-8 (CCK8) assay, Cellular Thermal Shift Assay (CETSA), Western blot (WB), quantitative real-time polymerase chain reaction (qRT-PCR), apoptosis and glycolysis assays, extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) measurements, dual-luciferase reporter assays, and immunofluorescence, to investigate the regulatory mechanisms involving STAT3, glycolysis, and apoptosis. Hematoxylin and eosin (HE) staining was utilized to assess realgar's toxicity. Apoptosis and hemogram changes were analyzed to evaluate the therapeutic effect of realgar on MDS transgenic mice. RESULTS Analysis of public data indicated that apoptosis-related genes are downregulated in MDS patients. Through network pharmacology, CETSA, qRT-PCR, WB, apoptosis assays, and STAT3 overexpression cell transfection, we discovered that realgar inhibits STAT3 expression. Further investigation using RNA sequencing suggested that glycolysis may be involved in this regulatory process. ECAR, OCR, glycolysis assays, WB, apoptosis assays, and glycolysis inhibitor experiments demonstrated that glycolytic function was inhibited. Additionally, GLUT1 expression was significantly decreased, and GLUT1 was found to directly bind to STAT3. In MDS mice, realgar treatment enhanced levels of white blood cells, red blood cells, hemoglobin, and platelets, and increased apoptosis levels. CONCLUSION Our findings reveal that realgar exerts a significant pro-apoptotic effect on MDS cells in both in vivo and in vitro models. Further analysis demonstrated that realgar regulates the STAT3 pathway, leading to GLUT1-mediated glycolysis alterations that ultimately induce apoptotic pathways, as represented by BCL2. These discoveries hold significant implications for the basic research and clinical diagnosis and treatment of MDS.
Collapse
Affiliation(s)
- Tingting Xue
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuchen Tao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zong Wu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenyue Yuan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanlu Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuyang Cai
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ziliang Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Jiahui Lu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
3
|
Joly A, Schott A, Phadke I, Gonzalez-Menendez P, Kinet S, Taylor N. Beyond ATP: Metabolite Networks as Regulators of Physiological and Pathological Erythroid Differentiation. Physiology (Bethesda) 2025; 40:0. [PMID: 39226028 DOI: 10.1152/physiol.00035.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Hematopoietic stem cells (HSCs) possess the capacity for self-renewal and the sustained production of all mature blood cell lineages. It has been well established that a metabolic rewiring controls the switch of HSCs from a self-renewal state to a more differentiated state, but it is only recently that we have appreciated the importance of metabolic pathways in regulating the commitment of progenitors to distinct hematopoietic lineages. In the context of erythroid differentiation, an extensive network of metabolites, including amino acids, sugars, nucleotides, fatty acids, vitamins, and iron, is required for red blood cell (RBC) maturation. In this review, we highlight the multifaceted roles via which metabolites regulate physiological erythropoiesis as well as the effects of metabolic perturbations on erythroid lineage commitment and differentiation. Of note, the erythroid differentiation process is associated with an exceptional breadth of solute carrier (SLC) metabolite transporter upregulation. Finally, we discuss how recent research, revealing the critical impact of metabolic reprogramming in diseases of disordered and ineffective erythropoiesis, has created opportunities for the development of novel metabolic-centered therapeutic strategies.
Collapse
Affiliation(s)
- Axel Joly
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Arthur Schott
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Ira Phadke
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Pediatric Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, Maryland, United States
| | - Pedro Gonzalez-Menendez
- Departamento de Morfologia y Biologia Celular, Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Sandrina Kinet
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Naomi Taylor
- Université de Montpellier, CNRS, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Pediatric Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
4
|
McGraw KL, Larson DR. Implications for metabolic disturbances in myelodysplastic syndromes. Semin Hematol 2024; 61:470-478. [PMID: 39603905 PMCID: PMC11646176 DOI: 10.1053/j.seminhematol.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The Myelodysplastic Syndromes (MDS) are heterogeneous stem cell malignancies clinically characterized by bone marrow dysplasia, peripheral blood cytopenias, and a high risk for transformation to acute myeloid leukemia. In early stages of disease, differentiation defects and maturation blocks result in deficient hematopoiesis. In higher risk disease, unrestricted proliferation of immature blast cells leads to leukemogenesis. Disease pathogenesis can be attributed to many factors including chronic inflammation that is driven in part by commonly found somatic gene mutations (SGM) fostering expansion of malignant clones while suppressing normal hematopoiesis. Cellular metabolism that both directly and indirectly regulates hematopoietic stem cell (HSC) fate, is intimately connected to the immune system, is altered by MDS somatic gene mutations and is likely is a major contributor to disease pathophysiology. Despite this likely role in pathobiology, there is an underwhelming depth of literature on the subject and the precise metabolic dysregulations in these myeloid malignancies have yet to be fully delineated. In this review, we will provide a general overview of several major metabolic processes and how each directs HSC fate, provide a summary of metabolic studies in MDS, discuss how common SGM and inflammation influence metabolic pathways to drive bone marrow failure, and end with a discussion of standards of care and how these should be carefully considered in the context of metabolic dysregulation.
Collapse
Affiliation(s)
- Kathy L McGraw
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Immune Deficiencies-Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, 20872.
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Immune Deficiencies-Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20872; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, 20872
| |
Collapse
|
5
|
Rodriguez-Sevilla JJ, Colla S. Inflammation in myelodysplastic syndrome pathogenesis. Semin Hematol 2024; 61:385-396. [PMID: 39424469 DOI: 10.1053/j.seminhematol.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/21/2024]
Abstract
Inflammation is a key driver of the progression of preleukemic myeloid conditions, such as clonal hematopoiesis of indeterminate potential (CHIP) and clonal cytopenia of undetermined significance (CCUS), to myelodysplastic syndromes (MDS). Inflammation is a critical mediator in the complex interplay of the genetic, epigenetic, and microenvironmental factors contributing to clonal evolution. Under inflammatory conditions, somatic mutations in TET2, DNMT3A, and ASXL1, the most frequently mutated genes in CHIP and CCUS, induce a competitive advantage to hematopoietic stem and progenitor cells, which leads to their clonal expansion in the bone marrow. Chronic inflammation also drives metabolic reprogramming and immune system deregulation, further promoting the expansion of malignant clones. This review underscores the urgent need to fully elucidate the role of inflammation in MDS initiation and highlights the potential of the therapeutical targeting of inflammatory pathways as an early intervention in MDS.
Collapse
Affiliation(s)
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
6
|
Spinello I, Labbaye C, Saulle E. Metabolic Function and Therapeutic Potential of CD147 for Hematological Malignancies: An Overview. Int J Mol Sci 2024; 25:9178. [PMID: 39273126 PMCID: PMC11395103 DOI: 10.3390/ijms25179178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Hematological malignancies refer to a heterogeneous group of neoplastic conditions of lymphoid and hematopoietic tissues classified in leukemias, Hodgkin and non-Hodgkin lymphomas and multiple myeloma, according to their presumed cell of origin, genetic abnormalities, and clinical features. Metabolic adaptation and immune escape, which influence various cellular functions, including the proliferation and survival of hematological malignant tumor cells, are major aspects of these malignancies that lead to therapeutic drug resistance. Targeting specific metabolic pathways is emerging as a novel therapeutic strategy in hematopoietic neoplasms, particularly in acute myeloid leukemia and multiple myeloma. In this context, CD147, also known as extracellular matrix metalloproteinase inducer (EMMPRIN) or Basigin, is one target candidate involved in reprograming metabolism in different cancer cells, including hematological malignant tumor cells. CD147 overexpression significantly contributes to the metabolic transformation of these cancer cells, by mediating signaling pathway, growth, metastasis and metabolic reprogramming, through its interaction, direct or not, with various membrane proteins related to metabolic regulation, including monocarboxylate transporters, integrins, P-glycoprotein, and glucose transporter 1. This review explores the metabolic functions of CD147 and its impact on the tumor microenvironment, influencing the progression and neoplastic transformation of leukemias, myeloma, and lymphomas. Furthermore, we highlight new opportunities for the development of targeted therapies against CD147, potentially improving the treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Isabella Spinello
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| | - Catherine Labbaye
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| | - Ernestina Saulle
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| |
Collapse
|
7
|
Fattizzo B, Vercellati C, Marcello A, Patel P, Wind-Rotolo M, Pettine L, Bonanomi M, Gaglio D, Bortolotti M, Leoni C, Fermo E, Bianchi P, Zaninoni A, Passamonti F, Barcellini W. Glycolytic activity and in vitro effect of the pyruvate kinase activator AG-946 in red blood cells from low-risk myelodysplastic syndromes patients: A proof-of-concept study. Am J Hematol 2024; 99:1201-1204. [PMID: 38563490 DOI: 10.1002/ajh.27300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Glycolytic activity and in vitro effect of the pyruvate kinase activator AG-946 in red blood cells from low-risk myelodysplastic syndromes patients. Data showed decreased glycolytic activity in red blood cells of 2/3 of patients with lower-risk MDS. These results highlight a potential effect of the PK activator in this setting.
Collapse
Affiliation(s)
- Bruno Fattizzo
- SC Ematologia, SS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Cristina Vercellati
- SC Ematologia, SS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Marcello
- SC Ematologia, SS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Parija Patel
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | | | - Loredana Pettine
- SC Ematologia, SS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marcella Bonanomi
- Institute of Molecular Bioimaging and Physiology of the Italian National Research Council (IBFM-CNR), Segrate (MI), Italy
- ISBE Elixir European Infrastructure for Systems Biology, Milan, Italy
| | - Daniela Gaglio
- Institute of Molecular Bioimaging and Physiology of the Italian National Research Council (IBFM-CNR), Segrate (MI), Italy
- ISBE Elixir European Infrastructure for Systems Biology, Milan, Italy
| | - Marta Bortolotti
- SC Ematologia, SS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Claudia Leoni
- SC Ematologia, SS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Elisa Fermo
- SC Ematologia, SS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Bianchi
- SC Ematologia, SS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Zaninoni
- SC Ematologia, SS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Passamonti
- SC Ematologia, SS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Wilma Barcellini
- SC Ematologia, SS Fisiopatologia delle Anemie, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
8
|
Deepening Our Understanding of the Factors Affecting Landscape of Myeloproliferative Neoplasms: What Do We Know about Them? Cancers (Basel) 2023; 15:cancers15041348. [PMID: 36831689 PMCID: PMC9954305 DOI: 10.3390/cancers15041348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) arise from the uncontrolled proliferation of hematopoietic stem and progenitor cells in bone marrow. As with all tumors, the development of MPNs is a consequence of alterations in malignant cells and their interaction with other extrinsic factors that support and promote tumor progression. Since the discovery of driver mutations, much work has focused on studying and reviewing the genomic features of the disease but has neglected to delve into the important role that many other mechanisms may play. This review discusses the genetic component of MPNs but focuses mainly on some of the most relevant work investigating other non-genetic factors that may be crucial for the disease. The studies summarized here address MPN cell-intrinsic or -extrinsic factors and the interaction between them through transcriptomic, proteomic and microbiota studies, among others.
Collapse
|
9
|
Abstract
Myelodysplastic syndromes (MDS) are a family of myeloid cancers with diverse genotypes and phenotypes characterized by ineffective haematopoiesis and risk of transformation to acute myeloid leukaemia (AML). Some epidemiological data indicate that MDS incidence is increasing in resource-rich regions but this is controversial. Most MDS cases are caused by randomly acquired somatic mutations. In some patients, the phenotype and/or genotype of MDS overlaps with that of bone marrow failure disorders such as aplastic anaemia, paroxysmal nocturnal haemoglobinuria (PNH) and AML. Prognostic systems, such as the revised International Prognostic Scoring System (IPSS-R), provide reasonably accurate predictions of survival at the population level. Therapeutic goals in individuals with lower-risk MDS include improving quality of life and minimizing erythrocyte and platelet transfusions. Therapeutic goals in people with higher-risk MDS include decreasing the risk of AML transformation and prolonging survival. Haematopoietic cell transplantation (HCT) can cure MDS, yet fewer than 10% of affected individuals receive this treatment. However, how, when and in which patients with HCT for MDS should be performed remains controversial, with some studies suggesting HCT is preferred in some individuals with higher-risk MDS. Advances in the understanding of MDS biology offer the prospect of new therapeutic approaches.
Collapse
|
10
|
Giai V, Bensi T, Bertassello C, Savio M, Ferrero D, Ciriello MM, Ladetto M. Hematopoietic Stem Cells (HSC) and Granulocyte Macrophage Progenitors (GMP) are the Oxidative Stress Targets in Low/Intermediate-1 Risk Myelodysplastic Syndromes. JOURNAL OF BIOTECHNOLOGY AND BIOMEDICINE 2022; 5:226-235. [PMID: 36644527 PMCID: PMC9836226 DOI: 10.26502/jbb.2642-91280063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Introduction Myelodysplastic Syndromes (MDS) are a heterogenous group of clonal hematopoietic stem cell malignancies. Previous studies showed that Reactive Oxygen Species (ROS) play a role in the pathogenesis and clinical evolution of MDS, contributing to Hematopoietic Stem and Progenitor Cells (HSPC) genetic instability. Less is known about ROS levels in the various sub-populations of MDS HSPC and how they correlate with clinical data in MDS patients. Our study aims to analyze ROS levels in MDS Hematopoietic Stem Cells (HSC), common myeloid progenitors (CMP), Granulocyte Macrophages Progenitors (GMP) and megakaryocyte-erythrocyte progenitors (MEP); afterwards, we looked at the relationship between ROS levels and clinical data. Methods thirty-eight MDS and 27 Normal Bone Marrow (NBM) samples were collected; ROS levels were analyzed via multicolor flow cytometry. Results In both NBM and MDS, HSC showed much higher ROS levels than progenitors (3 to 4 folds, p < 0.0001); HSC ROS were significantly more elevated in MDS-no excess blasts versus MDS with excess blasts and versus NBM. GMP from MDS-no excess blasts showed higher ROS compared to NBM GMP. The 3 MDS with Ringed Sideroblasts (RS) showed more elevated ROS in HSC and GMP compared to the not RS low/intermediate-1 MDS; the 2 monosomy 7 patients displayed higher ROS levels in each subpopulation compared to the normal karyotype MDS; the only del(5q) patient did not show relevant differences in ROS levels compared to the median of the normal karyotype MDS ROS. The 9 high transfusion burden patients exhibited higher ROS in HSC and GMP compared to NBM HSC and GMP. These data were not confirmed in low transfusion burden (n:2) and non-transfused patients (n:26). In low/intermediate-1 MDS, a direct correlation between ferritin values and ROS levels in progenitors, but not in HSC, was detected. Interestingly, low/intermediate-1 risk patients that are no longer responding to recombinant human erythropoietin (rh-EPO) showed higher ROS levels in GMP and HSC. Conclusions Our data showed that ROS can play a role in the pathogenesis and maintenance of low and intermediate-1 risk MDS clone; ROS status can be influenced by several clinical factors as ferritin levels and rh-EPO treatment. In this scenario, high ROS levels can contribute to genetic instability and influence progression to AML. Further biological studies are needed to elucidate ROS role in MDS pathogenesis and analyze the possible benefit of antioxidant drugs added to the standard MDS treatments.
Collapse
Affiliation(s)
- Valentina Giai
- Division of Hematology, SS Antonio e Biagio and Cesare Arrigo Hospital, Alessandria, Italy
- Division of Hematology, AUO Città della Salute e della Scienza, Torino, Italy
| | - Thea Bensi
- Flow-cytometry worked, SS Antonio e Biagio and Cesare Arrigo Hospital, Alessandria, Italy
| | - Claudia Bertassello
- Division of Hematology, SS Antonio e Biagio and Cesare Arrigo Hospital, Alessandria, Italy
| | - Michela Savio
- Pathology, SS Antonio e Biagio and Cesare Arrigo Hospital, Alessandria, Italy
| | - Dario Ferrero
- Division of Hematology, University of Turin, Torino, Italy
| | - Maria Matilde Ciriello
- Flow-cytometry worked, SS Antonio e Biagio and Cesare Arrigo Hospital, Alessandria, Italy
| | - Marco Ladetto
- Division of Hematology, SS Antonio e Biagio and Cesare Arrigo Hospital, Alessandria, Italy
| |
Collapse
|