1
|
Yao X, Yang S, Chen L, Lin F, Ruan Y, Rao T, Cheng F. The bach1/G9a/Slc7a11 axis epigenetically promotes renal fibrosis by mediated ferroptosis. Int Immunopharmacol 2024; 143:113363. [PMID: 39393269 DOI: 10.1016/j.intimp.2024.113363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
A high percentage of individuals with renal fibrosis are susceptible to developing chronic kidney disease (CKD), and conventional therapy fails to halt the progression of renal fibrosis and CKD. Here, we assessed the potential functions of G9a in a unilateral ureteral obstruction (UUO)-induced renal fibrosis mouse model. The expression of G9a was significantly increased in the fibrotic kidneys of patients and mice. G9a knockout inhibited inflammatory cytokine production and collagen deposition in mice, whereas its overexpression aggravated renal fibrosis in mice. In vitro, the knockdown of G9a alleviated the production of inflammatory cytokines and renal fibrosis. G9a, a histone methyltransferase, interacts with transcription factor Bach1 and activates ferroptosis by suppressing the transcription of Slc7a11 via dimethylation of histone 3 lysine 9 (H3K9me2) both in vivo and in vitro. Collectively, our findings indicate that G9a could be an attractive therapeutic target for renal fibrosis.
Collapse
Affiliation(s)
- Xiaobing Yao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Songyuan Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lijia Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
2
|
Pollock TA, Margetts AV, Vilca SJ, Tuesta LM. Cocaine taking and craving produce distinct transcriptional profiles in dopamine neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617923. [PMID: 39416214 PMCID: PMC11482921 DOI: 10.1101/2024.10.11.617923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Dopamine (DA) signaling plays an essential role in reward valence attribution and in encoding the reinforcing properties of natural and artificial rewards. The adaptive responses from midbrain dopamine neurons to artificial rewards such as drugs of abuse are therefore important for understanding the development of substance use disorders. Drug-induced changes in gene expression are one such adaptation that can determine the activity of dopamine signaling in projection regions of the brain reward system. One of the major challenges to obtaining this understanding involves the complex cellular makeup of the brain, where each neuron population can be defined by a distinct transcriptional profile. To bridge this gap, we have adapted a virus-based method for labeling and capture of dopamine nuclei, coupled with nuclear RNA-sequencing, to study the transcriptional adaptations, specifically, of dopamine neurons in the ventral tegmental area (VTA) during cocaine taking and cocaine craving, using a mouse model of cocaine intravenous self-administration (IVSA). Our results show significant changes in gene expression across non-drug operant training, cocaine taking, and cocaine craving, highlighted by an enrichment of repressive epigenetic modifying enzyme gene expression during cocaine craving. Immunohistochemical validation further revealed an increase of H3K9me3 deposition in DA neurons during cocaine craving. These results demonstrate that cocaine-induced transcriptional adaptations in dopamine neurons vary by phase of self-administration and underscore the utility of this approach for identifying relevant phase-specific molecular targets to study the behavioral course of substance use disorders.
Collapse
Affiliation(s)
- Tate A. Pollock
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Alexander V. Margetts
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Samara J. Vilca
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Luis M. Tuesta
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136
- Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
3
|
Jiang J, Han D, Wang J, Wen W, Zhang R, Qin W. Neuroendocrine transdifferentiation in human cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e761. [PMID: 39372390 PMCID: PMC11450264 DOI: 10.1002/mco2.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024] Open
Abstract
Neuroendocrine transdifferentiation (NEtD), also commonly referred to as lineage plasticity, emerges as an acquired resistance mechanism to molecular targeted therapies in multiple cancer types, predominately occurs in metastatic epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors and metastatic castration-resistant prostate cancer treated with androgen receptor targeting therapies. NEtD tumors are the lethal cancer histologic subtype with unfavorable prognosis and limited treatment. A comprehensive understanding of molecular mechanism underlying targeted-induced plasticity could greatly facilitate the development of novel therapies. In the past few years, increasingly elegant studies indicated that NEtD tumors share key the convergent genomic and phenotypic characteristics irrespective of their site of origin, but also embrace distinct change and function of molecular mechanisms. In this review, we provide a comprehensive overview of the current understanding of molecular mechanism in regulating the NEtD, including genetic alterations, DNA methylation, histone modifications, dysregulated noncoding RNA, lineage-specific transcription factors regulation, and other proteomic alterations. We also provide the current management of targeted therapies in clinical and preclinical practice.
Collapse
Affiliation(s)
- Jun Jiang
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
- Department of Health Service, Base of Health ServiceAir Force Medical UniversityXi'anChina
| | - Donghui Han
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| | - Jiawei Wang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, and National Translational Science Center for Molecular MedicineAir Force Medical UniversityXi'anChina
| | - Weihong Wen
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Rui Zhang
- State Key Laboratory of Cancer BiologyDepartment of ImmunologyAir Force Medical UniversityXi'anChina
| | - Weijun Qin
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
4
|
Jana A, Naga R, Saha S, Banerjee DR. 3D QSAR pharmacophore based lead identification of G9a lysine methyltransferase towards epigenetic therapeutics. J Biomol Struct Dyn 2023; 41:8635-8653. [PMID: 36264111 DOI: 10.1080/07391102.2022.2135600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/08/2022] [Indexed: 10/24/2022]
Abstract
The G9a, Lysine Methyltransferase that methylates the histone 3 lysine 9 (H3K9) of the nucleosome, is an excellent epigenetic target having no clinically passed inhibitor currently owing to adverse in vivo ADMET toxicities. In this work, we have carried out detailed computational investigations to find novel and safer lead against the target using advanced 3 D QSAR pharmacophore screening of databases containing more than 400000 entrees of natural compounds. The screening was conducted at different levels at increasing stringencies by employing pharmacophore mapping, druglikenesses and interaction profiles of the selected to identify potential hit compounds. The potential hits were further screened by advanced flexible docking, ADME and toxicity analysis to eight hit compounds. Based on the comparative analysis of the hits with the reference inhibitor, we identified one lead inhibitor against the G9a, having better binding efficacy and a safer ADMET profile than the reference inhibitor. Finally, the results were further verified using robust molecular dynamics simulation and MM-GBSA binding energy calculation. The natural compounds are generally considered benign due to their long human uses and this is the first attempt of in silico screening of a large natural compound library against G9a to our best knowledge. Therefore, the finding of this study may add value towards the development of epigenetic therapeutics against the G9a.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhisek Jana
- Department of Chemistry, National Institute of technology Durgapur, Durgapur, India
| | - Rahul Naga
- Department of Biotechnology, National Institute of technology Durgapur, Durgapur, India
| | - Sougata Saha
- Department of Biotechnology, National Institute of technology Durgapur, Durgapur, India
| | - Deb Ranjan Banerjee
- Department of Chemistry, National Institute of technology Durgapur, Durgapur, India
| |
Collapse
|
5
|
Mohanraj L, Wolf H, Silvey S, Liu J, Toor A, Swift-Scanlan T. DNA Methylation Changes in Autologous Hematopoietic Stem Cell Transplant Patients. Biol Res Nurs 2023; 25:310-325. [PMID: 36321693 PMCID: PMC10236442 DOI: 10.1177/10998004221135628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Blood cancers may be potentially cured with hematopoietic stem cell transplantation (HCT); however, standard pre-assessments for transplant eligibility do not capture all contributing factors for transplant outcomes. Epigenetic biomarkers predict outcomes in various diseases. This pilot study aims to explore epigenetic changes (epigenetic age and differentially methylated genes) in patients before and after autologous HCT, that can serve as potential biomarkers to better predict HCT outcomes. METHODS This study used a prospective longitudinal study design to compare genome wide DNA methylation changes in 36 autologous HCT eligible patients recruited from the Cellular Immunotherapies and Transplant clinic at a designated National Cancer Center. RESULTS Genome-wide DNA methylation, measured by the Illumina Infinium Human Methylation 850K BeadChip, showed a significant difference in DNA methylation patterns post-HCT compared to pre-HCT. Compared to baseline levels of DNA methylation pre-HCT, 3358 CpG sites were hypo-methylated and 3687 were hyper-methylated. Identified differentially methylated positions overlapped with genes involved in hematopoiesis, blood cancers, inflammation and immune responses. Enrichment analyses showed significant alterations in biological processes such as immune response and cell structure organization, however no significant pathways were noted. Though participants had an advanced epigenetic age compared to chronologic age before and after HCT, both epigenetic age and accelerated age decreased post-HCT. CONCLUSION Epigenetic changes, both in epigenetic age and differentially methylated genes were observed in autologous HCT recipients, and should be explored as biomarkers to predict transplant outcomes after autologous HCT in larger, longitudinal studies.
Collapse
Affiliation(s)
- Lathika Mohanraj
- Department of Adult Health and Nursing
Systems, VCU School of Nursing, Richmond, VA, USA
| | - Hope Wolf
- Department of Human and Molecular Genetics, VCU School of Medicine, Richmond, VA, USA
| | - Scott Silvey
- Department of Biostatistics, VCU School of Medicine, Richmond, VA, USA
| | - Jinze Liu
- Department of Biostatistics, VCU School of Medicine, Richmond, VA, USA
| | - Amir Toor
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA, USA
| | - Theresa Swift-Scanlan
- Endowed Professor and Director,
Biobehavioral Research Lab, VCU School of Nursing, Richmond, VA, USA
| |
Collapse
|
6
|
Vinson DA, Stephens KE, O’Meally RN, Bhat S, Dancy BCR, Cole RN, Yegnasubramanian S, Taverna SD. De novo methylation of histone H3K23 by the methyltransferases EHMT1/GLP and EHMT2/G9a. Epigenetics Chromatin 2022; 15:36. [PMID: 36411491 PMCID: PMC9677696 DOI: 10.1186/s13072-022-00468-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/15/2022] [Indexed: 11/22/2022] Open
Abstract
Epigenetic modifications to histone proteins serve an important role in regulating permissive and repressive chromatin states, but despite the identification of many histone PTMs and their perceived role, the epigenetic writers responsible for generating these chromatin signatures are not fully characterized. Here, we report that the canonical histone H3K9 methyltransferases EHMT1/GLP and EHMT2/G9a are capable of catalyzing methylation of histone H3 lysine 23 (H3K23). Our data show that while both enzymes can mono- and di-methylate H3K23, only EHMT1/GLP can tri-methylate H3K23. We also show that pharmacologic inhibition or genetic ablation of EHMT1/GLP and/or EHMT2/G9a leads to decreased H3K23 methylation in mammalian cells. Taken together, this work identifies H3K23 as a new direct methylation target of EHMT1/GLP and EHMT2/G9a, and highlights the differential activity of these enzymes on H3K23 as a substrate.
Collapse
Affiliation(s)
- David A. Vinson
- grid.21107.350000 0001 2171 9311Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ,grid.21107.350000 0001 2171 9311Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Kimberly E. Stephens
- grid.21107.350000 0001 2171 9311Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ,grid.21107.350000 0001 2171 9311Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ,grid.241054.60000 0004 4687 1637Department of Pediatrics, Division of Infectious Diseases, University of Arkansas for Medical Sciences, Arkansas Children’s Research Institute, Little Rock, AR 72202 USA
| | - Robert N. O’Meally
- grid.21107.350000 0001 2171 9311Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Shri Bhat
- grid.21107.350000 0001 2171 9311Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Blair C. R. Dancy
- grid.21107.350000 0001 2171 9311Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ,grid.21107.350000 0001 2171 9311Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ,grid.507680.c0000 0001 2230 3166Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500 USA
| | - Robert N. Cole
- grid.21107.350000 0001 2171 9311Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Sean D. Taverna
- grid.21107.350000 0001 2171 9311Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ,grid.21107.350000 0001 2171 9311Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
7
|
Yang N, Das D, Shankar SR, Goy PA, Guccione E, Taneja R. An interplay between BRD4 and G9a regulates skeletal myogenesis. Front Cell Dev Biol 2022; 10:978931. [PMID: 36158208 PMCID: PMC9489841 DOI: 10.3389/fcell.2022.978931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Histone acetylation and methylation are epigenetic modifications that are dynamically regulated by chromatin modifiers to precisely regulate gene expression. However, the interplay by which histone modifications are synchronized to coordinate cellular differentiation is not fully understood. In this study, we demonstrate a relationship between BRD4, a reader of acetylation marks, and G9a, a writer of methylation marks in the regulation of myogenic differentiation. Using loss- and gain-of-function studies, as well as a pharmacological inhibition of its activity, we examined the mechanism by which BRD4 regulates myogenesis. Transcriptomic analysis using RNA sequencing revealed that a number of myogenic differentiation genes are downregulated in Brd4-depleted cells. Interestingly, some of these genes were upregulated upon G9a knockdown, indicating that BRD4 and G9a play opposing roles in the control of myogenic gene expression. Remarkably, the differentiation defect caused by Brd4 knockdown was rescued by inhibition of G9a methyltransferase activity. These findings demonstrate that the absence of BRD4 results in the upregulation of G9a activity and consequently impaired myogenic differentiation. Collectively, our study identifies an interdependence between BRD4 and G9a for the precise control of transcriptional outputs to regulate myogenesis.
Collapse
Affiliation(s)
- Naidi Yang
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Dipanwita Das
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shilpa Rani Shankar
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Pierre-Alexis Goy
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ernesto Guccione
- Methyltransferases in Development and Disease Group, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Reshma Taneja,
| |
Collapse
|
8
|
Ang GCK, Gupta A, Surana U, Yap SXL, Taneja R. Potential Therapeutics Targeting Upstream Regulators and Interactors of EHMT1/2. Cancers (Basel) 2022; 14:2855. [PMID: 35740522 PMCID: PMC9221123 DOI: 10.3390/cancers14122855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Euchromatin histone lysine methyltransferases (EHMTs) are epigenetic regulators responsible for silencing gene transcription by catalyzing H3K9 dimethylation. Dysregulation of EHMT1/2 has been reported in multiple cancers and is associated with poor clinical outcomes. Although substantial insights have been gleaned into the downstream targets and pathways regulated by EHMT1/2, few studies have uncovered mechanisms responsible for their dysregulated expression. Moreover, EHMT1/2 interacting partners, which can influence their function and, therefore, the expression of target genes, have not been extensively explored. As none of the currently available EHMT inhibitors have made it past clinical trials, understanding upstream regulators and EHMT protein complexes may provide unique insights into novel therapeutic avenues in EHMT-overexpressing cancers. Here, we review our current understanding of the regulators and interacting partners of EHMTs. We also discuss available therapeutic drugs that target the upstream regulators and binding partners of EHMTs and could potentially modulate EHMT function in cancer progression.
Collapse
Affiliation(s)
- Gareth Chin Khye Ang
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Amogh Gupta
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
| | - Uttam Surana
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Shirlyn Xue Ling Yap
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Reshma Taneja
- Healthy Longevity Translational Research Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (G.C.K.A.); (A.G.)
| |
Collapse
|
9
|
G9a/EHMT2 is a Potential Prognostic Biomarker and Molecular Target in SHH Medulloblastoma. Neuromolecular Med 2022; 24:392-398. [PMID: 35113321 DOI: 10.1007/s12017-022-08702-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
Abstract
Changes in epigenetic programming are associated with cancer development during childhood. Components of the epigenetic machinery involved in normal embryonic development and hijacked by pediatric cancers include enzymes mediating post-translational modifications of DNA and histones that regulate chromatin structure, such as histone methyltransferases (HMTs). Overexpression of the HMT G9a (euchromatic histone lysine methyltransferase 2, EHMT2) has been described in several cancer types. Medulloblastoma (MB), the main type of malignant brain tumor afflicting children, is currently classified into four molecular subgroups. Here, we show that expression level of the G9a/Ehmt2 gene is higher in MB tumors belonging to the SHH, Group 3, and Group 4 subgroups, compared to Wnt tumors. Remarkably, high G9a expression was significantly associated with shorter overall survival in MB patients. We also present evidence that G9a inhibition dose-dependently reduces MB cell viability. Our findings suggest that higher transcription of G9a may be a predictor of poor prognosis in patients with SHH MB, and that inhibiting G9a activity can display antitumor effects in MB.
Collapse
|