1
|
Gebre SG, Scott RT, Saravia-Butler AM, Lopez DK, Sanders LM, Costes SV. NASA open science data repository: open science for life in space. Nucleic Acids Res 2024:gkae1116. [PMID: 39558178 DOI: 10.1093/nar/gkae1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
Space biology and health data are critical for the success of deep space missions and sustainable human presence off-world. At the core of effectively managing biomedical risks is the commitment to open science principles, which ensure that data are findable, accessible, interoperable, reusable, reproducible and maximally open. The 2021 integration of the Ames Life Sciences Data Archive with GeneLab to establish the NASA Open Science Data Repository significantly enhanced access to a wide range of life sciences, biomedical-clinical and mission telemetry data alongside existing 'omics data from GeneLab. This paper describes the new database, its architecture and new data streams supporting diverse data types and enhancing data submission, retrieval and analysis. Features include the biological data management environment for improved data submission, a new user interface, controlled data access, an enhanced API and comprehensive public visualization tools for environmental telemetry, radiation dosimetry data and 'omics analyses. By fostering global collaboration through its analysis working groups and training programs, the open science data repository promotes widespread engagement in space biology, ensuring transparency and inclusivity in research. It supports the global scientific community in advancing our understanding of spaceflight's impact on biological systems, ensuring humans will thrive in future deep space missions.
Collapse
Affiliation(s)
- Samrawit G Gebre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Ryan T Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | - Danielle K Lopez
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Lauren M Sanders
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| |
Collapse
|
2
|
Braun JL, Fajardo VA. Spaceflight increases sarcoplasmic reticulum Ca 2+ leak and this cannot be counteracted with BuOE treatment. NPJ Microgravity 2024; 10:78. [PMID: 39030182 PMCID: PMC11271499 DOI: 10.1038/s41526-024-00419-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Spending time in a microgravity environment is known to cause significant skeletal muscle atrophy and weakness via muscle unloading, which can be partly attributed to Ca2+ dysregulation. The sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) pump is responsible for bringing Ca2+ from the cytosol into its storage site, the sarcoplasmic reticulum (SR), at the expense of ATP. We have recently demonstrated that, in the soleus of space-flown mice, the Ca2+ uptake ability of the SERCA pump is severely impaired and this may be attributed to increases in reactive oxygen/nitrogen species (RONS), to which SERCA is highly susceptible. The purpose of this study was therefore to investigate whether treatment with the antioxidant, Manganese(III) meso-tetrakis(N-n-butoxyethylpyridinium-2-yl)porphyrin, MnTnBuOE-2-PyP5+ (BuOE), could attenuate muscle atrophy and SERCA dysfunction. We received soleus muscles from the rodent research 18 mission which had male mice housed on the international space station for 35 days and treated with either saline or BuOE. Spaceflight significantly reduced the soleus:body mass ratio and significantly increased SERCA's ionophore ratio, a measure of SR Ca2+ leak, and 4-HNE content (marker of RONS), none of which could be rescued by BuOE treatment. In conclusion, we find that spaceflight induces significant soleus muscle atrophy and SR Ca2+ leak that cannot be counteracted with BuOE treatment. Future work should investigate alternative therapeutics that are specifically aimed at increasing SERCA activation or reducing Ca2+ leak.
Collapse
Affiliation(s)
- Jessica L Braun
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada.
| |
Collapse
|
3
|
Han X, Qu L, Yu M, Ye L, Shi L, Ye G, Yang J, Wang Y, Fan H, Wang Y, Tan Y, Wang C, Li Q, Lei W, Chen J, Liu Z, Shen Z, Li Y, Hu S. Thiamine-modified metabolic reprogramming of human pluripotent stem cell-derived cardiomyocyte under space microgravity. Signal Transduct Target Ther 2024; 9:86. [PMID: 38584163 PMCID: PMC10999445 DOI: 10.1038/s41392-024-01791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/08/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
During spaceflight, the cardiovascular system undergoes remarkable adaptation to microgravity and faces the risk of cardiac remodeling. Therefore, the effects and mechanisms of microgravity on cardiac morphology, physiology, metabolism, and cellular biology need to be further investigated. Since China started constructing the China Space Station (CSS) in 2021, we have taken advantage of the Shenzhou-13 capsule to send human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) to the Tianhe core module of the CSS. In this study, hPSC-CMs subjected to space microgravity showed decreased beating rate and abnormal intracellular calcium cycling. Metabolomic and transcriptomic analyses revealed a battery of metabolic remodeling of hPSC-CMs in spaceflight, especially thiamine metabolism. The microgravity condition blocked the thiamine intake in hPSC-CMs. The decline of thiamine utilization under microgravity or by its antagonistic analog amprolium affected the process of the tricarboxylic acid cycle. It decreased ATP production, which led to cytoskeletal remodeling and calcium homeostasis imbalance in hPSC-CMs. More importantly, in vitro and in vivo studies suggest that thiamine supplementation could reverse the adaptive changes induced by simulated microgravity. This study represents the first astrobiological study on the China Space Station and lays a solid foundation for further aerospace biomedical research. These data indicate that intervention of thiamine-modified metabolic reprogramming in human cardiomyocytes during spaceflight might be a feasible countermeasure against microgravity.
Collapse
Affiliation(s)
- Xinglong Han
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Lina Qu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Miao Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Lingqun Ye
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Liujia Shi
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Guangfu Ye
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Jingsi Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yaning Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Hao Fan
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yong Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Chunyan Wang
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Qi Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Jianghai Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoxia Liu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China.
| | - Yinghui Li
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China.
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Li K, Desai R, Scott RT, Steele JR, Machado M, Demharter S, Hoarfrost A, Braun JL, Fajardo VA, Sanders LM, Costes SV. Explainable machine learning identifies multi-omics signatures of muscle response to spaceflight in mice. NPJ Microgravity 2023; 9:90. [PMID: 38092777 PMCID: PMC10719374 DOI: 10.1038/s41526-023-00337-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
The adverse effects of microgravity exposure on mammalian physiology during spaceflight necessitate a deep understanding of the underlying mechanisms to develop effective countermeasures. One such concern is muscle atrophy, which is partly attributed to the dysregulation of calcium levels due to abnormalities in SERCA pump functioning. To identify potential biomarkers for this condition, multi-omics data and physiological data available on the NASA Open Science Data Repository (osdr.nasa.gov) were used, and machine learning methods were employed. Specifically, we used multi-omics (transcriptomic, proteomic, and DNA methylation) data and calcium reuptake data collected from C57BL/6 J mouse soleus and tibialis anterior tissues during several 30+ day-long missions on the international space station. The QLattice symbolic regression algorithm was introduced to generate highly explainable models that predict either experimental conditions or calcium reuptake levels based on multi-omics features. The list of candidate models established by QLattice was used to identify key features contributing to the predictive capability of these models, with Acyp1 and Rps7 proteins found to be the most predictive biomarkers related to the resilience of the tibialis anterior muscle in space. These findings could serve as targets for future interventions aiming to reduce the extent of muscle atrophy during space travel.
Collapse
Affiliation(s)
- Kevin Li
- KBR, Moffett Field, CA, USA
- NASA Space Life Sciences Training Program, Moffett Field, CA, USA
| | - Riya Desai
- College of Letters and Science, University of California at Davis, Davis, CA, USA
| | - Ryan T Scott
- KBR, Moffett Field, CA, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Joel Ricky Steele
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Monash Proteomics and Metabolomics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Blue Marble Space, Seattle, WA, USA
| | | | | | | | - Jessica L Braun
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, St. Catharines, Canada
| | - Val A Fajardo
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, St. Catharines, Canada
| | - Lauren M Sanders
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
- Blue Marble Space, Seattle, WA, USA.
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
| |
Collapse
|
5
|
Zeineddine Y, Friedman MA, Buettmann EG, Abraham LB, Hoppock GA, Donahue HJ. Genetic diversity modulates the physical and transcriptomic response of skeletal muscle to simulated microgravity in male mice. NPJ Microgravity 2023; 9:86. [PMID: 38040743 PMCID: PMC10692100 DOI: 10.1038/s41526-023-00334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
Developments in long-term space exploration necessitate advancements in countermeasures against microgravity-induced skeletal muscle loss. Astronaut data shows considerable variation in muscle loss in response to microgravity. Previous experiments suggest that genetic background influences the skeletal muscle response to unloading, but no in-depth analysis of genetic expression has been performed. Here, we placed eight, male, inbred founder strains of the diversity outbred mice (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/ShiLtJ, NZO/HILtJ, PWK/PhJ, and WSB/EiJ) in simulated microgravity (SM) via hindlimb unloading for three weeks. Body weight, muscle morphology, muscle strength, protein synthesis marker expression, and RNA expression were collected. A/J and CAST/EiJ mice were most susceptible to SM-induced muscle loss, whereas NOD/ShiLtJ mice were the most protected. In response to SM, A/J and CAST/EiJ mice experienced reductions in body weight, muscle mass, muscle volume, and muscle cross-sectional area. A/J mice had the highest number of differentially expressed genes (68) and associated gene ontologies (328). Downregulation of immunological gene ontologies and genes encoding anabolic immune factors suggest that immune dysregulation contributes to the response of A/J mice to SM. Several muscle properties showed significant interactions between SM and mouse strain and a high degree of heritability. These data imply that genetic background plays a role in the degree of muscle loss in SM and that more individualized programs should be developed for astronauts to protect their skeletal muscles against microgravity on long-term missions.
Collapse
Affiliation(s)
- Yasmina Zeineddine
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Lovell B Abraham
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
6
|
Baranowski RW, Braun JL, Hockey BL, Yumol JL, Geromella MS, Watson CJ, Kurgan N, Messner HN, Whitley KC, MacNeil AJ, Gauquelin-Koch G, Bertile F, Gittings W, Vandenboom R, Ward WE, Fajardo VA. Toward countering muscle and bone loss with spaceflight: GSK3 as a potential target. iScience 2023; 26:107047. [PMID: 37360691 PMCID: PMC10285634 DOI: 10.1016/j.isci.2023.107047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/15/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
We examined the effects of ∼30 days of spaceflight on glycogen synthase kinase 3 (GSK3) content and inhibitory serine phosphorylation in murine muscle and bone samples from four separate missions (BION-M1, rodent research [RR]1, RR9, and RR18). Spaceflight reduced GSK3β content across all missions, whereas its serine phosphorylation was elevated with RR18 and BION-M1. The reduction in GSK3β was linked to the reduction in type IIA fibers commonly observed with spaceflight as these fibers are particularly enriched with GSK3. We then tested the effects of inhibiting GSK3 before this fiber type shift, and we demonstrate that muscle-specific Gsk3 knockdown increased muscle mass, preserved muscle strength, and promoted the oxidative fiber type with Earth-based hindlimb unloading. In bone, GSK3 activation was enhanced after spaceflight; and strikingly, muscle-specific Gsk3 deletion increased bone mineral density in response to hindlimb unloading. Thus, future studies should test the effects of GSK3 inhibition during spaceflight.
Collapse
Affiliation(s)
- Ryan W. Baranowski
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Jessica L. Braun
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Briana L. Hockey
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Jenalyn L. Yumol
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Mia S. Geromella
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Colton J.F. Watson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Nigel Kurgan
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Holt N. Messner
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Kennedy C. Whitley
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Adam J. MacNeil
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | | | - Fabrice Bertile
- Hubert Curien Pluridisciplinary Institute (IPHC), CNRS, Strasbourg University, Strasbourg, France
| | - William Gittings
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Rene Vandenboom
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Wendy E. Ward
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Val A. Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
7
|
Geromella MS, Braun JL, Fajardo VA. Measuring SERCA-mediated calcium uptake in mouse muscle homogenates. STAR Protoc 2023; 4:101987. [PMID: 36602905 PMCID: PMC9826970 DOI: 10.1016/j.xpro.2022.101987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
This protocol employs the indo-1 Ca2+ fluorophore to quantify Ca2+ uptake by the sarco(endo)plasmic reticulum Ca2+ ATPase pump in murine muscle homogenates and allows for real-time kinetic measurement of Ca2+ mobilization within the muscle homogenate. This protocol can be easily adapted for other tissue types and can be modified to single-emission/single-excitation Ca2+ dyes. Fitted to a 96-well plate, this assay can be readily performed in most laboratories with minimal sample requirement and the option of multiple replicates. For complete details on the use and execution of this protocol, please refer to Braun et al. (2022),1 Braun et al. (2021a),2 Braun et al. (2021b),3 Cleverdon et al. (2022),4 and Geromella et al. (2022).5.
Collapse
Affiliation(s)
- Mia S Geromella
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Jessica L Braun
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
8
|
Hafen PS, Law AS, Matias C, Miller SG, Brault JJ. Skeletal muscle contraction kinetics and AMPK responses are modulated by the adenine nucleotide degrading enzyme AMPD1. J Appl Physiol (1985) 2022; 133:1055-1066. [PMID: 36107988 PMCID: PMC9602816 DOI: 10.1152/japplphysiol.00035.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/15/2022] [Accepted: 09/09/2022] [Indexed: 12/31/2022] Open
Abstract
AMP deaminase 1 (AMPD1; AMP → IMP + NH3) deficiency in skeletal muscle results in an inordinate accumulation of AMP during strenuous exercise, with some but not all studies reporting premature fatigue and reduced work capacity. To further explore these inconsistencies, we investigated the extent to which AMPD1 deficiency impacts skeletal muscle contractile function of different muscles and the [AMP]/AMPK responses to different intensities of fatiguing contractions. To reduce AMPD1 protein, we electroporated either an inhibitory AMPD1-specific miRNA encoding plasmid or a control plasmid, into contralateral EDL and SOL muscles of C57BL/6J mice (n = 48 males, 24 females). After 10 days, isolated muscles were assessed for isometric twitch, tetanic, and repeated fatiguing contraction characteristics using one of four (None, LOW, MOD, and HIGH) duty cycles. AMPD1 knockdown (∼35%) had no effect on twitch force or twitch contraction/relaxation kinetics. However, during maximal tetanic contractions, AMPD1 knockdown impaired both time-to-peak tension (TPT) and half-relaxation time (½ RT) in EDL, but not SOL muscle. In addition, AMPD1 knockdown in EDL exaggerated the AMP response to contractions at LOW (+100%) and MOD (+54%) duty cycles, but not at HIGH duty cycle. This accumulation of AMP was accompanied by increased AMPK phosphorylation (Thr-172; LOW +25%, MOD +34%) and downstream substrate phosphorylation (LOW +15%, MOD +17%). These responses to AMPD1 knockdown were not different between males and females. Our findings demonstrate that AMPD1 plays a role in maintaining skeletal muscle contractile function and regulating the energetic responses associated with repeated contractions in a muscle- but not sex-specific manner.NEW & NOTEWORTHY AMP deaminase 1 (AMPD1) deficiency has been associated with premature muscle fatigue and reduced work capacity, but this finding has been inconsistent. Herein, we report that although AMPD1 knockdown in mouse skeletal muscle does not change maximal isometric force, it negatively impacts muscle function by slowing contraction and relaxation kinetics in EDL muscle but not SOL muscle. Furthermore, AMPD1 knockdown differentially affects the [AMP]/AMPK responses to fatiguing contractions in an intensity-dependent manner in EDL muscle.
Collapse
Affiliation(s)
- Paul S Hafen
- Department of Anatomy, Cell Biology & Physiology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| | - Andrew S Law
- Department of Anatomy, Cell Biology & Physiology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| | - Catalina Matias
- Department of Anatomy, Cell Biology & Physiology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| | - Spencer G Miller
- Department of Anatomy, Cell Biology & Physiology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Kinesiology, East Carolina University, Greenville, North Carolina
| | - Jeffrey J Brault
- Department of Anatomy, Cell Biology & Physiology, Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
9
|
Melnikov IY, Tyganov SA, Sharlo KA, Ulanova AD, Vikhlyantsev IM, Mirzoev TM, Shenkman BS. Calpain-dependent degradation of cytoskeletal proteins as a key mechanism for a reduction in intrinsic passive stiffness of unloaded rat postural muscle. Pflugers Arch 2022; 474:1171-1183. [PMID: 35931829 DOI: 10.1007/s00424-022-02740-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022]
Abstract
In mammals, prolonged mechanical unloading results in a significant decrease in passive stiffness of postural muscles. The nature of this phenomenon remains unclear. The aim of the present study was to investigate possible causes for a reduction in rat soleus passive stiffness after 7 and 14 days of unloading (hindlimb suspension, HS). We hypothesized that HS-induced decrease in passive stiffness would be associated with calpain-dependent degradation of cytoskeletal proteins or a decrease in actomyosin interaction. Wistar rats were subjected to HS for 7 and 14 days with or without PD150606 (calpain inhibitor) treatment. Soleus muscles were subjected to biochemical analysis and ex vivo measurements of passive tension with or without blebbistatin treatment (an inhibitor of actomyosin interactions). Passive tension of isolated soleus muscle was significantly reduced after 7- and 14-day HS compared to the control values. PD150606 treatment during 7- and 14-day HS induced an increase in alpha-actinin-2 and -3, desmin contents compared to control, partly prevented a decrease in intact titin (T1) content, and prevented a decrease in soleus passive tension. Incubation of soleus muscle with blebbistatin did not affect HS-induced reductions in specific passive tension in soleus muscle. Our study suggests that calpain-dependent breakdown of cytoskeletal proteins, but not a change in actomyosin interaction, significantly contributes to unloading-induced reductions in intrinsic passive stiffness of rat soleus muscle.
Collapse
Affiliation(s)
- I Y Melnikov
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 76a Khoroshevskoe shosse, Moscow, Russian Federation
| | - Sergey A Tyganov
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 76a Khoroshevskoe shosse, Moscow, Russian Federation.
| | - K A Sharlo
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 76a Khoroshevskoe shosse, Moscow, Russian Federation
| | - A D Ulanova
- Laboratory of Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - I M Vikhlyantsev
- Laboratory of Structure and Functions of Muscle Proteins, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - T M Mirzoev
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 76a Khoroshevskoe shosse, Moscow, Russian Federation
| | - B S Shenkman
- Myology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 76a Khoroshevskoe shosse, Moscow, Russian Federation
| |
Collapse
|
10
|
Nemirovskaya TL, Sharlo KA. Roles of ATP and SERCA in the Regulation of Calcium Turnover in Unloaded Skeletal Muscles: Current View and Future Directions. Int J Mol Sci 2022; 23:ijms23136937. [PMID: 35805949 PMCID: PMC9267070 DOI: 10.3390/ijms23136937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
A decrease in skeletal muscle contractile activity or its complete cessation (muscle unloading or disuse) leads to muscle fibers’ atrophy and to alterations in muscle performance. These changes negatively affect the quality of life of people who, for one reason or another, are forced to face a limitation of physical activity. One of the key regulatory events leading to the muscle disuse-induced changes is an impairment of calcium homeostasis, which leads to the excessive accumulation of calcium ions in the sarcoplasm. This review aimed to analyze the triggering mechanisms of calcium homeostasis impairment (including those associated with the accumulation of high-energy phosphates) under various types of muscle unloading. Here we proposed a hypothesis about the regulatory mechanisms of SERCA and IP3 receptors activity during muscle unloading, and about the contribution of these mechanisms to the excessive calcium ion myoplasmic accumulation and gene transcription regulation via excitation–transcription coupling.
Collapse
|
11
|
Braun JL, Messner HN, Cleverdon REG, Baranowski RW, Hamstra SI, Geromella MS, Stuart JA, Fajardo VA. Heterozygous SOD2 deletion selectively impairs SERCA function in the soleus of female mice. Physiol Rep 2022; 10:e15285. [PMID: 35581738 PMCID: PMC9114654 DOI: 10.14814/phy2.15285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023] Open
Abstract
The sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) restores intracellular Ca2+ ([Ca2+ ]i ) to resting levels after muscle contraction, ultimately eliciting relaxation. SERCA pumps are highly susceptible to tyrosine (T)-nitration, impairing their ability to take up Ca2+ resulting in reduced muscle function and increased [Ca2+ ]i and cellular damage. The mitochondrial antioxidant enzyme, superoxide dismutase 2 (SOD2), converts superoxide radicals into less reactive H2 O2 . Heterozygous deletion of SOD2 (Sod2+/- ) in mice increases mitochondrial oxidative stress; however, the consequences of reduced SOD2 expression in skeletal and cardiac muscle, specifically the effect on SERCA pumps, has yet to be investigated. We obtained soleus, extensor digitorum longus (EDL), and left ventricle (LV) muscles from 6 to 7 month-old wild-type (WT) and Sod2+/- female C57BL/6J mice. Ca2+ -dependent SERCA activity assays were performed to assess SERCA function. Western blotting was conducted to examine the protein content of SERCA, phospholamban, and sarcolipin; and immunoprecipitation experiments were done to assess SERCA2a- and SERCA1a-specific T-nitration. Heterozygous SOD2 deletion did not alter SERCA1a or SERCA2a expression in the soleus or LV but reduced SERCA2a in the EDL compared with WT, though this was not statistically significant. Soleus muscles from Sod2+/- mice showed a significant reduction in SERCA's apparent affinity for Ca2+ when compared to WT, corresponding with significantly elevated SERCA2a T-nitration in the soleus. No effect was seen in the EDL or the LV. This is the first study to investigate the effects of SOD2 deficiency on muscle SERCA function and shows that it selectively impairs SERCA function in the soleus.
Collapse
Affiliation(s)
- Jessica L. Braun
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| | - Holt N. Messner
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
- Department of Biological SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Riley E. G. Cleverdon
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
| | - Ryan W. Baranowski
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
| | - Sophie I. Hamstra
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
| | - Mia S. Geromella
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
| | - Jeffrey A. Stuart
- Department of Biological SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Val A. Fajardo
- Department of KinesiologyBrock UniversitySt. CatharinesOntarioCanada
- Centre for Bone and Muscle HealthBrock UniversitySt. CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| |
Collapse
|