1
|
Mars JC, Culjkovic-Kraljacic B, Borden KL. eIF4E orchestrates mRNA processing, RNA export and translation to modify specific protein production. Nucleus 2024; 15:2360196. [PMID: 38880976 PMCID: PMC11185188 DOI: 10.1080/19491034.2024.2360196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
The eukaryotic translation initiation factor eIF4E acts as a multifunctional factor that simultaneously influences mRNA processing, export, and translation in many organisms. Its multifactorial effects are derived from its capacity to bind to the methyl-7-guanosine cap on the 5'end of mRNAs and thus can act as a cap chaperone for transcripts in the nucleus and cytoplasm. In this review, we describe the multifactorial roles of eIF4E in major mRNA-processing events including capping, splicing, cleavage and polyadenylation, nuclear export and translation. We discuss the evidence that eIF4E acts at two levels to generate widescale changes to processing, export and ultimately the protein produced. First, eIF4E alters the production of components of the mRNA processing machinery, supporting a widescale reprogramming of multiple mRNA processing events. In this way, eIF4E can modulate mRNA processing without physically interacting with target transcripts. Second, eIF4E also physically interacts with both capped mRNAs and components of the RNA processing or translation machineries. Further, specific mRNAs are sensitive to eIF4E only in particular mRNA processing events. This selectivity is governed by the presence of cis-acting elements within mRNAs known as USER codes that recruit relevant co-factors engaging the appropriate machinery. In all, we describe the molecular bases for eIF4E's multifactorial function and relevant regulatory pathways, discuss the basis for selectivity, present a compendium of ~80 eIF4E-interacting factors which play roles in these activities and provide an overview of the relevance of its functions to its oncogenic potential. Finally, we summarize early-stage clinical studies targeting eIF4E in cancer.
Collapse
Affiliation(s)
- Jean-Clément Mars
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | - Biljana Culjkovic-Kraljacic
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | - Katherine L.B. Borden
- Institute of Research in Immunology and Cancer, Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Czarnocka-Cieciura A, Poznański J, Turtola M, Tomecki R, Krawczyk PS, Mroczek S, Orzeł W, Saha U, Jensen TH, Dziembowski A, Tudek A. Modeling of mRNA deadenylation rates reveal a complex relationship between mRNA deadenylation and decay. EMBO J 2024:10.1038/s44318-024-00258-3. [PMID: 39394354 DOI: 10.1038/s44318-024-00258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024] Open
Abstract
Complete cytoplasmic polyadenosine tail (polyA-tail) deadenylation is thought to be essential for initiating mRNA decapping and subsequent degradation. To investigate this prevalent model, we conducted direct RNA sequencing of S. cerevisiae mRNAs derived from chase experiments under steady-state and stress condition. Subsequently, we developed a numerical model based on a modified gamma distribution function, which estimated the transcriptomic deadenylation rate at 10 A/min. A simplified independent method, based on the delineation of quantile polyA-tail values, showed a correlation between the decay and deadenylation rates of individual mRNAs, which appeared consistent within functional transcript groups and associated with codon optimality. Notably, these rates varied during the stress response. Detailed analysis of ribosomal protein-coding mRNAs (RPG mRNAs), constituting 40% of the transcriptome, singled out this transcript group. While deadenylation and decay of RPG mRNAs accelerated under heat stress, their degradation could proceed even when deadenylation was blocked, depending entirely on ongoing nuclear export. Our findings support the general primary function of deadenylation in dictating the onset of decapping, while also demonstrating complex relations between these processes.
Collapse
Affiliation(s)
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Matti Turtola
- Department of Life Technologies, University of Turku, Biocity, Tykistökatu 6, 205240, Turku, Finland
| | - Rafał Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106, Warsaw, Poland
- University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-089, Warsaw, Poland
| | - Paweł S Krawczyk
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Seweryn Mroczek
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland
- University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-089, Warsaw, Poland
| | - Wiktoria Orzeł
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Upasana Saha
- Aarhus University, Department of Molecular Biology and Genetics-Universitetsbyen 81, 8000, Aarhus, Denmark
| | - Torben Heick Jensen
- Aarhus University, Department of Molecular Biology and Genetics-Universitetsbyen 81, 8000, Aarhus, Denmark
| | - Andrzej Dziembowski
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland.
- University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-089, Warsaw, Poland.
| | - Agnieszka Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
3
|
Seidler JF, Sträßer K. Understanding nuclear mRNA export: Survival under stress. Mol Cell 2024; 84:3681-3691. [PMID: 39366354 DOI: 10.1016/j.molcel.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
Nuclear messenger RNA (mRNA) export is vital for cell survival under both physiological and stress conditions. To cope with stress, cells block bulk mRNA export while selectively exporting stress-specific mRNAs. Under physiological conditions, nuclear adaptor proteins recruit the mRNA exporter to the mRNA for export. By contrast, during stress conditions, the mRNA exporter is likely directly recruited to stress-specific mRNAs at their transcription sites to facilitate selective mRNA export. In this review, we summarize our current understanding of nuclear mRNA export. Importantly, we explore insights into the mechanisms that block bulk mRNA export and facilitate transcript-specific mRNA export under stress, highlighting the gaps that still need to be filled.
Collapse
Affiliation(s)
| | - Katja Sträßer
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, 35392 Giessen, Germany.
| |
Collapse
|
4
|
Qiu GH, Fu M, Zheng X, Huang C. Protection of the genome and the central exome by peripheral non-coding DNA against DNA damage in health, ageing and age-related diseases. Biol Rev Camb Philos Soc 2024. [PMID: 39327815 DOI: 10.1111/brv.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
DNA in eukaryotic genomes is under constant assault from both exogenous and endogenous sources, leading to DNA damage, which is considered a major molecular driver of ageing. Fortunately, the genome and the central exome are safeguarded against these attacks by abundant peripheral non-coding DNA. Non-coding DNA codes for small non-coding RNAs that inactivate foreign nucleic acids in the cytoplasm and physically blocks these attacks in the nucleus. Damage to non-coding DNA produced during such blockage is removed in the form of extrachromosomal circular DNA (eccDNA) through nucleic pore complexes. Consequently, non-coding DNA serves as a line of defence for the exome against DNA damage. The total amount of non-coding DNA/heterochromatin declines with age, resulting in a decrease in both physical blockage and eccDNA exclusion, and thus an increase in the accumulation of DNA damage in the nucleus during ageing and in age-related diseases. Here, we summarize recent evidence supporting a protective role of non-coding DNA in healthy and pathological states and argue that DNA damage is the proximate cause of ageing and age-related genetic diseases. Strategies aimed at strengthening the protective role of non-coding DNA/heterochromatin could potentially offer better systematic protection for the dynamic genome and the exome against diverse assaults, reduce the burden of DNA damage to the exome, and thus slow ageing, counteract age-related genetic diseases and promote a healthier life for individuals.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Mingjun Fu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Xintian Zheng
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Cuiqin Huang
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| |
Collapse
|
5
|
Di Liegro CM, Schiera G, Schirò G, Di Liegro I. Role of Post-Transcriptional Regulation in Learning and Memory in Mammals. Genes (Basel) 2024; 15:337. [PMID: 38540396 PMCID: PMC10970538 DOI: 10.3390/genes15030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 06/14/2024] Open
Abstract
After many decades, during which most molecular studies on the regulation of gene expression focused on transcriptional events, it was realized that post-transcriptional control was equally important in order to determine where and when specific proteins were to be synthesized. Translational regulation is of the most importance in the brain, where all the steps of mRNA maturation, transport to different regions of the cells and actual expression, in response to specific signals, constitute the molecular basis for neuronal plasticity and, as a consequence, for structural stabilization/modification of synapses; notably, these latter events are fundamental for the highest brain functions, such as learning and memory, and are characterized by long-term potentiation (LTP) of specific synapses. Here, we will discuss the molecular bases of these fundamental events by considering both the role of RNA-binding proteins (RBPs) and the effects of non-coding RNAs involved in controlling splicing, editing, stability and translation of mRNAs. Importantly, it has also been found that dysregulation of mRNA metabolism/localization is involved in many pathological conditions, arising either during brain development or in the adult nervous system.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
- Neurology and Multiple Sclerosis Center, Unità Operativa Complessa (UOC), Foundation Institute “G. Giglio”, 90015 Cefalù, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
6
|
Klughammer N, Barth A, Dekker M, Fragasso A, Onck PR, Dekker C. Diameter dependence of transport through nuclear pore complex mimics studied using optical nanopores. eLife 2024; 12:RP87174. [PMID: 38376900 PMCID: PMC10942607 DOI: 10.7554/elife.87174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
The nuclear pore complex (NPC) regulates the selective transport of large biomolecules through the nuclear envelope. As a model system for nuclear transport, we construct NPC mimics by functionalizing the pore walls of freestanding palladium zero-mode waveguides with the FG-nucleoporin Nsp1. This approach enables the measurement of single-molecule translocations through individual pores using optical detection. We probe the selectivity of Nsp1-coated pores by quantitatively comparing the translocation rates of the nuclear transport receptor Kap95 to the inert probe BSA over a wide range of pore sizes from 35 nm to 160 nm. Pores below 55 ± 5 nm show significant selectivity that gradually decreases for larger pores. This finding is corroborated by coarse-grained molecular dynamics simulations of the Nsp1 mesh within the pore, which suggest that leakage of BSA occurs by diffusion through transient openings within the dynamic mesh. Furthermore, we experimentally observe a modulation of the BSA permeation when varying the concentration of Kap95. The results demonstrate the potential of single-molecule fluorescence measurements on biomimetic NPCs to elucidate the principles of nuclear transport.
Collapse
Affiliation(s)
- Nils Klughammer
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Anders Barth
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Maurice Dekker
- Zernike Institute for Advanced Materials, University of GroningenGroningenNetherlands
| | - Alessio Fragasso
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of GroningenGroningenNetherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of TechnologyDelftNetherlands
| |
Collapse
|
7
|
Carter T, Iqbal M. The Influenza A Virus Replication Cycle: A Comprehensive Review. Viruses 2024; 16:316. [PMID: 38400091 PMCID: PMC10892522 DOI: 10.3390/v16020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza A virus (IAV) is the primary causative agent of influenza, colloquially called the flu. Each year, it infects up to a billion people, resulting in hundreds of thousands of human deaths, and causes devastating avian outbreaks with worldwide losses worth billions of dollars. Always present is the possibility that a highly pathogenic novel subtype capable of direct human-to-human transmission will spill over into humans, causing a pandemic as devastating if not more so than the 1918 influenza pandemic. While antiviral drugs for influenza do exist, they target very few aspects of IAV replication and risk becoming obsolete due to antiviral resistance. Antivirals targeting other areas of IAV replication are needed to overcome this resistance and combat the yearly epidemics, which exact a serious toll worldwide. This review aims to summarise the key steps in the IAV replication cycle, along with highlighting areas of research that need more focus.
Collapse
Affiliation(s)
- Toby Carter
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK;
| | | |
Collapse
|
8
|
Heinrich S, Hondele M, Marchand D, Derrer CP, Zedan M, Oswald A, Malinovska L, Uliana F, Khawaja S, Mancini R, Grunwald D, Weis K. Glucose stress causes mRNA retention in nuclear Nab2 condensates. Cell Rep 2024; 43:113593. [PMID: 38113140 DOI: 10.1016/j.celrep.2023.113593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/12/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
Nuclear mRNA export via nuclear pore complexes is an essential step in eukaryotic gene expression. Although factors involved in mRNA transport have been characterized, a comprehensive mechanistic understanding of this process and its regulation is lacking. Here, we use single-RNA imaging in yeast to show that cells use mRNA retention to control mRNA export during stress. We demonstrate that, upon glucose withdrawal, the essential RNA-binding factor Nab2 forms RNA-dependent condensate-like structures in the nucleus. This coincides with a reduced abundance of the DEAD-box ATPase Dbp5 at the nuclear pore. Depleting Dbp5, and consequently blocking mRNA export, is necessary and sufficient to trigger Nab2 condensation. The state of Nab2 condensation influences the extent of nuclear mRNA accumulation and can be recapitulated in vitro, where Nab2 forms RNA-dependent liquid droplets. We hypothesize that cells use condensation to regulate mRNA export and control gene expression during stress.
Collapse
Affiliation(s)
- Stephanie Heinrich
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland.
| | - Maria Hondele
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland; Biozentrum, Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Désirée Marchand
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Carina Patrizia Derrer
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Mostafa Zedan
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Alexandra Oswald
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Liliana Malinovska
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Federico Uliana
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Sarah Khawaja
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Roberta Mancini
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - David Grunwald
- University of Massachusetts Chan Medical School, RNA Therapeutics Institute, Worcester, MA 01605, USA
| | - Karsten Weis
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland.
| |
Collapse
|
9
|
Yu W, Tingey M, Kelich JM, Li Y, Yu J, Junod SL, Jiang Z, Hansen I, Good N, Yang W. Exploring Cellular Gateways: Unraveling the Secrets of Disordered Proteins within Live Nuclear Pores. RESEARCH SQUARE 2024:rs.3.rs-3504130. [PMID: 38260360 PMCID: PMC10802689 DOI: 10.21203/rs.3.rs-3504130/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Understanding the spatial organization of nucleoporins (Nups) with intrinsically disordered domains within the nuclear pore complex (NPC) is crucial for deciphering eukaryotic nucleocytoplasmic transport. Leveraging high-speed 2D single-molecule tracking and virtual 3D super-resolution microscopy in live HeLa cells, we investigated the spatial distribution of all eleven phenylalanine-glycine (FG)-rich Nups within individual NPCs. Our study reveals a nuanced landscape of FG-Nup conformations and arrangements. Five FG-Nups are steadfastly anchored at the NPC scaffold, collectively shaping a central doughnut-shaped channel, while six others exhibit heightened flexibility, extending towards the cytoplasmic and nucleoplasmic regions. Intriguingly, Nup214 and Nup153 contribute to cap-like structures that dynamically alternate between open and closed states along the nucleocytoplasmic transport axis, impacting the cytoplasmic and nuclear sides, respectively. Furthermore, Nup98, concentrated at the scaffold region, extends throughout the entire NPC while overlapping with other FG-Nups. Together, these eleven FG-Nups compose a versatile, capped trichoid channel spanning approximately 270 nm across the nuclear envelope. This adaptable trichoid channel facilitates a spectrum of pathways for passive diffusion and facilitated nucleocytoplasmic transport. Our comprehensive mapping of FG-Nup organization within live NPCs offers a unifying mechanism accommodating multiple transport pathways, thereby advancing our understanding of cellular transport processes.
Collapse
Affiliation(s)
- Wenlan Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Joseph M. Kelich
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Yichen Li
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Jingjie Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Samuel L. Junod
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Zecheng Jiang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Ian Hansen
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Nacef Good
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Krawczyk PS, Tudek A, Mroczek S, Dziembowski A. Transcriptome-Wide Analysis of mRNA Adenylation Status in Yeast Using Nanopore Sequencing. Methods Mol Biol 2024; 2723:193-214. [PMID: 37824072 DOI: 10.1007/978-1-0716-3481-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
There are multiple methods for studying deadenylation, either in vitro or in vivo, which allow for observation of mRNA abundance or poly(A) tail dynamics. However, direct RNA sequencing using the Oxford Nanopore Technologies (ONT) platform makes it possible to conduct transcriptome-wide analyses at the single-molecule level without the PCR bias introduced by other methods. In this chapter, we provide a protocol to measure both RNA levels and poly(A)-tail lengths in the yeast Saccharomyces cerevisiae using ONT.
Collapse
Affiliation(s)
- Pawel S Krawczyk
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | | - Seweryn Mroczek
- International Institute of Molecular and Cell Biology, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Andrzej Dziembowski
- International Institute of Molecular and Cell Biology, Warsaw, Poland.
- Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
11
|
Neumann H, Bartle L, Bonnell E, Wellinger RJ. Ratcheted transport and sequential assembly of the yeast telomerase RNP. Cell Rep 2023; 42:113565. [PMID: 38096049 DOI: 10.1016/j.celrep.2023.113565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/04/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
The telomerase ribonucleoprotein particle (RNP) replenishes telomeric DNA and minimally requires an RNA component and a catalytic protein subunit. However, telomerase RNP maturation is an intricate process occurring in several subcellular compartments and is incompletely understood. Here, we report how the co-transcriptional association of key telomerase components and nuclear export factors leads to an export-competent, but inactive, RNP. Export is dependent on the 5' cap, the 3' extension of unprocessed telomerase RNA, and protein associations. When the RNP reaches the cytoplasm, an extensive protein swap occurs, the RNA is trimmed to its mature length, and the essential catalytic Est2 protein joins the RNP. This mature and active complex is then reimported into the nucleus as its final destination and last processing steps. The irreversible processing events on the RNA thus support a ratchet-type model of telomerase maturation, with only a single nucleo-cytoplasmic cycle that is essential for the assembly of mature telomerase.
Collapse
Affiliation(s)
- Hannah Neumann
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
| | - Louise Bartle
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada; Research Center on Aging (CdRV), 1036 rue Belvedere Sud, Sherbrooke, QC J1H 4C4, Canada
| | - Erin Bonnell
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC J1E 4K8, Canada; Research Center on Aging (CdRV), 1036 rue Belvedere Sud, Sherbrooke, QC J1H 4C4, Canada.
| |
Collapse
|
12
|
Baum B, Spang A. On the origin of the nucleus: a hypothesis. Microbiol Mol Biol Rev 2023; 87:e0018621. [PMID: 38018971 PMCID: PMC10732040 DOI: 10.1128/mmbr.00186-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
SUMMARYIn this hypothesis article, we explore the origin of the eukaryotic nucleus. In doing so, we first look afresh at the nature of this defining feature of the eukaryotic cell and its core functions-emphasizing the utility of seeing the eukaryotic nucleoplasm and cytoplasm as distinct regions of a common compartment. We then discuss recent progress in understanding the evolution of the eukaryotic cell from archaeal and bacterial ancestors, focusing on phylogenetic and experimental data which have revealed that many eukaryotic machines with nuclear activities have archaeal counterparts. In addition, we review the literature describing the cell biology of representatives of the TACK and Asgardarchaeaota - the closest known living archaeal relatives of eukaryotes. Finally, bringing these strands together, we propose a model for the archaeal origin of the nucleus that explains much of the current data, including predictions that can be used to put the model to the test.
Collapse
Affiliation(s)
- Buzz Baum
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
| |
Collapse
|
13
|
Maimaiti A, Abulaiti A, Tang B, Dilixiati Y, Li X, Yakufu S, Wang Y, Jiang L, Shao H. Radiogenomic landscape: Assessment of specific phagocytosis regulators in lower-grade gliomas. Exp Biol Med (Maywood) 2023; 248:2289-2303. [PMID: 38062999 PMCID: PMC10903236 DOI: 10.1177/15353702231211939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/28/2023] [Indexed: 01/23/2024] Open
Abstract
Genome-wide CRISPR-Cas9 knockout screens have emerged as a powerful method for identifying key genes driving tumor growth. The aim of this study was to explore the phagocytosis regulators (PRs) specifically associated with lower-grade glioma (LGG) using the CRISPR-Cas9 screening database. Identifying these core PRs could lead to novel therapeutic targets and pave the way for a non-invasive radiogenomics approach to assess LGG patients' prognosis and treatment response. We selected 24 PRs that were overexpressed and lethal in LGG for analysis. The identified PR subtypes (PRsClusters, geneClusters, and PRs-score models) effectively predicted clinical outcomes in LGG patients. Immune response markers, such as CTLA4, were found to be significantly associated with PR-score. Nine radiogenomics models using various machine learning classifiers were constructed to uncover survival risk. The area under the curve (AUC) values for these models in the test and training datasets were 0.686 and 0.868, respectively. The CRISPR-Cas9 screen identified novel prognostic radiogenomics biomarkers that correlated well with the expression status of specific PR-related genes in LGG patients. These biomarkers successfully stratified patient survival outcomes and treatment response using The Cancer Genome Atlas (TCGA) database. This study has important implications for the development of precise clinical treatment strategies and holds promise for more accurate therapeutic approaches for LGG patients in the future.
Collapse
Affiliation(s)
- Aierpati Maimaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Aimitaji Abulaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Bin Tang
- Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | | | - Xueqi Li
- Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Suobinuer Yakufu
- Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yongxin Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Lei Jiang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Hua Shao
- Imaging Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
14
|
Chanarat S. Transcription machinery of the minimalist: comparative genomic analysis provides insights into the (de)regulated transcription mechanism of microsporidia - fungal-relative parasites. Transcription 2023; 14:1-17. [PMID: 36757099 PMCID: PMC10353337 DOI: 10.1080/21541264.2023.2174765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
Microsporidia are eukaryotic obligate intracellular parasites closely related to fungi. Co-evolving with infected hosts, microsporidia have highly reduced their genomes and lacked several biological components. As it is beneficial for intracellular parasites like microsporidia to reduce their genome size, it is therefore reasonable to assume that genes encoding multifactorial complex machinery of transcription could be a potential target to be excluded from microsporidian genomes during the reductive evolution. In such a case, an evolutionary dilemma occurs because microsporidia cannot remove all transcription-machinery-encoding genes, products of which are essential for initialthe initial steps of gene expression. Here, I propose that while genes encoding core machinery are conserved, several genes known to function in fine-tune regulation of transcription are absent. This genome compaction strategy may come at the cost of loosely regulated or less controllable transcription. Alternatively, analogous to microsporidian polar tube, the parasites may have specialized factors to regulate their RNA synthesis.
Collapse
Affiliation(s)
- Sittinan Chanarat
- Laboratory of Molecular Cell Biology, Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
15
|
Mulligan MR, Bicknell LS. The molecular genetics of nELAVL in brain development and disease. Eur J Hum Genet 2023; 31:1209-1217. [PMID: 37697079 PMCID: PMC10620143 DOI: 10.1038/s41431-023-01456-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Embryonic development requires tight control of gene expression levels, activity, and localisation. This control is coordinated by multiple levels of regulation on DNA, RNA and protein. RNA-binding proteins (RBPs) are recognised as key regulators of post-transcriptional gene regulation, where their binding controls splicing, polyadenylation, nuclear export, mRNA stability, translation rate and decay. In brain development, the ELAVL family of RNA binding proteins undertake essential functions across spatiotemporal windows to help regulate and specify transcriptomic programmes for cell specialisation. Despite their recognised importance in neural tissues, their molecular roles and connections to pathology are less explored. Here we provide an overview of the neuronal ELAVL family, noting commonalities and differences amongst different species, their molecular characteristics, and roles in the cell. We bring together the available molecular genetics evidence to link different ELAVL proteins to phenotypes and disease, in both the brain and beyond, including ELAVL2, which is the least studied ELAVL family member. We find that ELAVL-related pathology shares a common neurological theme, but different ELAVL proteins are more strongly connected to different phenotypes, reflecting their specialised expression across time and space.
Collapse
Affiliation(s)
- Meghan R Mulligan
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Louise S Bicknell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
16
|
Ju Z, Lei M, Xuan L, Luo J, Zhou M, Wang Y, Shen L, Skonieczna M, Ivanov DS, M H Zakaly H, Markovic V, Zhou P, Huang R. P53-response circRNA_0006420 aggravates lung cancer radiotherapy resistance by promoting formation of HUR/PTBP1 complex. J Adv Res 2023:S2090-1232(23)00203-5. [PMID: 37541584 DOI: 10.1016/j.jare.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND p53 wild-type lung cancer cells can develop radiation resistance. Circular RNA (circRNA) consists of a family of transcripts with exclusive structures. circRNA is critical in tumorigenesis and is a potential biomarker or therapeutic target. It is uncertain how circRNA expression and functions are regulated post-radiation in p53 wild-type cancer cells. METHODS A549 or H1299 cells were divided into p53-wt and p53-KO groups by CRISPR/Cas9; both groups were subjected to 4Gy ionizing radiation (IR: p53-wt-IR and p53-KO-IR). RNA-seq, CCK8, cell cycle, and other functional and mechanism experiments were performed in vivo. p53 gene knockout mice were generated to test the cell results in vitro. RESULTS circRNAs were found in differential groups. circRNA_0006420 (IRSense) was upregulated in p53-wt cells but had the same expression level as p53-KO cells after radiation, indicating that p53 silencing prevents its upregulation after IR. In the presence of p53, upregulated IRSense post-radiation induces G2/M arrest by regulating DNA damage repair (DDR) pathway-related proteins. Meanwhile, upregulated IRSense post-radiation aggravates the radiation-induced epithelial-mesenchymal transition (EMT). Interestingly, in the presence of p53, it promotes IRSense/HUR/PTBP1 complex formation resulting in the promotion of the radiation-induced EMT. Moreover, c-Jun regulates the upregulation of p53 transcription after radiation treatment. For these lung cancer cells with p53, upregulated IRSense aggravates lung cancer cell proliferation and increases radiation resistance by interacting with HUR (ElAV-like protein 1) and PTBP1 (polypyrimidine tract-binding protein 1) in the nucleus. CONCLUSIONS Lung cancer cells retaining p53 may upregulate circRNA_0006420 (IRSense) expression post radiation to form an IRSense/HUR/PTBP1 complex leading to radiotherapy resistance. This study furthers our understanding of the roles of circRNA in regulating the effect of radiotherapy and provides novel therapeutic avenues for effective clinical lung cancer therapies.
Collapse
Affiliation(s)
- Zhao Ju
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Mingjun Lei
- Department of Oncology, Xiangya Hospital, Central South University.
| | - Lihui Xuan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| | - Jinhua Luo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| | - Meiling Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| | - Yin Wang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University.
| | - Magdalena Skonieczna
- Department of Systems Biology and Engineering, Silesian University of Technology, Institute of Automatic Control, Akademicka 16, Gliwice 44-100, Poland, Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, Gliwice 44-100, Poland.
| | - Dmitry S Ivanov
- Quantum Electronics Division, Lebedev Physical Institute, 119991 Moscow, Russia.
| | - Hesham M H Zakaly
- Experimental Physics Department, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, Russia.
| | - Vladimir Markovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac.
| | - Pingkun Zhou
- Beijing Institute of Radiation medicine, Beijing, China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| |
Collapse
|
17
|
Khan M, Hou S, Chen M, Lei H. Mechanisms of RNA export and nuclear retention. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1755. [PMID: 35978483 DOI: 10.1002/wrna.1755] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/21/2022] [Accepted: 07/06/2022] [Indexed: 05/13/2023]
Abstract
With the identification of huge amount of noncoding RNAs in recent years, the concept of RNA localization has extended from traditional mRNA export to RNA export of mRNA and ncRNA as well as nuclear retention of ncRNA. This review aims to summarize the recent findings from studies on the mechanisms of export of different RNAs and nuclear retention of some lncRNAs in higher eukaryotes, with a focus on splicing-dependent TREX recruitment for the export of spliced mRNA and the sequence-dependent mechanism of mRNA export in the absence of splicing. In addition, evidence to support the involvement of m6 A modification in RNA export with the coordination between the methylase complex and TREX complex as well as sequence-dependent nuclear retention of lncRNA is recapitulated. Finally, a model of sequence-dependent RNA localization is proposed along with the many questions that remain to be answered. This article is categorized under: RNA Export and Localization > RNA Localization RNA Export and Localization > Nuclear Export/Import.
Collapse
Affiliation(s)
- Misbah Khan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Shuai Hou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Mo Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Haixin Lei
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
18
|
Donnaloja F, Limonta E, Mancosu C, Morandi F, Boeri L, Albani D, Raimondi MT. Unravelling the mechanotransduction pathways in Alzheimer's disease. J Biol Eng 2023; 17:22. [PMID: 36978103 PMCID: PMC10045049 DOI: 10.1186/s13036-023-00336-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Alzheimer's disease (AD) represents one of the most common and debilitating neurodegenerative disorders. By the end of 2040, AD patients might reach 11.2 million in the USA, around 70% higher than 2022, with severe consequences on the society. As now, we still need research to find effective methods to treat AD. Most studies focused on the tau and amyloid hypothesis, but many other factors are likely involved in the pathophysiology of AD. In this review, we summarize scientific evidence dealing with the mechanotransduction players in AD to highlight the most relevant mechano-responsive elements that play a role in AD pathophysiology. We focused on the AD-related role of extracellular matrix (ECM), nuclear lamina, nuclear transport and synaptic activity. The literature supports that ECM alteration causes the lamin A increment in the AD patients, leading to the formation of nuclear blebs and invaginations. Nuclear blebs have consequences on the nuclear pore complexes, impairing nucleo-cytoplasmic transport. This may result in tau hyperphosphorylation and its consequent self-aggregation in tangles, which impairs the neurotransmitters transport. It all exacerbates in synaptic transmission impairment, leading to the characteristic AD patient's memory loss. Here we related for the first time all the evidence associating the mechanotransduction pathway with neurons. In addition, we highlighted the entire pathway influencing neurodegenerative diseases, paving the way for new research perspectives in the context of AD and related pathologies.
Collapse
Affiliation(s)
- Francesca Donnaloja
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy.
| | - Emma Limonta
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Christian Mancosu
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Francesco Morandi
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Lucia Boeri
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Manuela Teresa Raimondi
- Politecnico Di Milano, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Campus Leonardo, Piazza Leonardo da Vinci 32, 20133, Milan, Italy.
| |
Collapse
|
19
|
Abstract
Eukaryotic cells possess considerable internal complexity, differentiating them from prokaryotes. Eukaryogenesis, an evolutionary transitional period culminating in the last eukaryotic common ancestor (LECA), marked the origin of the eukaryotic endomembrane system. LECA is reconstructed as possessing intracellular complexity akin to modern eukaryotes. Construction of endomembrane compartments involved three key gene families: coatomer, BAR-domain proteins, and ESCRT. Each has a distinct evolutionary origin, but of these coatomer and BAR proteins are eukaryote specific, while ESCRT has more ancient origins. We discuss the structural motifs defining these three membrane-coating complexes and suggest that compared with BAR and ESCRT, the coatomer architecture had a unique ability to be readily and considerably modified, unlocking functional diversity and enabling the development of the eukaryotic cell.
Collapse
Affiliation(s)
- Mark C. Field
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK,Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 Ceske Budejovice, Czechia,*Address corresponding to: Mark C. Field (); Michael P. Rout ()
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY10021,*Address corresponding to: Mark C. Field (); Michael P. Rout ()
| |
Collapse
|
20
|
Stewart M. Function of the Nuclear Transport Machinery in Maintaining the Distinctive Compositions of the Nucleus and Cytoplasm. Int J Mol Sci 2022; 23:2578. [PMID: 35269721 PMCID: PMC8910404 DOI: 10.3390/ijms23052578] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/13/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Although the separation of transcription and translation, mediated by the nuclear envelope, is the defining characteristic of Eukaryotes, the barrier between the nuclear and cytoplasmic compartments needs to be semipermeable to enable material to be moved between them. Moreover, each compartment needs to have a distinctive complement of macromolecules to mediate specific functions and so movement between them needs to be controlled. This is achieved through the selective active transport of macromolecules through the nuclear pores that stud the nuclear envelope, and which serve as a conduit between these compartments. Nuclear pores are huge cylindrical macromolecular assemblies and are constructed from the order of 30 different proteins called nucleoporins. Nuclear pores have a central transport channel that is filled with a dense network of natively unfolded portions of many different nuclear pore proteins (nucleoporins or nups). This network generates a barrier that impedes, but does not entirely prevent, the diffusion of many macromolecules through the pores. The rapid movement of a range of proteins and RNAs through the pores is mediated by a range of transport factors that bind their cargo in one compartment and release it in the other. However, although as their size increases the diffusion of macromolecules through nuclear pores is progressively impaired, additional mechanisms, including the binding of some macromolecules to immobile components of each compartment and also the active removal of macromolecules from the inappropriate compartment, are needed to fully maintain the distinctive compositions of each compartment.
Collapse
Affiliation(s)
- Murray Stewart
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|