1
|
Zhang Q, Pavlinov I, Ye Y, Zheng W. Therapeutic development targeting host heparan sulfate proteoglycan in SARS-CoV-2 infection. Front Med (Lausanne) 2024; 11:1364657. [PMID: 38618194 PMCID: PMC11014733 DOI: 10.3389/fmed.2024.1364657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024] Open
Abstract
The global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an urgent need for effective therapeutic options. SARS-CoV-2 is a novel coronavirus responsible for the COVID-19 pandemic that has resulted in significant morbidity and mortality worldwide. The virus is known to enter host cells by binding to the angiotensin-converting enzyme 2 (ACE2) receptor, and emerging evidence suggests that heparan sulfate proteoglycans (HSPGs) play a crucial role in facilitating this process. HSPGs are abundant cell surface proteoglycan present in many tissues, including the lung, and have been shown to interact directly with the spike protein of SARS-CoV-2. This review aims to summarize the current understanding of the role of HSPGs in SARS-CoV-2 infection and the potential of developing new therapies targeting HSPGs.
Collapse
Affiliation(s)
- Qi Zhang
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Ivan Pavlinov
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Yihong Ye
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Wei Zheng
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
2
|
Chandran SCS, Christopher I, Sounderraajan A, Murugesan V, Sabapathy I, Periyasamy V, Manikkam R. Molecular docking analysis of quercetin with known CoVid-19 targets. Bioinformation 2023; 19:1081-1085. [PMID: 38046509 PMCID: PMC10692980 DOI: 10.6026/973206300191081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023] Open
Abstract
Combat and care during CoVid-19 was non-trivial. Therefore, it is of interest to use the pharmacologically active plant component quercetin for the treatment of CoVid-19. Quercetin exhibits favourable ADMET values and abides by Lipinski's rule of five. When quercetin and remdesivir were positioned in relation to the CoVid-19 targets, quercetin exhibited a greater propensity for binding and H-bond interaction in their molecular interactions. Thus, the quercetin molecule can be used to manage CoVid-19.
Collapse
Affiliation(s)
| | - Ireen Christopher
- Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India
- DBT-BIF Centre, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Aishwariya Sounderraajan
- Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India
- DBT-BIF Centre, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Viji Murugesan
- Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India
- DBT-BIF Centre, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Indu Sabapathy
- Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India
- DBT-BIF Centre, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Vijayalakshmi Periyasamy
- Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India
- DBT-BIF Centre, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - Rajalakshmi Manikkam
- Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India
- DBT-BIF Centre, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu, India
- Department of Zoology, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu
| |
Collapse
|
3
|
Yuan Y, Chen Q, Mao J, Li G, Pan X. DG-Affinity: predicting antigen-antibody affinity with language models from sequences. BMC Bioinformatics 2023; 24:430. [PMID: 37957563 PMCID: PMC10644518 DOI: 10.1186/s12859-023-05562-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Antibody-mediated immune responses play a crucial role in the immune defense of human body. The evolution of bioengineering has led the progress of antibody-derived drugs, showing promising efficacy in cancer and autoimmune disease therapy. A critical step of this development process is obtaining the affinity between antibodies and their binding antigens. RESULTS In this study, we introduce a novel sequence-based antigen-antibody affinity prediction method, named DG-Affinity. DG-Affinity uses deep neural networks to efficiently and accurately predict the affinity between antibodies and antigens from sequences, without the need for structural information. The sequences of both the antigen and the antibody are first transformed into embedding vectors by two pre-trained language models, then these embeddings are concatenated into an ConvNeXt framework with a regression task. The results demonstrate the superiority of DG-Affinity over the existing structure-based prediction methods and the sequence-based tools, achieving a Pearson's correlation of over 0.65 on an independent test dataset. CONCLUSIONS Compared to the baseline methods, DG-Affinity achieves the best performance and can advance the development of antibody design. It is freely available as an easy-to-use web server at https://www.digitalgeneai.tech/solution/affinity .
Collapse
Affiliation(s)
- Ye Yuan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China.
| | | | - Jun Mao
- DigitalGene, Ltd, Shanghai, 200240, China
| | - Guipeng Li
- DigitalGene, Ltd, Shanghai, 200240, China
| | - Xiaoyong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China.
| |
Collapse
|
4
|
Gu M, Jiao J, Liu S, Zhao W, Ge Z, Cai K, Xu L, He D, Zhang X, Qi X, Jiang W, Zhang P, Wang X, Hu S, Liu X. Monoclonal antibody targeting a novel linear epitope on nucleoprotein confers pan-reactivity to influenza A virus. Appl Microbiol Biotechnol 2023; 107:2437-2450. [PMID: 36820898 PMCID: PMC9947902 DOI: 10.1007/s00253-023-12433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
Nucleoprotein (NP) functions crucially in the replicative cycle of influenza A virus (IAV) via forming the ribonucleoprotein complex together with PB2, PB1, and PA proteins. As its high conservation, NP ranks one of the hot targets for design of universal diagnostic reagents and antiviral drugs for IAV. Here, we report an anti-NP murine monoclonal antibody (mAb) 5F10 prepared from traditional lymphocyte hybridoma technique with the immunogen of a clade 2.3.4.4 H5N1 subtype avian influenza virus. The specificity of mAb 5F10 to NP protein was confirmed by immunofluorescence assay and western blotting, and the mAb 5F10 could be used in immunoprecipitation and immunohistochemistry assays. Importantly, mAb 5F10 possessed broad-spectrum reactivity against H1~H11 subtypes of avian influenza viruses, including various HA clades of H5Nx subtype. In addition, mAb 5F10 also showed good affinity with H1N1 and H3N2 subtype influenza viruses of swine and human origin. Furthermore, the recognized antigenic epitope of mAb 5F10 was identified to consist of the conserved amino acid motif 81EHPSA85 in the second flexible loop region of NP protein through screening the phage display peptide library. Collectively, the mAb 5F10 which recognizes the novel universal NP linear B-cell epitope of IAV with diverse origins and subtypes will be a powerful tool for NP protein-based structural, functional, and mechanistic studies, as well as the development of detection methods and universal vaccines for IAV. KEY POINTS: • A broad-spectrum mAb against various subtypes and sources of IAV was developed • The mAb possessed good reactivity in IFA, western blot, IP, and IHC assays • The mAb targeted a novel conserved linear B-cell epitope involving 81EHPSA85 on NP protein.
Collapse
Affiliation(s)
- Min Gu
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Jun Jiao
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Suhan Liu
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Wanchen Zhao
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Zhichuang Ge
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Kairui Cai
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Lijun Xu
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Dongchang He
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Xinyu Zhang
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
| | - Xian Qi
- grid.410734.50000 0004 1761 5845Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009 China
| | - Wenming Jiang
- grid.414245.20000 0004 6063 681XChina Animal Health and Epidemiology Center, Qingdao, 266032 China
| | - Pinghu Zhang
- grid.268415.cJiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Xiaoquan Wang
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Shunlin Hu
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Xiufan Liu
- grid.268415.cAnimal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu China
- grid.268415.cJiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
5
|
Zare Marzouni H, Rahbar M, Seddighi N, Nabizadeh M, Meidaninikjeh S, Sabouni N. Antibody Therapy for COVID-19: Categories, Pros, and Cons. Viral Immunol 2022; 35:517-528. [PMID: 36201297 DOI: 10.1089/vim.2021.0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is a life-threatening respiratory disease triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has been considered a pandemic viral infection since December 2019. The investigation of the effective prophylaxis or therapeutic strategies for emergency management of the current condition has become a priority for medical research centers and pharmaceutical companies. This article provides a comprehensive review of antibody therapy and its different categories with their advantages and disadvantages for COVID-19 over the last few years of the current pandemic. Antibodies can be generated by active immunization, including natural infection with a pathogen and vaccination, or by the passive immunization method such as convalescent plasma therapy (CPT) and antibody synthesis in laboratories. Each of these ways has its characteristics. Arming the immune system with antibodies is the main aim of antiviral therapeutic procedures toward SARS-CoV-2. Collecting and discussing various aspects of available data in this field can give researchers a better perspective for the production of antibody-based products or selection of the most appropriate approach of antibody therapies to improve different cases of COVID-19. Moreover, it can help them control similar viral pandemics that may happen in the future appropriately.
Collapse
Affiliation(s)
- Hadi Zare Marzouni
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Marjan Rahbar
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nazanin Seddighi
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Nabizadeh
- Department of Biology, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.,Cancer Biomedical Center (CBC) Research Institute, Tehran, Iran
| | - Nasim Sabouni
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Forgham H, Kakinen A, Qiao R, Davis TP. Keeping up with the COVID's-Could siRNA-based antivirals be a part of the answer? EXPLORATION (BEIJING, CHINA) 2022; 2:20220012. [PMID: 35941991 PMCID: PMC9349879 DOI: 10.1002/exp.20220012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/11/2022] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a highly contagious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This deadly infection has resulted in more than 5.2 million deaths worldwide. The global rollout of COVID-19 vaccines has without doubt saved countless lives by reducing the severity of symptoms for patients. However, as the virus continues to evolve, there is a risk that the vaccines and antiviral designed to target the infection will no longer be therapeutically viable. Furthermore, there remain fears over both the short and long-term side effects of repeat exposure to currently available vaccines. In this review, we discuss the pros and cons of the vaccine rollout and promote the idea of a COVID medicinal toolbox made up of different antiviral treatment modalities, and present some of the latest therapeutic strategies that are being explored in this respect to try to combat the COVID-19 virus and other COVID viruses that are predicted to follow. Lastly, we review current literature on the use of siRNA therapeutics as a way to remain adaptable and in tune with the ever-evolving mutation rate of the COVID-19 virus.
Collapse
Affiliation(s)
- Helen Forgham
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
- Institute of Biotechnology, HiLIFEUniversity of HelsinkiHelsinkiFinland
| | - Ruirui Qiao
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Thomas P. Davis
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
7
|
Liu K, Zhang X, Hu Y, Chen W, Kong X, Yao P, Cong J, Zuo H, Wang J, Li X, Wei B. What, Where, When and How of COVID-19 Patents Landscape: A Bibliometrics Review. Front Med (Lausanne) 2022; 9:925369. [PMID: 35847804 PMCID: PMC9283760 DOI: 10.3389/fmed.2022.925369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Two years after COVID-19 came into being, many technologies have been developed to bring highly promising bedside methods to help fight this epidemic disease. However, owing to viral mutation, how far the promise can be realized remains unclear. Patents might act as an additional source of information for informing research and policy and anticipating important future technology developments. A comprehensive study of 3741 COVID-19-related patents (3,543 patent families) worldwide was conducted using the Derwent Innovation database. Descriptive statistics and social network analysis were used in the patent landscape. The number of COVID-19 applications, especially those related to treatment and prevention, continued to rise, accompanied by increases in governmental and academic patent assignees. Although China dominated COVID-19 technologies, this position is worth discussing, especially in terms of the outstanding role of India and the US in the assignee collaboration network as well as the outstanding invention portfolio in Italy. Intellectual property barriers and racist treatment were reduced, as reflected by individual partnerships, transparent commercial licensing and diversified portfolios. Critical technological issues are personalized immunity, traditional Chinese medicine, epidemic prediction, artificial intelligence tools, and nucleic acid detection. Notable challenges include balancing commercial competition and humanitarian interests. The results provide a significant reference for decision-making by researchers, clinicians, policymakers, and investors with an interest in COVID-19 control.
Collapse
Affiliation(s)
- Kunmeng Liu
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Xiaoming Zhang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Weijie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Xiangjun Kong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Peifen Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Jinyu Cong
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Huali Zuo
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Hong Kong SAR, China
| | - Jian Wang
- Science College, Shandong Jiaotong University, Jinan, China
| | - Xiang Li
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Benzheng Wei
- Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao, China
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
- *Correspondence: Benzheng Wei,
| |
Collapse
|
8
|
The Therapeutic and Prophylactic Potential of Quercetin against COVID-19: An Outlook on the Clinical Studies, Inventive Compositions, and Patent Literature. Antioxidants (Basel) 2022; 11:antiox11050876. [PMID: 35624740 PMCID: PMC9137692 DOI: 10.3390/antiox11050876] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022] Open
Abstract
Quercetin is a phenolic flavonol compound with established antioxidant, anti-inflammatory, and immuno-stimulant properties. Recent studies demonstrate the potential of quercetin against COVID-19. This article highlighted the prophylactic/therapeutic potential of quercetin against COVID-19 in view of its clinical studies, inventions, and patents. The literature for the subject matter was collected utilizing different databases, including PubMed, Sci-Finder, Espacenet, Patentscope, and USPTO. Clinical studies expose the potential of quercetin monotherapy, and also its combination therapy with other compounds, including zinc, vitamin C, curcumin, vitamin D3, masitinib, hydroxychloroquine, azithromycin, and ivermectin. The patent literature also examines claims that quercetin containing nutraceuticals, pharmaceuticals, and dietary supplements, alone or in combination with other drugs/compounds, including favipiravir, remdesivir, molnupiravir, navitoclax, dasatinib, disulfiram, rucaparib, tamarixin, iota-carrageenan, and various herbal extracts (aloe, poria, rosemary, and sphagnum) has potential for use against COVID-19. The literature reveals that quercetin exhibits anti-COVID-19 activity because of its inhibitory effect on the expression of the human ACE2 receptors and the enzymes of SARS-CoV-2 (MPro, PLPro, and RdRp). The USFDA designated quercetin as a “Generally Recognized as Safe” substance for use in the food and beverage industries. It is also an inexpensive and readily available compound. These facts increase the possibility and foreseeability of making novel and economical drug combinations containing quercetin to prevent/treat COVID-19. Quercetin is an acidic compound and shows metabolic interaction with some antivirals, antibiotics, and anti-inflammatory agents. Therefore, the physicochemical and metabolic drug interactions between quercetin and the combined drugs/compounds must be better understood before developing new compositions.
Collapse
|
9
|
Imran M, Khan SA, Abida, Alshammari MK, Alkhaldi SM, Alshammari FN, Kamal M, Alam O, Asdaq SMB, Alzahrani AK, Jomah S. Nigella sativa L. and COVID-19: A Glance at The Anti-COVID-19 Chemical Constituents, Clinical Trials, Inventions, and Patent Literature. Molecules 2022; 27:2750. [PMID: 35566101 PMCID: PMC9105261 DOI: 10.3390/molecules27092750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 has had an impact on human quality of life and economics. Scientists have been identifying remedies for its prevention and treatment from all possible sources, including plants. Nigella sativa L. (NS) is an important medicinal plant of Islamic value. This review highlights the anti-COVID-19 potential, clinical trials, inventions, and patent literature related to NS and its major chemical constituents, like thymoquinone. The literature was collected from different databases, including Pubmed, Espacenet, and Patentscope. The literature supports the efficacy of NS, NS oil (NSO), and its chemical constituents against COVID-19. The clinical data imply that NS and NSO can prevent and treat COVID-19 patients with a faster recovery rate. Several inventions comprising NS and NSO have been claimed in patent applications to prevent/treat COVID-19. The patent literature cites NS as an immunomodulator, antioxidant, anti-inflammatory, a source of anti-SARS-CoV-2 compounds, and a plant having protective effects on the lungs. The available facts indicate that NS, NSO, and its various compositions have all the attributes to be used as a promising remedy to prevent, manage, and treat COVID-19 among high-risk people as well as for the therapy of COVID-19 patients of all age groups as a monotherapy or a combination therapy. Many compositions of NS in combination with countless medicinal herbs and medicines are still unexplored. Accordingly, the authors foresee a bright scope in developing NS-based anti-COVID-19 composition for clinical use in the future.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, Muscat 130, Oman;
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | | | - Saif M. Alkhaldi
- Department of Pharmaceutical Care, King Khalid Hospital in Majmaah, Riyadh 76312, Saudi Arabia;
| | | | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
| | | | - A. Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia;
| | - Shahamah Jomah
- Pharmacy Department, Sulaiman Al-Habib Medical Group, Riyadh 11643, Saudi Arabia
| |
Collapse
|
10
|
Cicchitto G, Cardillo L, de Martinis C, Sabatini P, Marchitiello R, Abate G, Rovetti A, Cavallera A, Apuzzo C, Ferrigno F, Fusco G. Effects of Casirivimab/Imdevimab Monoclonal Antibody Treatment among Vaccinated Patients Infected by SARS-CoV-2 Delta Variant. Viruses 2022; 14:v14030650. [PMID: 35337057 PMCID: PMC8950724 DOI: 10.3390/v14030650] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
There is a growing interest in using monoclonal antibodies (mAbs) in the early stages of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection to prevent disease progression. Little is known about the efficacy of mAbs against the delta variant of concern and its clinical presentations. We evaluated the effect of casirivimab/imdevimab treatment among five delta vaccine breakthrough patients. Symptomatic non-hospitalized vaccinated patients were submitted to nasopharyngeal swabs for the detection of SARS-CoV-2 and Next-Generation Sequencing (NGS). Blood analysis and chest Computed Tomography were also performed. A cocktail of casirivimab/imdevimab was administrated, and patients were monitored weekly. Clinical evolution was evaluated by the regression of the symptoms, negative results by real-time RT-PCR, and by the need of hospitalization: these aspects were considered as significant outcomes. In four cases, symptom reversion and viral load reduction were observed within 2 days and 7 days after mAbs treatment, respectively. Only one case, suffering from thymoma, was hospitalized 2 days later because of respiratory failure, which reverted within 18 days. mAbs treatment seems to be safe and effective against the delta variant and its clinical manifestations.
Collapse
Affiliation(s)
- Gaetano Cicchitto
- Department of Pneumology, COVID-19 Hospital “M. Scarlato”, 84018 Scafati, Salerno, Italy; (G.C.); (F.F.)
| | - Lorena Cardillo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Naples, Italy; (C.d.M.); (G.F.)
- Correspondence: ; Tel.: +39-0817865509
| | - Claudio de Martinis
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Naples, Italy; (C.d.M.); (G.F.)
| | - Paola Sabatini
- Unit of Virology and Microbiology, “Umberto I” Hospital, 84014 Nocera Inferiore, Salerno, Italy;
| | - Rosita Marchitiello
- Unit of Clinical Pathology Laboratory, COVID-19 Hospital “M. Scarlato”, 84018 Scafati, Salerno, Italy; (R.M.); (G.A.); (A.R.)
| | - Giovanna Abate
- Unit of Clinical Pathology Laboratory, COVID-19 Hospital “M. Scarlato”, 84018 Scafati, Salerno, Italy; (R.M.); (G.A.); (A.R.)
| | - Adele Rovetti
- Unit of Clinical Pathology Laboratory, COVID-19 Hospital “M. Scarlato”, 84018 Scafati, Salerno, Italy; (R.M.); (G.A.); (A.R.)
| | - Antonietta Cavallera
- Department of Radiology, COVID-19 Hospital “M. Scarlato”, 84018 Scafati, Salerno, Italy; (A.C.); (C.A.)
| | - Camillo Apuzzo
- Department of Radiology, COVID-19 Hospital “M. Scarlato”, 84018 Scafati, Salerno, Italy; (A.C.); (C.A.)
| | - Francesco Ferrigno
- Department of Pneumology, COVID-19 Hospital “M. Scarlato”, 84018 Scafati, Salerno, Italy; (G.C.); (F.F.)
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Naples, Italy; (C.d.M.); (G.F.)
| |
Collapse
|