1
|
Ayoub M, Susin SA, Bauvois B. Tumor Cell Survival Factors and Angiogenesis in Chronic Lymphocytic Leukemia: How Hot Is the Link? Cancers (Basel) 2024; 17:72. [PMID: 39796700 PMCID: PMC11719013 DOI: 10.3390/cancers17010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of neoplastic CD5+/CD19+ B lymphocytes in the blood. These cells migrate to and proliferate in the bone marrow and lymphoid tissues. Despite the development of new therapies for CLL, drug resistance and disease relapse still occur; novel treatment approaches are therefore still needed. Inhibition of the angiogenesis involved in the progression of CLL might be a relevant therapeutic strategy. The literature data indicate that vascular endothelial growth factor, angiopoietin-2, and matrix metalloproteinase-9 are pro-angiogenic factors in CLL. A number of other CLL factors might have pro-angiogenic activity: fibroblast growth factor-2, certain chemokines (such as CXCL-12 and CXCL-2), tumor necrosis factor-α, insulin-like growth factor-1, neutrophil gelatinase-associated lipocalin, and progranulin. All these molecules contribute to the survival, proliferation, and migration of CLL cells. Here, we review the literature on these factors' respective expression profiles and roles in CLL. We also summarize the main results of preclinical and clinical trials of novel agents targeting most of these molecules in a CLL setting. Through the eradication of leukemic cells and the inhibition of angiogenesis, these therapeutic approaches might alter the course of CLL.
Collapse
Affiliation(s)
| | | | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; (M.A.); (S.A.S.)
| |
Collapse
|
2
|
Chai L, Zeng J, Gong L, Li Z, Wang F, Liu Z, Fan W, Shen B. The relationship between serum levels of LOX-1, hs-cTnT, NGAL, and renal function, and their diagnostic value in patients with chronic kidney disease: a retrospective study. BMC Nephrol 2024; 25:427. [PMID: 39604892 PMCID: PMC11600683 DOI: 10.1186/s12882-024-03875-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The primary aim of this study is to explore the relationship between serum levels of LOX-1, hs-cTnT, and NGAL, and renal function in patients with CKD, as well as to evaluate their diagnostic value for early detection and monitoring of disease progression in CKD patients. METHODS A retrospective study was conducted on 108 patients with chronic kidney disease admitted to our hospital from January 2023 to December 2023. The patients were divided into the mild renal insufficiency group (51 cases) and the severe renal insufficiency group (57 cases). The differences in serum levels of LOX-1, hs-cTnT, and NGAL between the two groups were compared, and Pearson correlation analysis was used to explore the relationship between the three levels and renal function. ROC analysis was used to evaluate the predictive value of the three markers for the diagnosis of CKD. RESULTS The levels of LOX-1, hs-cTnT, and NGAL in the mild renal insufficiency group were lower than those in the severe renal insufficiency group (P < 0.05). Correlation analysis showed that serum levels of LOX-1, hs-cTnT, and NGAL were positively correlated with the deterioration of renal function (P < 0.001), indicating a significant correlation between LOX-1, hs-cTnT, NGAL levels, and the deterioration of renal function. ROC analysis showed that the AUC of serum levels of LOX-1, hs-cTnT, and NGAL were 0.859, 0.882, and 0.841, indicating a significant predictive value for the diagnosis of chronic kidney disease. CONCLUSION Serum levels of LOX-1, hs-cTnT, NGAL, and related markers demonstrate a direct association with the extent of renal impairment, offering predictive capabilities for diagnosing CKD.
Collapse
Affiliation(s)
- Liyin Chai
- Department of Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, No.1 Health Road, LiangLukou, Yuzhong District, Chongqing City, 400014, China
| | - Jun Zeng
- Chongqing Emergency Medical Center, School of Medicine of Chongqing University, Chongqing University Central Hospital, Chongqing City, China
| | - Li Gong
- Department of Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, No.1 Health Road, LiangLukou, Yuzhong District, Chongqing City, 400014, China
| | - Zhuhong Li
- Department of Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, No.1 Health Road, LiangLukou, Yuzhong District, Chongqing City, 400014, China
| | - Fang Wang
- Department of Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, No.1 Health Road, LiangLukou, Yuzhong District, Chongqing City, 400014, China
| | - Zhengyang Liu
- Chongqing Emergency Medical Center, School of Medicine of Chongqing University, Chongqing University Central Hospital, Chongqing City, China
| | - Wang Fan
- Chongqing Hechuan Huatan Hospital, Chongqing City, China
| | - Bingbing Shen
- Department of Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, No.1 Health Road, LiangLukou, Yuzhong District, Chongqing City, 400014, China.
| |
Collapse
|
3
|
Crescenzi E, Leonardi A, Pacifico F. NF-κB in Thyroid Cancer: An Update. Int J Mol Sci 2024; 25:11464. [PMID: 39519020 PMCID: PMC11546487 DOI: 10.3390/ijms252111464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The dysregulated NF-κB basal activity is a common feature of human thyroid carcinomas, especially in poorly differentiated or undifferentiated forms that, even if rare, are often resistant to standard therapies, and, therefore, are uncurable. Despite the molecular mechanisms leading to NF-κB activation in thyroid cancer being only partially understood, during the last few years, it has become clear that NF-κB contributes in different ways to the oncogenic potential of thyroid neoplastic cells. Indeed, it enhances their proliferation and viability, promotes their migration to and colonization of distant organs, and fuels their microenvironment. In addition, NF-κB signaling plays an important role in cancer stem cells from more aggressive thyroid carcinomas. Interfering with the different upstream and/or downstream pathways that drive NF-κB activity in thyroid neoplastic cells is an attractive strategy for the development of novel therapeutic drugs capable of overcoming the therapy resistance of advanced thyroid carcinomas. This review focuses on the recent findings about the key functions of NF-κB in thyroid cancer and discusses the potential implications of targeting NF-κB in advanced thyroid carcinomas.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini, 5, 80131 Naples, Italy;
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy;
| | - Francesco Pacifico
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (CNR), Via S. Pansini, 5, 80131 Naples, Italy;
| |
Collapse
|
4
|
Zhao Y, Tang X, Lei T, Fu D, Zhang H. Lipocalin-2 promotes breast cancer brain metastasis by enhancing tumor invasion and modulating brain microenvironment. Front Oncol 2024; 14:1448089. [PMID: 39188682 PMCID: PMC11345181 DOI: 10.3389/fonc.2024.1448089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Breast cancer is the leading cancer diagnosed in women globally, with brain metastasis emerging as a major cause of death, particularly in human epidermal growth factor receptor 2 positive and triple-negative breast cancer subtypes. Comprehensive understanding of the molecular foundations of central nervous system metastases is imperative for the evolution of efficacious treatment strategies. Lipocalin-2 (LCN2), a secreted iron transport protein with multiple functions, has been linked to the progression of breast cancer brain metastasis (BCBM). In primary tumors, LCN2 promotes the proliferation and angiogenesis of breast cancer cells, triggers the epithelial-mesenchymal transition, interacts with matrix metalloproteinase-9, thereby facilitating the reorganization of the extracellular matrix and enhancing cancer cell invasion and migration. In brain microenvironment, LCN2 undermines the blood-brain barrier and facilitates tumor seeding in the brain by modulating the behavior of key cellular components. In summary, this review meticulously examines the fuel role of LCN2 in BCBM cascade, and investigates the potential mechanisms involved. It highlights the potential of LCN2 as both a therapeutic target and biomarker, indicating that interventions targeting LCN2 may offer improved outcomes for patients afflicted with BCBM.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiaogen Tang
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Tingting Lei
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Dongwei Fu
- Department of Oncology, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong, China
| | - Hongyi Zhang
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Chembukavu SN, Lindsay AJ. Therapy-induced senescence in breast cancer: an overview. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:902-920. [PMID: 39280248 PMCID: PMC11390292 DOI: 10.37349/etat.2024.00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/06/2024] [Indexed: 09/18/2024] Open
Abstract
Outcomes for women with breast cancer have improved dramatically in recent decades. However, many patients present with intrinsic drug resistance and others are initially sensitive to anti-cancer drugs but acquire resistance during the course of their treatment, leading to recurrence and/or metastasis. Drug therapy-induced senescence (TIS) is a form of drug resistance characterised by the induction of cell cycle arrest and the emergence of a senescence-associated secretory phenotype (SASP) that can develop in response to chemo- and targeted- therapies. A wide range of anticancer interventions can lead to cell cycle arrest and SASP induction, by inducing genotoxic stress, hyperactivation of signalling pathways or oxidative stress. TIS can be anti-tumorigenic in the short-term, but pro-tumorigenic in the long-term by creating a pro-inflammatory and immunosuppressive microenvironment. Moreover, the SASP can promote angiogenesis and epithelial-mesenchymal transition in neighbouring cells. In this review, we will describe the characteristics of TIS in breast cancer and detail the changes in phenotype that accompany its induction. We also discuss strategies for targeting senescent cancer cells in order to prevent or delay tumour recurrence.
Collapse
Affiliation(s)
- Suraj Narayanan Chembukavu
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| | - Andrew J Lindsay
- Membrane Trafficking and Disease Laboratory, School of Biochemistry & Cell Biology, Biosciences Institute, University College Cork, Cork, T12 YT20, Ireland
| |
Collapse
|
6
|
Jiang L, Chen S, Li S, Wang J, Chen W, Shi Y, Xiong W, Miao C. Exploring biomarkers for diagnosing and predicting organ dysfunction in patients with perioperative sepsis: a preliminary investigation. Perioper Med (Lond) 2024; 13:81. [PMID: 39049003 PMCID: PMC11267738 DOI: 10.1186/s13741-024-00438-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVE Early diagnosis and prediction of organ dysfunction are critical for intervening and improving the outcomes of septic patients. The study aimed to find novel diagnostic and predictive biomarkers of organ dysfunction for perioperative septic patients. METHOD This is a prospective, controlled, preliminary, and single-center study of emergency surgery patients. Mass spectrometry, Gene Ontology (GO) functional analysis, and the protein-protein interaction (PPI) network were performed to identify the differentially expressed proteins (DEPs) from sepsis patients, which were selected for further verification via enzyme-linked immunosorbent assay (ELISA). Logistic regression analysis was used to estimate the relative correlation of selected serum protein levels and clinical outcomes of septic patients. Calibration curves were plotted to assess the calibration of the models. RESULTS Five randomized serum samples per group were analyzed via mass spectrometry, and 146 DEPs were identified. GO functional analysis and the PPI network were performed to evaluate the molecular mechanisms of the DEPs. Six DEPs were selected for further verification via ELISA. Cathepsin B (CatB), vascular cell adhesion protein 1 (VCAM-1), neutrophil gelatinase-associated lipocalin (NGAL), protein S100-A9, prosaposin, and thrombospondin-1 levels were significantly increased in the patients with sepsis compared with those of the controls (p < 0.001). Logistic regression analysis showed that CatB, S100-A9, VCAM-1, prosaposin, and NGAL could be used for preoperative diagnosis and postoperative prediction of organ dysfunction. CatB and S100-A9 were possible predictive factors for preoperative diagnosis of renal failure in septic patients. Internal validation was assessed using the bootstrapping validation. The preoperative diagnosis of renal failure model displayed good discrimination with a C-index of 0.898 (95% confidence interval 0.843-0.954) and good calibration. CONCLUSION Serum CatB, S100-A9, VCAM-1, prosaposin, and NGAL may be novel markers for preoperative diagnosis and postoperative prediction of organ dysfunction. Specifically, S100-A9 and CatB were indicators of preoperative renal dysfunction in septic patients. Combining these two biomarkers may improve the accuracy of predicting preoperative septic renal dysfunction. TRIAL REGISTRATION The study was registered at the Chinese Clinical Trials Registry (ChiCTR2200060418) on June 1, 2022.
Collapse
Affiliation(s)
- Linghui Jiang
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shiyu Chen
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shichao Li
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiaxing Wang
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wannan Chen
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuncen Shi
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wanxia Xiong
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Changhong Miao
- Department of Anaesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Li A, Zhang K, Zhou J, Li M, Fan M, Gao H, Ma R, Gao L, Chen M. Bioinformatics and experimental approach identify lipocalin 2 as a diagnostic and prognostic indicator for lung adenocarcinoma. Int J Biol Macromol 2024; 272:132797. [PMID: 38848833 DOI: 10.1016/j.ijbiomac.2024.132797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 04/12/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND lipocalin 2 (LCN2) is a secreted glycoprotein that plays key roles in tumorigenesis and progression. Interestingly, LCN2 appears to have a contradictory function in developing lung adenocarcinoma (LUAD). Thus, we intend to explore the role of LCN2 in LUAD through bioinformatics and experimental validation. METHODS LCN2 expression of LUAD was investigated in the TCGA, TIMER and HPA databases. The relationship between LCN2 and prognosis was investigated by KM plotter, TCGA and GEO databases. GO, KEGG and protein-protein interactions network analysis were conducted to investigate the potential mechanism of LCN2. The relevance of LCN2 to cancer-immune infiltrates was investigated in the TCGA and TIMER databases. Quantitative reverse transcription PCR, western blot and enzyme-linked immunosorbent assay were performed to identify the expression level of LCN2 in cells and serum samples. The CCK-8, wound healing and transwell assay were used to confirm the effect of LCN2 on cell proliferation, migration and invasion in LUAD. The receiver operating characteristic curve was utilized to assess the diagnostic efficiency of LCN2 further. RESULTS LCN2 expression was significantly upregulated in LUAD (P < 0.05), and was correlated with the clinical stage, tumor size, lymph node metastasis and distant metastasis (P < 0.05). There was a high correlation between high LCN2 and worse prognosis in LUAD. Functional network analysis suggested that LCN2 was associated with multiple signal pathways in cancers, such as JAK-STAT, TNF, NF-κB, HIF-1 and PI3K-Akt signal pathways. In addition, the knockdown of LCN2 significantly inhibited the ability of cell proliferation, migration and invasion. Immune infiltration analysis indicated that LCN2 is associated with multiple immune cell infiltration. Notably, LCN2 demonstrated high diagnostic efficiency for LUAD (AUC = 0.818, P < 0.05), especially for stage III-IV patients could reach 0.895. CONCLUSIONS LCN2 as an oncogenic glycoprotein promotes the cancer progression related to immune infiltrates, which might be a potential diagnostic and prognostic marker in LUAD.
Collapse
Affiliation(s)
- Anqi Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kun Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiejun Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Meng Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Meng Fan
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Hengxing Gao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ruirui Ma
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Le Gao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial Second People's Hospital, Xi'an 710005, China.
| |
Collapse
|
8
|
Guo S, Wang Z. Unveiling the immunosuppressive landscape of pancreatic ductal adenocarcinoma: implications for innovative immunotherapy strategies. Front Oncol 2024; 14:1349308. [PMID: 38590651 PMCID: PMC10999533 DOI: 10.3389/fonc.2024.1349308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC), stands as the fourth leading cause of cancer-related deaths in the United States, marked by challenging treatment and dismal prognoses. As immunotherapy emerges as a promising avenue for mitigating PDAC's malignant progression, a comprehensive understanding of the tumor's immunosuppressive characteristics becomes imperative. This paper systematically delves into the intricate immunosuppressive network within PDAC, spotlighting the significant crosstalk between immunosuppressive cells and factors in the hypoxic acidic pancreatic tumor microenvironment. By elucidating these mechanisms, we aim to provide insights into potential immunotherapy strategies and treatment targets, laying the groundwork for future studies on PDAC immunosuppression. Recognizing the profound impact of immunosuppression on PDAC invasion and metastasis, this discussion aims to catalyze the development of more effective and targeted immunotherapies for PDAC patients.
Collapse
Affiliation(s)
- Songyu Guo
- First Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhenxia Wang
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
9
|
Che R, Wang Q, Li M, Shen J, Ji J. Quantitative Proteomics of Tissue-Infiltrating T Cells From CRC Patients Identified Lipocalin-2 Induces T-Cell Apoptosis and Promotes Tumor Cell Proliferation by Iron Efflux. Mol Cell Proteomics 2024; 23:100691. [PMID: 38072118 PMCID: PMC10792491 DOI: 10.1016/j.mcpro.2023.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/25/2023] [Accepted: 12/07/2023] [Indexed: 01/02/2024] Open
Abstract
T cells play the most pivotal roles in antitumor immunity; the T-cell proteome and the differentially expressed proteins in the tumor immune microenvironment have rarely been identified directly from the clinical samples, especially for tumors that lack effective immunotherapy targets, such as colorectal cancer (CRC). In this study, we analyzed the protein expression pattern of the infiltrating T cells isolated from CRC patients using quantitative proteomics. CD4+ and CD8+ T cells were isolated from clinical samples and labeled by tandem mass tag reagents, and the differentially expressed proteins were quantified by mass spectrometry. The T-cell proteome profiling revealed dysfunctions in these tumor-infiltrating T cells. Specifically, antitumor immunity was suppressed because of differentially expressed metal ion transporters and immunity regulators. For the first time, lipocalin-2 (LCN2) was shown to be significantly upregulated in CD4+ T cells. Quantitative proteomic analysis of LCN2-overexpressed Jurkat cells showed that LCN2 damaged T cells by changes in iron transport. LCN2 induced T-cell apoptosis by reducing cellular iron concentration; moreover, the iron that was transported to the tumor microenvironment aided tumor cell proliferation, promoting tumor development. Meanwhile, LCN2 also influenced tumor progression through immune cytokines and cholesterol metabolism. Our results demonstrated that LCN2 has immunosuppressive functions that can promote tumor development; therefore, it is a potential immunotherapy target for CRC.
Collapse
Affiliation(s)
- Rui Che
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Qingsong Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Minzhe Li
- General Surgery Department, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jian Shen
- General Surgery Department, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
10
|
Li H, Liu Y, Liu Y, Xu L, Sun Z, Zheng D, Liu X, Song C, Zhang Y, Liang H, Yang B, Tian X, Luo J, Chang Q. Tumor-associated astrocytes promote tumor progression of Sonic Hedgehog medulloblastoma by secreting lipocalin-2. Brain Pathol 2024; 34:e13212. [PMID: 37721122 PMCID: PMC10711256 DOI: 10.1111/bpa.13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023] Open
Abstract
Sonic Hedgehog (SHH) subgroup of medulloblastoma (MB) accounts for about 25% of all subgroups of MB. Tumor microenvironment (TME) may play a key role in the tumor progression and therapeutic resistance. Tumor-associated astrocytes (TAAs) are reshaped to drive tumor progression through multiple paracrine signals. However, the mechanism by which TAAs modulate MB cells remains elusive. Here, we illuminated that TAAs showed a specific and dynamic pattern during SHH-MB development. Most TAAs gathered to the tumor margin during the tumor progression, rather than evenly distributed in the early-stage tumors. We further demonstrated that lipocalin-2 (LCN2) secreted by TAAs could promote the tumor growth and was correlated with the poor prognosis of MB patients. Knocking down LCN2 in TAAs in vitro impeded the proliferation and migration abilities of MB cells. In addition, we identified that TAAs accelerated the tumor growth by secreting LCN2 via STAT3 signaling pathway. Accordingly, blockade of STAT3 signaling by its inhibitor WP1066 and AAV-Lcn2 shRNA, respectively, in TAAs abrogated the effects of LCN2 on tumor progression in vitro and in vivo. In summary, we for the first time clarified that LCN2, secreted by TAAs, could promote MB tumor progression via STAT3 pathway and has potential prognostic value. Our findings unveiled a new sight in reprogramming the TME of SHH-MB and provided a potential therapeutic strategy targeting TAAs.
Collapse
Affiliation(s)
- Haishuang Li
- Department of Pathology, School of Basic Medical Sciences, Peking University Third HospitalPeking University Health Science CenterBeijingChina
- Department of Neuropathology, Beijing Neurosurgical Institute, Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third HospitalPeking University Health Science CenterBeijingChina
| | - Yuqing Liu
- Department of Neuropathology, Beijing Neurosurgical Institute, Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yantao Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third HospitalPeking University Health Science CenterBeijingChina
- Department of Neuropathology, Beijing Neurosurgical Institute, Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third HospitalPeking University Health Science CenterBeijingChina
| | - Luzheng Xu
- Department of Medical and Health Analysis CenterPeking University Health Science CenterBeijingChina
| | - Ziwen Sun
- Department of Pathology, School of Basic Medical Sciences, Peking University Third HospitalPeking University Health Science CenterBeijingChina
- Department of Neuropathology, Beijing Neurosurgical Institute, Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third HospitalPeking University Health Science CenterBeijingChina
| | - Danfeng Zheng
- Department of Pathology, School of Basic Medical Sciences, Peking University Third HospitalPeking University Health Science CenterBeijingChina
- Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third HospitalPeking University Health Science CenterBeijingChina
| | - Xiaodan Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third HospitalPeking University Health Science CenterBeijingChina
- Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third HospitalPeking University Health Science CenterBeijingChina
| | - Chen Song
- Department of Medical Genetics, Center for Medical GeneticsPeking University Health Science CenterBeijingChina
| | - Yu Zhang
- Department of Medical Genetics, Center for Medical GeneticsPeking University Health Science CenterBeijingChina
| | - Hui Liang
- Department of Pathology, School of Basic Medical Sciences, Peking University Third HospitalPeking University Health Science CenterBeijingChina
| | - Bao Yang
- Department of Neurosurgery, Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xinxia Tian
- Department of Pathology, School of Basic Medical Sciences, Peking University Third HospitalPeking University Health Science CenterBeijingChina
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical GeneticsPeking University Health Science CenterBeijingChina
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular BiologyPeking University Health Science CenterBeijingChina
| | - Qing Chang
- Department of Neuropathology, Beijing Neurosurgical Institute, Tiantan HospitalCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third HospitalPeking University Health Science CenterBeijingChina
| |
Collapse
|
11
|
Akrida I, Papadaki H. Adipokines and epithelial-mesenchymal transition (EMT) in cancer. Mol Cell Biochem 2023; 478:2419-2433. [PMID: 36715963 DOI: 10.1007/s11010-023-04670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023]
Abstract
Obesity is a significant risk factor for cancer development. Within the tumor microenvironment, adipocytes interact with cancer cells, immune cells, fibroblasts and endothelial cells, and orchestrate several signaling pathways by secreting bioactive molecules, including adipokines. Adipokines or adipocytokines are produced predominantly by adipocytes and function as autocrine, paracrine and endocrine mediators. Adipokines can exert pro- and anti-inflammatory functions, and they play a pivotal role in the state of chronic low-grade inflammation that characterizes obesity. Epithelial-mesenchymal transition (EMT), a complex biological process whereby epithelial cells acquire the invasive, migratory mesenchymal phenotype is well-known to be implicated in cancer progression and metastasis. Emerging evidence suggests that there is a link between adipokines and EMT. This may contribute to the correlation that has been documented between obesity and cancer progression. This review summarizes the existing body of evidence supporting an association between the process of EMT in cancer and the adipokines leptin, adiponectin, resistin, visfatin/NAMPT, lipocalin-2/NGAL, as well as other newly discovered adipokines including chemerin, nesfatin-1/nucleobindin-2, AZGP1, SFRP5 and FABP4.
Collapse
Affiliation(s)
- Ioanna Akrida
- Department of General Surgery, University General Hospital of Patras, Rion, Greece.
- Department of Anatomy-Histology-Embryology, University of Patras Medical School, Rion, Greece.
- Department of Surgery, Department of Anatomy-Histology-Embryology, School of Medicine, University of Patras, 26504, Rion, Greece.
| | - Helen Papadaki
- Department of Anatomy-Histology-Embryology, University of Patras Medical School, Rion, Greece
| |
Collapse
|
12
|
Sisti G, Rubin G, Zhou C, Orth T, Schiattarella A. Neutrophil gelatinase-associated lipocalin as a predictor of pre-eclampsia: A systematic review and meta-analysis. Int J Gynaecol Obstet 2023; 163:63-74. [PMID: 37040030 DOI: 10.1002/ijgo.14777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Protein neutrophil gelatinase-associated lipocalin (NGAL) has been associated with kidney injury and inflammatory conditions. In particular, several studies have found an association between maternal blood and urine levels and the development of pre-eclampsia. OBJECTIVES To examine whether maternal blood and urine levels of NGAL are good predictors of pre-eclampsia. SEARCH STRATEGY The authors searched MEDLINE databases via PubMed, Embase, Scopus, Scielo, Google Scholar, PROSPERO International Prospective Register of Systematic Reviews, and the Cochrane Central Register of Controlled Trials. SELECTION CRITERIA The authors included case-control observational clinical studies comparing protein levels of NGAL in serum and urine in women with pre-eclampsia with uncomplicated pregnancies. Only studies where the collection of blood or urine was peformed before the occurrence of pre-eclampsia were selected. DATA COLLECTION AND ANALYSIS The primary outcome was the difference in NGAL levels in blood or urine between women with and without pre-eclampsia. RESULTS Seven studies in total were included: five studies measuring NGAL in blood and two in urine. Regarding the serum studies, 315 patients were included as cases and 540 as controls. Higher NGAL in maternal blood during all three trimesters together was associated with pre-eclampsia; the standardized mean difference was 1.15 ng/mL (95% confidence interval, 0.92-1.39; P < 0.01). Regarding the urine studies, 39 patients were included as cases and 220 as controls. There was no statistically significant difference between patients with pre-eclampsia and controls regarding urine NGAL. CONCLUSIONS NGAL in maternal blood is higher in patients who later develop pre-eclampsia compared with controls and could be used as a potential predicting test in the routine clinical setting.
Collapse
Affiliation(s)
- Giovanni Sisti
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Arizona College of Medicine, 1501 North Campbell Avenue, Tucson, Arizona, USA
| | - Gal Rubin
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Arizona College of Medicine, 1501 North Campbell Avenue, Tucson, Arizona, USA
| | - Chi Zhou
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Arizona College of Medicine, 1501 North Campbell Avenue, Tucson, Arizona, USA
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Teresa Orth
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Arizona College of Medicine, 1501 North Campbell Avenue, Tucson, Arizona, USA
| | - Antonio Schiattarella
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
13
|
Kim H, Lee JK, Oh AC, Kim HR, Hong YJ. The Usefulness of the Ratio of Antigen-Autoantibody Immune Complexes to Their Free Antigens in the Diagnosis of Non-Small Cell Lung Cancer. Diagnostics (Basel) 2023; 13:2999. [PMID: 37761366 PMCID: PMC10529727 DOI: 10.3390/diagnostics13182999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Autoantibodies against specific lung cancer-associated antigens have been suggested for the performance of lung cancer diagnosis. This study aimed to evaluate the diagnostic performance of the antigen-autoantibody immune complex (AIC) against its free antigens for CYFRA21-1, ProGRP, neutrophil gelatinase-associated lipocalin (NGAL), and neuron-specific enolase (NSE) in non-small cell lung cancer (NSCLC). In total, 85 patients with NSCLC and 120 healthy controls (HCs) were examined using a 9-guanine DNA chip method. The ratios of AICs to their antigens and the combinations of ratios consisting of two to four markers were calculated. The levels of AICs for CYFRA21-1, ProGRP, NGAL, and NSE were higher than those for their free antigens in all participants. The levels of each free antigens distinguished patients with NSCLC from the HCs. The ratios of the AIC to its antigen and seven combinations of two to four ratios were significantly higher in patients with NSCLC than in the HCs. Excellent diagnostic performance was observed for all combination ratios (C4-1), with 85.9% sensitivity and 86.7% specificity at a 3.51 cut-off. Higher sensitivity was observed in the early stages (0-I) and adenocarcinoma than in stages II-IV and other pathological types. Combining all ratios of AICs and their antigens for all four markers was useful when diagnosing NSCLC.
Collapse
Affiliation(s)
- Heyjin Kim
- Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea; (H.K.); (J.K.L.)
| | - Jin Kyung Lee
- Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea; (H.K.); (J.K.L.)
| | - Ae-Chin Oh
- Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea; (H.K.); (J.K.L.)
| | - Hye-Ryoun Kim
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea;
| | - Young Jun Hong
- Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea; (H.K.); (J.K.L.)
| |
Collapse
|
14
|
David TI, Pestov NB, Korneenko TV, Barlev NA. Non-Immunoglobulin Synthetic Binding Proteins for Oncology. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1232-1247. [PMID: 37770391 DOI: 10.1134/s0006297923090043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 09/30/2023]
Abstract
Extensive application of technologies like phage display in screening peptide and protein combinatorial libraries has not only facilitated creation of new recombinant antibodies but has also significantly enriched repertoire of the protein binders that have polypeptide scaffolds without homology to immunoglobulins. These innovative synthetic binding protein (SBP) platforms have grown in number and now encompass monobodies/adnectins, DARPins, lipocalins/anticalins, and a variety of miniproteins such as affibodies and knottins, among others. They serve as versatile modules for developing complex affinity tools that hold promise in both diagnostic and therapeutic settings. An optimal scaffold typically has low molecular weight, minimal immunogenicity, and demonstrates resistance against various challenging conditions, including proteolysis - making it potentially suitable for peroral administration. Retaining functionality under reducing intracellular milieu is also advantageous. However, paramount to its functionality is the scaffold's ability to tolerate mutations across numerous positions, allowing for the formation of a sufficiently large target binding region. This is achieved through the library construction, screening, and subsequent expression in an appropriate system. Scaffolds that exhibit high thermodynamic stability are especially coveted by the developers of new SBPs. These are steadily making their way into clinical settings, notably as antagonists of oncoproteins in signaling pathways. This review surveys the diverse landscape of SBPs, placing particular emphasis on the inhibitors targeting the oncoprotein KRAS, and highlights groundbreaking opportunities for SBPs in oncology.
Collapse
Affiliation(s)
- Temitope I David
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Nikolay B Pestov
- Institute of Biomedical Chemistry, Moscow, 119121, Russia.
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, Moscow, 108819, Russia
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Tatyana V Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Nikolai A Barlev
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, Moscow, 108819, Russia
- Institute of Cytology Russian Academy of Sciences, St.-Petersburg, 194064, Russia
- School of Medicine, Nazarbayev University, Astana, 010000, Kazakhstan
| |
Collapse
|
15
|
Crescenzi E, Leonardi A, Pacifico F. Iron Metabolism in Cancer and Senescence: A Cellular Perspective. BIOLOGY 2023; 12:989. [PMID: 37508419 PMCID: PMC10376531 DOI: 10.3390/biology12070989] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Iron participates in a number of biological processes and plays a crucial role in cellular homeostasis. Alterations in iron metabolism are considered hallmarks of cancer and drivers of aggressive behaviors, such as uncontrolled proliferation, resistance to apoptosis, enhanced metastatic ability, increased cell plasticity and stemness. Furthermore, a dysregulated iron metabolism has been associated with the development of an adverse tumor microenvironment. Alterations in iron metabolism have been described in cellular senescence and in aging. For instance, iron has been shown to accumulate in aged tissues and in age-related diseases. Furthermore, in vitro studies demonstrate increases in iron content in both replicative and stress-induced senescent cells. However, the role, the mechanisms of regulation and dysregulation and the effects of iron metabolism on senescence remain significantly less characterized. In this review, we first provide an overview of iron metabolism and iron regulatory proteins. Then, we summarize alterations in iron homeostasis in cancer and senescence from a cellular point of view.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, CNR, Via S. Pansini, 5, 80131 Naples, Italy
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, "Federico II" University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Francesco Pacifico
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, CNR, Via S. Pansini, 5, 80131 Naples, Italy
| |
Collapse
|
16
|
Tews HC, Elger T, Grewal T, Weidlich S, Vitali F, Buechler C. Fecal and Urinary Adipokines as Disease Biomarkers. Biomedicines 2023; 11:biomedicines11041186. [PMID: 37189804 DOI: 10.3390/biomedicines11041186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The use of biomarkers is of great clinical value for the diagnosis and prognosis of disease and the assessment of treatment efficacy. In this context, adipokines secreted from adipose tissue are of interest, as their elevated circulating levels are associated with a range of metabolic dysfunctions, inflammation, renal and hepatic diseases and cancers. In addition to serum, adipokines can also be detected in the urine and feces, and current experimental evidence on the analysis of fecal and urinary adipokine levels points to their potential as disease biomarkers. This includes increased urinary adiponectin, lipocalin-2, leptin and interleukin-6 (IL-6) levels in renal diseases and an association of elevated urinary chemerin as well as urinary and fecal lipocalin-2 levels with active inflammatory bowel diseases. Urinary IL-6 levels are also upregulated in rheumatoid arthritis and may become an early marker for kidney transplant rejection, while fecal IL-6 levels are increased in decompensated liver cirrhosis and acute gastroenteritis. In addition, galectin-3 levels in urine and stool may emerge as a biomarker for several cancers. With the analysis of urine and feces from patients being cost-efficient and non-invasive, the identification and utilization of adipokine levels as urinary and fecal biomarkers could become a great advantage for disease diagnosis and predicting treatment outcomes. This review article highlights data on the abundance of selected adipokines in urine and feces, underscoring their potential to serve as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Hauke C Tews
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Tanja Elger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Simon Weidlich
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Francesco Vitali
- Department of Medicine 1, Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
17
|
An X, Qin J, Hu X, Zhou Y, Fu B, Wei H. Overexpression of lipocalin 2 in PBX1-deficient decidual NK cells promotes inflammation at the maternal-fetal interface. Am J Reprod Immunol 2023; 89:e13676. [PMID: 36621850 DOI: 10.1111/aji.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/08/2022] [Accepted: 01/02/2023] [Indexed: 01/10/2023] Open
Abstract
PROBLEM Impairment of PBX1 expression in decidual natural killer (dNK) cells is associated with the pathogenesis of unexplained recurrent spontaneous abortion, which results in fetal growth restriction (FGR) by affecting the secretion of downstream growth factors. However, whether other mechanisms limit embryo growth in decidua containing PBX1-deficient natural killer (NK) cells is unknown. METHOD OF STUDY Pbx1f/f ; Ncr1Cre mice were employed to explore the underlying mechanisms by which PBX1- NK cells affect embryonic development. To simulate the clinical testing of pregnant women, Doppler ultrasound imaging was used to detect embryo implantation and development. Differentially expressed genes (DEGs) in PBX1- NK cells that may affect normal pregnancy were screened using RNA-sequencing and real-time PCR. Immune cell changes caused by DEGs were detected by flow cytometry. Finally, the mechanism of FGR was explored by injecting the protein LCN2, corresponding to the selected DEG, into mice. RESULTS We verified the embryonic dysplasia in pregnant Pbx1f/f ; Ncr1Cre mice by Doppler ultrasound imaging and found that LCN2 was upregulated in dNK cells. We also observed higher infiltration of neutrophils and macrophages in the decidua of Pbx1f/f ; Ncr1Cre mice. Finally, we found an increase in the number and activation of neutrophils at the maternal-fetal interface after injecting LCN2 into pregnant mice and observed that these mice showed signs of FGR. CONCLUSION Excessive LCN2 secreted by PBX1- dNK cells at the maternal-fetal interface recruit neutrophils and causes an inflammatory response, which is related to FGR.
Collapse
Affiliation(s)
- Xue An
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Jingkun Qin
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xinyu Hu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Yonggang Zhou
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Binqing Fu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
18
|
Lu Y, Zhu D, Le Q, Wang Y, Wang W. Ruthenium-based antitumor drugs and delivery systems from monotherapy to combination therapy. NANOSCALE 2022; 14:16339-16375. [PMID: 36341705 DOI: 10.1039/d2nr02994d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ruthenium complex is an important compound group for antitumor drug research and development. NAMI-A, KP1019, TLD1433 and other ruthenium complexes have entered clinical research. In recent years, the research on ruthenium antitumor drugs has not been limited to single chemotherapy drugs; other applications of ruthenium complexes have emerged such as in combination therapy. During the development of ruthenium complexes, drug delivery forms of ruthenium antitumor drugs have also evolved from single-molecule drugs to nanodrug delivery systems. The review summarizes the following aspects: (1) ruthenium complexes from monotherapy to combination therapy, including the development of single-molecule compounds, carrier nanomedicine, and self-assembly of carrier-free nanomedicine; (2) ruthenium complexes in the process of ADME in terms of absorption, distribution, metabolism and excretion; (3) the applications of ruthenium complexes in combination therapy, including photodynamic therapy (PDT), photothermal therapy (PTT), photoactivated chemotherapy (PACT), immunotherapy, and their combined application; (4) the future prospects of ruthenium-based antitumor drugs.
Collapse
Affiliation(s)
- Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
- Department of Chemistry, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway
| | - Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
| | - Quynh Le
- Center for Pharmacy, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway.
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, P. R. China.
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing 100069, P. R. China
| | - Wei Wang
- Center for Pharmacy, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway.
- Department of Chemistry, University of Bergen, P. O. Box 7803, 5020 Bergen, Norway
| |
Collapse
|
19
|
Jiang W, Li X, Xiang C, Zhou W. Neutrophils in pancreatic cancer: Potential therapeutic targets. Front Oncol 2022; 12:1025805. [PMID: 36324574 PMCID: PMC9618950 DOI: 10.3389/fonc.2022.1025805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/28/2022] [Indexed: 08/30/2023] Open
Abstract
Pancreatic cancer is a digestive system malignancy and poses a high mortality worldwide. Traditionally, neutrophils have been thought to play a role in acute inflammation. In contrast, their importance during tumor diseases has been less well studied. Generally, neutrophils are recruited into the tumor microenvironment and exert inflammation and tumor-promoting effects. As an essential part of the tumor microenvironment, neutrophils play diverse roles in pancreatic cancer, such as angiogenesis, progression, metastasis and immunosuppression. Additionally, neutrophils can be a new potential therapeutic target in cancer. Inhibitors of cytokines, chemokines and neutrophil extracellular traps can exert antitumor effects. In this review, we describe the role of neutrophils in the development and progression of pancreatic cancer, discuss their potential as therapeutic targets, and aim to provide ideas for improving the prognosis of patients with this malignant tumor disease.
Collapse
Affiliation(s)
- Wenkai Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xin Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Caifei Xiang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
20
|
Candido S, Tomasello B, Lavoro A, Falzone L, Gattuso G, Russo A, Paratore S, McCubrey JA, Libra M. Bioinformatic analysis of the LCN2-SLC22A17-MMP9 network in cancer: The role of DNA methylation in the modulation of tumor microenvironment. Front Cell Dev Biol 2022; 10:945586. [PMID: 36211450 PMCID: PMC9532607 DOI: 10.3389/fcell.2022.945586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Several features of cancer cells such as proliferation, invasion, metastatic spreading, and drug resistance are affected by their interaction with several tumor microenvironment (TME) components, including neutrophil gelatinase-associated lipocalin (NGAL), solute carrier family 22 member 17 (SLC22A17), and matrix metallopeptidase 9 (MMP9). These molecules play a key role in tumor growth, invasion, and iron-dependent metabolism of cancer cells. However, the precise epigenetic mechanisms underlying the gene regulation of Lipocalin 2 (LCN2), SLC22A17, and MMP9 in cancer still remain unclear. To this purpose, computational analysis was performed on TCGA and GTEx datasets to evaluate the expression and DNA methylation status of LCN2, SLC22A17, and MMP9 genes in different tumor types. Correlation analysis between gene/isoforms expression and DNA methylation levels of LCN2, SLC22A17, and MMP9 was performed to investigate the role of DNA methylation in the modulation of these genes. Protein network analysis was carried out using reverse phase protein arrays (RPPA) data to identify protein-protein interactions of the LCN2-SLC22A17-MMP9 network. Furthermore, survival analysis was performed according to gene expression and DNA methylation levels. Our results demonstrated that LCN2 and MMP9 were mainly upregulated in most tumor types, whereas SLC22A17 was largely downregulated, representing a specific hallmark signature for all gastrointestinal tumors. Notably, the expression of LCN2, SLC22A17, and MMP9 genes was negatively affected by promoter methylation. Conversely, intragenic hypermethylation was associated with the overexpression of SLC22A17 and MMP9 genes. Protein network analysis highlighted the role of the LCN2-SLC22A17-MMP9 network in TME by the interaction with fibronectin 1 and claudin 7, especially in rectal tumors. Moreover, the impact of expression and methylation status of LCN2, SLC22A17, and MMP9 on overall survival and progression free interval was tumor type-dependent. Overall, our analyses provide a detailed overview of the expression and methylation status of LCN2, SLC22A17, and MMP9 in all TCGA tumors, indicating that the LCN2-SLC22A17-MMP9 network was strictly regulated by DNA methylation within TME. Our findings pave the way for the identification of novel DNA methylation hotspots with diagnostic and prognostic values and suitable for epi-drug targeting.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| | - Barbara Tomasello
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Luca Falzone
- Epidemiology Unit, IRCCS Istituto Nazionale Tumori “Fondazione G. Pascale”, Naples, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Angela Russo
- Pathological Anatomy Unit, ARNAS Garibaldi Hospital, Catania, Italy
| | - Sabrina Paratore
- Pathological Anatomy Unit, ARNAS Garibaldi Hospital, Catania, Italy
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, Catania, Italy
| |
Collapse
|
21
|
Wang S, Zhang L, Hao D, Wang L, Liu J, Niu Q, Mi L, Peng X, Gao J. Research progress of risk factors and early diagnostic biomarkers of gout-induced renal injury. Front Immunol 2022; 13:908517. [PMID: 36203589 PMCID: PMC9530830 DOI: 10.3389/fimmu.2022.908517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Gout renal injury has an insidious onset, no obvious symptoms, and laboratory abnormalities in the early stages of the disease. The injury is not easily detected, and in many cases, the patients have entered the renal failure stage at the time of diagnosis. Therefore, the detection of gout renal injury–related risk factors and early diagnostic biomarkers of gout renal injury is essential for the prevention and early diagnosis of the disease. This article reviews the research progress in risk factors and early diagnostic biomarkers of gout renal injury.
Collapse
Affiliation(s)
- Sheng Wang
- Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Liyun Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Dongsheng Hao
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Lei Wang
- Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Jiaxi Liu
- Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Qing Niu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Liangyu Mi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xinyue Peng
- Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
| | - Jinfang Gao
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, China
- *Correspondence: Jinfang Gao,
| |
Collapse
|