1
|
Wilar G, Suhandi C, Wathoni N, Fukunaga K, Kawahata I. Nanoparticle-Based Drug Delivery Systems Enhance Treatment of Cognitive Defects. Int J Nanomedicine 2024; 19:11357-11378. [PMID: 39524925 PMCID: PMC11550695 DOI: 10.2147/ijn.s484838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Nanoparticle-based drug delivery presents a promising solution in enhancing therapies for neurological diseases, particularly cognitive impairment. These nanoparticles address challenges related to the physicochemical profiles of drugs that hinder their delivery to the central nervous system (CNS). Benefits include improved solubility due to particle size reduction, enhanced drug penetration across the blood-brain barrier (BBB), and sustained release mechanisms suitable for long-term therapy. Successful application of nanoparticle delivery systems requires careful consideration of their characteristics tailored for CNS delivery, encompassing particle size and distribution, surface charge and morphology, loading capacity, and drug release kinetics. Literature review reveals three main types of nanoparticles developed for cognitive function enhancement: polymeric nanoparticles, lipid-based nanoparticles, and metallic or inorganic nanoparticles. Each type and its production methods possess distinct advantages and limitations. Further modifications such as coating agents or ligand conjugation have been explored to enhance their brain cell uptake. Evidence supporting their development shows improved efficacy outcomes, evidenced by enhanced cognitive function assessments, modulation of pro-oxidant markers, and anti-inflammatory activities. Despite these advancements, clinical trials validating the efficacy of nanoparticle systems in treating cognitive defects are lacking. Therefore, these findings underscore the need for researchers to expedite clinical testing to provide robust evidence of the potential of nanoparticle-based drug delivery systems.
Collapse
Affiliation(s)
- Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
2
|
Lien TS, Sun DS, Chang HH. Targeted Delivery to Dying Cells Through P-Selectin-PSGL-1 Axis: A Promising Strategy for Enhanced Drug Efficacy in Liver Injury Models. Cells 2024; 13:1778. [PMID: 39513885 PMCID: PMC11545035 DOI: 10.3390/cells13211778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
To minimize off-target adverse effects and improve drug efficacy, various tissue-specific drug delivery systems have been developed. However, even in diseased organs, both normal and stressed, dying cells coexist, and a targeted delivery system specifically for dying cells has yet to be explored to mitigate off-target effects within the same organ. This study aimed to establish such a system. By examining the surfaces of dying cells in vitro, we identified P-selectin glycoprotein ligand-1 (PSGL-1) as a universal marker for dying cells, positioning it as a potential target for selective drug delivery. We demonstrated that liposomes conjugated with the PSGL-1 binding protein P-selectin had significantly greater binding efficiency to dying cells compared to control proteins such as E-selectin, L-selectin, galectin-1, and C-type lectin-like receptor 2. Using thioacetamide (TAA) to induce hepatitis and hepatocyte damage in mice, we assessed the effectiveness of our P-selectin-based delivery system. In vivo, P-selectin-conjugated liposomes effectively delivered fluorescent dye and the apoptosis inhibitor z-DEVD to TAA-damaged livers in wild-type mice, but not in PSGL-1 knockout mice. In TAA-treated wild-type mice, unconjugated liposomes required a 100-fold higher z-DEVD dose compared to P-selectin-conjugated liposomes to achieve a comparable, albeit less effective, therapeutic outcome in lowering plasma alanine transaminase levels and alleviating thrombocytopenia. This emphasizes that P-selectin conjugation enhances drug delivery efficiency by approximately 100-fold in mice. These results suggest that P-selectin-based liposomes could be a promising strategy for targeted drug delivery, enabling both diagnosis and treatment by specifically delivering cell-labeling agents and rescue agents to dying cells via the P-selectin-PSGL-1 axis at the individual cell level.
Collapse
Grants
- 104-2320-B-320 -009 -MY3, 107-2311-B-320-002-MY3, 111-2320-B320-006-MY3, 112-2320-B-320-007 National Science and Technology Council, Taiwan
- TCMMP104-06, TCMMP108-04, TCMMP 111-01, TCAS111-02, TCAS-112-02, TCAS113-04, TCRD112-033, TCRD113-041 Tzu-Chi Medical Foundation
Collapse
Affiliation(s)
| | | | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (T.-S.L.); (D.-S.S.)
| |
Collapse
|
3
|
Mohanty S, Desai VM, Jain R, Agrawal M, Dubey SK, Singhvi G. Unveiling the potential of photodynamic therapy with nanocarriers as a compelling therapeutic approach for skin cancer treatment: current explorations and insights. RSC Adv 2024; 14:21915-21937. [PMID: 38989245 PMCID: PMC11234503 DOI: 10.1039/d4ra02564d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Skin carcinoma is one of the most prevalent types of carcinomas. Due to high incidence of side effects in conventional therapies (radiotherapy and chemotherapy), photodynamic therapy (PDT) has gained huge attention as an alternate treatment strategy. PDT involves the administration of photosensitizers (PS) to carcinoma cells which produce reactive oxygen species (ROS) on irradiation by specific wavelengths of light that result in cancer cells' death via apoptosis, autophagy, or necrosis. Topical delivery of PS to the skin cancer cells at the required concentration is a challenge due to the compounds' innate physicochemical characteristics. Nanocarriers have been observed to improve skin permeability and enhance the therapeutic efficiency of PDT. Polymeric nanoparticles (NPs), metallic NPs, and lipid nanocarriers have been reported to carry PS successfully with minimal side effects and high effectiveness in both melanoma and non-melanoma skin cancers. Advanced carriers such as quantum dots, microneedles, and cubosomes have also been addressed with reported studies to show their scope of use in PDT-assisted skin cancer treatment. In this review, nanocarrier-aided PDT in skin cancer therapies has been discussed with clinical trials and patents. Additionally, novel nanocarriers that are being investigated in PDT are also covered with their future prospects in skin carcinoma treatment.
Collapse
Affiliation(s)
- Shambo Mohanty
- Industrial Research Laboratory, Department of Pharmacy, FD-III, Birla Institute of Technology and Science, Pilani (BITS-PILANI) Pilani Campus, Vidya Vihar Pilani Rajasthan 333031 India
| | - Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, FD-III, Birla Institute of Technology and Science, Pilani (BITS-PILANI) Pilani Campus, Vidya Vihar Pilani Rajasthan 333031 India
| | - Rupesh Jain
- Industrial Research Laboratory, Department of Pharmacy, FD-III, Birla Institute of Technology and Science, Pilani (BITS-PILANI) Pilani Campus, Vidya Vihar Pilani Rajasthan 333031 India
| | - Mukta Agrawal
- School of Pharmacy & Technology Management, NMIMS Hyderabad India
| | | | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, FD-III, Birla Institute of Technology and Science, Pilani (BITS-PILANI) Pilani Campus, Vidya Vihar Pilani Rajasthan 333031 India
| |
Collapse
|
4
|
Potapovich AI, Kostyuk TV, Ishutina OV, Shutava TG, Kostyuk VA. Effects of native and particulate polyphenols on DNA damage and cell viability after UV-C exposure. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1923-1930. [PMID: 36864349 DOI: 10.1007/s00210-023-02443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Plant polyphenols have poor water solubility, resulting in low bioavailability. In order to overcome this limitation, the drug molecules can be coated with multiple layers of polymeric materials. Microcrystals of quercetin and resveratrol coated with a (PAH/PSS)4 or (CH/DexS)4 shell were prepared using the layer-by-layer assembly method; cultured human HaCaT keratinocytes were treated with UV-C, and after that, cells were incubated with native and particulate polyphenols. DNA damage, cell viability, and integrity were evaluated by comet assay, using PrestoBlueTM reagent and lactate dehydrogenase (LDH) leakage test. The data obtained indicate that both native and particulate polyphenols added immediately after UV-C exposure increased cell viability in a dose-dependent manner; however, the efficiency of particulate quercetin was more pronounced than that of the native compound; also quercetin coated with a (CH/DexS)4 shell more effectively than the native compound reduced the number of DNA lesions in the nuclei of keratinocytes exposed to UV-C radiation; native and particulate resveratrol were ineffective against DNA damage. Quercetin reduces cell death caused by UV-C radiation and increases DNA repair capacity. Coating quercetin with (CH/DexS)4 shell markedly enhanced its impact on DNA repair.
Collapse
Affiliation(s)
- Alla I Potapovich
- Belarusian State University, Niezaližnasci Avenue, 4, 220030, Minsk, Belarus
| | - Tatyana V Kostyuk
- Belarusian State University, Niezaližnasci Avenue, 4, 220030, Minsk, Belarus
| | - Olga V Ishutina
- Belarusian State University, Niezaližnasci Avenue, 4, 220030, Minsk, Belarus
| | - Tatsiana G Shutava
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 F. Skaryny Street, 220141, Minsk, Belarus
| | - Vladimir A Kostyuk
- Belarusian State University, Niezaližnasci Avenue, 4, 220030, Minsk, Belarus.
| |
Collapse
|
5
|
Udrea AM, Smarandache A, Dinache A, Mares C, Nistorescu S, Avram S, Staicu A. Photosensitizers-Loaded Nanocarriers for Enhancement of Photodynamic Therapy in Melanoma Treatment. Pharmaceutics 2023; 15:2124. [PMID: 37631339 PMCID: PMC10460031 DOI: 10.3390/pharmaceutics15082124] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Malignant melanoma poses a significant global health burden. It is the most aggressive and lethal form of skin cancer, attributed to various risk factors such as UV radiation exposure, genetic modifications, chemical carcinogens, immunosuppression, and fair complexion. Photodynamic therapy is a promising minimally invasive treatment that uses light to activate a photosensitizer, resulting in the formation of reactive oxygen species, which ultimately promote cell death. When selecting photosensitizers for melanoma photodynamic therapy, the presence of melanin should be considered. Melanin absorbs visible radiation similar to most photosensitizers and has antioxidant properties, which undermines the reactive species generated in photodynamic therapy processes. These characteristics have led to further research for new photosensitizing platforms to ensure better treatment results. The development of photosensitizers has advanced with the use of nanotechnology, which plays a crucial role in enhancing solubility, optical absorption, and tumour targeting. This paper reviews the current approaches (that use the synergistic effect of different photosensitizers, nanocarriers, chemotherapeutic agents) in the photodynamic therapy of melanoma.
Collapse
Affiliation(s)
- Ana Maria Udrea
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (A.M.U.); (A.D.); (S.N.)
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Adriana Smarandache
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (A.M.U.); (A.D.); (S.N.)
| | - Andra Dinache
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (A.M.U.); (A.D.); (S.N.)
| | - Catalina Mares
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Simona Nistorescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (A.M.U.); (A.D.); (S.N.)
| | - Speranta Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (C.M.); (S.A.)
| | - Angela Staicu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 077125 Magurele, Romania; (A.M.U.); (A.D.); (S.N.)
| |
Collapse
|
6
|
Jęśkowiak-Kossakowska I, Jawień P, Krzyżak E, Mączyński M, Szafran R, Szeląg A, Janeczek M, Wiatrak B. Search for immunomodulatory compounds with antiproliferative activity against melanoma. Biomed Pharmacother 2023; 160:114374. [PMID: 36774726 DOI: 10.1016/j.biopha.2023.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Melanoma is a highly aggressive neoplasm with a high degree of malignancy and rapid acquisition of resistance by cancer cells. METHODS Biological studies of a series of isoxazole compounds with immunomodulatory properties were preceded by in silico analysis. The assay evaluated the viability of NHDF and A375 cell cultures after the administration of isoxazole compounds after a 24-hour incubation period in the MTT test. Analyzes of ROS and NO scavenging, P-glycoprotein activity, and properties were performed. The levels of Caspase 3 and Caspase 9 were measured using ELISA to assess which pathways induced apoptosis by the tested compounds. On the chip, the synergistic effect of doxorubicin and the most active compound from the MM9 series on cells of the A375 melanoma line was determined. RESULTS All tested N'-substituted derivatives of 5-amino-N,3-dimethyl-1,2-oxazole-4-carbohydrazide with immunomodulatory activity show multidirectional antitumor activity on A375 melanoma lines with an affinity for P-glycoprotein, induction of free radical formation and generation of DNA damage leading to the death of cancer cells, as well as formation of complexes with DNA Topoisomerase II. Most of the tested compounds show pro-apoptotic activity. The most active compound in the series induces apoptosis in three distinct pathways and acts synergistically with doxorubicin. CONCLUSIONS The most active compound with immunomodulatory properties showed multidirectional antitumor activity against cells of the A375 melanoma line and also had a synergistic pro-apoptotic effect with doxorubicin, which may result in a reduction of this cytostatic dose with increased effectiveness.
Collapse
Affiliation(s)
- Izabela Jęśkowiak-Kossakowska
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland.
| | - Paulina Jawień
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wroclaw, Poland.
| | - Edward Krzyżak
- Department of Basic Chemical Sciences, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211a, 50-556 Wrocław, Poland.
| | - Marcin Mączyński
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 211A Borowska Street, 50-556 Wroclaw, Poland.
| | - Roman Szafran
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, ul. Norwida 4/6, 50-373 Wroclaw, Poland.
| | - Adam Szeląg
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland.
| | - Maciej Janeczek
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wroclaw, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland.
| |
Collapse
|
7
|
Chota A, George BP, Abrahamse H. Recent Advances in Green Metallic Nanoparticles for Enhanced Drug Delivery in Photodynamic Therapy: A Therapeutic Approach. Int J Mol Sci 2023; 24:4808. [PMID: 36902238 PMCID: PMC10003542 DOI: 10.3390/ijms24054808] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Globally, cancer is one of the leading causes of death among men and women, it is characterized by the unregulated proliferation of tumor cells. Some of the common risk factors associated with cancer development include the consistent exposure of body cells to carcinogenic agents such as alcohol, tobacco, toxins, gamma rays and alpha particles. Besides the above-mentioned risk factors, conventional therapies such as radiotherapy, and chemotherapy have also been linked to the development of cancer. Over the past decade, tremendous efforts have been invested in the synthesis of eco-friendly green metallic nanoparticles (NPs), and their medical application. Comparatively, metallic NPs have greater advantages over conventional therapies. Additionally, metallic NPs can be functionalized with different targeting moieties e.g., liposomes, antibodies, folic acid, transferrin, and carbohydrates. Herein, we review and discuss the synthesis, and therapeutic potential of green synthesized metallic NPs for enhanced cancer photodynamic therapy (PDT). Finally, the advantages of green hybridized activatable NPs over conventional photosensitizers (PSs) and the future perspectives of nanotechnology in cancer research are discussed in the review. Furthermore, we anticipate that the insights offered in this review will inspire the design and development of green nano-formulations for enhanced image-guided PDT in cancer treatment.
Collapse
Affiliation(s)
| | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa
| | | |
Collapse
|
8
|
Anti-Hypoxia Nanoplatforms for Enhanced Photosensitizer Uptake and Photodynamic Therapy Effects in Cancer Cells. Int J Mol Sci 2023; 24:ijms24032656. [PMID: 36768975 PMCID: PMC9916860 DOI: 10.3390/ijms24032656] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Photodynamic therapy (PDT) holds great promise in cancer eradication due to its target selectivity, non-invasiveness, and low systemic toxicity. However, due to the hypoxic nature of many native tumors, PDT is frequently limited in its therapeutic effect. Additionally, oxygen consumption during PDT may exacerbate the tumor's hypoxic condition, which stimulates tumor proliferation, metastasis, and invasion, resulting in poor treatment outcomes. Therefore, various strategies have been developed to combat hypoxia in PDT, such as oxygen carriers, reactive oxygen supplements, and the modulation of tumor microenvironments. However, most PDT-related studies are still conducted on two-dimensional (2D) cell cultures, which fail to accurately reflect tissue complexity. Thus, three-dimensional (3D) cell cultures are ideal models for drug screening, disease simulation and targeted cancer therapy, since they accurately replicate the tumor tissue architecture and microenvironment. This review summarizes recent advances in the development of strategies to overcome tumor hypoxia for enhanced PDT efficiency, with a particular focus on nanoparticle-based photosensitizer (PS) delivery systems, as well as the advantages of 3D cell cultures.
Collapse
|
9
|
Wang X, Jin T, Xiong J, Zhao H, Hu X, Li Q, Ren J, Zhao Y. Three-dimensional image-guided topical photodynamic therapy system with light dosimetry dynamic planning and monitoring. BIOMEDICAL OPTICS EXPRESS 2023; 14:453-466. [PMID: 36698654 PMCID: PMC9842015 DOI: 10.1364/boe.481248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 05/02/2023]
Abstract
Photodynamic therapy (PDT) has shown significant potential for skin disease treatment. As a key element, light is critical to influencing its treatment outcome, and light dosimetry is an issue of much concern for researchers. However, because of three-dimensional irregularity in shape and patient's movement during the therapy, irradiance hardly keeps uniform on the lesion and flux measurement remains a challenge. In this work, we report the development of a three-dimensional image-guided PDT system, and the method of dynamic irradiance planning and flux monitoring for lesions in different poses. This system comprises a three-dimensional camera for monitoring patients' movement during therapy, a computer for data analysis and processing, and a homemade LED array for forming uniform irradiance on lesions. Simulations on lesions of the face and arm show that the proposed system significantly increases effective therapy area, enhances irradiance uniformity, is able to visualize flux on the lesion, and reduces risks of burns during PDT. The developed PDT system is promising for optimizing procedures of PDT and providing better treatment outcomes by delivering controllable irradiance and flux on lesions even when a patient is moving.
Collapse
Affiliation(s)
- Xu Wang
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Teng Jin
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jiyuan Xiong
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Huiting Zhao
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiaoming Hu
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Qin Li
- Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jie Ren
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Photomedicine Laboratory, Institute of Precision Medicine, Tsinghua University, Beijing, China
| | - Yi Zhao
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Photomedicine Laboratory, Institute of Precision Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Ballestri M, Marras E, Caruso E, Bolognese F, Malacarne MC, Martella E, Tubertini M, Gariboldi MB, Varchi G. Free and Poly-Methyl-Methacrylate-Bounded BODIPYs: Photodynamic and Antimigratory Effects in 2D and 3D Cancer Models. Cancers (Basel) 2022; 15:cancers15010092. [PMID: 36612089 PMCID: PMC9817850 DOI: 10.3390/cancers15010092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Several limitations, including dark toxicity, reduced tumor tissue selectivity, low photostability and poor biocompatibility hamper the clinical use of Photodynamic therapy (PDT) in cancer treatment. To overcome these limitations, new PSs have been synthetized, and often combined with drug delivery systems, to improve selectivity and reduce toxicity. In this context, BODIPYs (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) have recently emerged as promising and easy-to-handle scaffolds for the preparation of effective PDT antitumor agents. In this study, the anticancer photodynamic effect of newly prepared negatively charged polymethyl methacrylate (nPMMA)-bounded BODIPYs (3@nPMMA and 6@nPMMA) was evaluated on a panel of 2D- and 3D-cultured cancer cell lines and compared with free BODIPYs. In particular, the effect on cell viability was evaluated, along with their ability to accumulate into the cells, induce apoptotic and/or necrotic cell death, and inhibit cellular migration. Our results indicated that 3@nPMMA and 6@nPMMA reduce cancer cell viability in 3D models of HC116 and MCF7 cells more effectively than the corresponding free compounds. Importantly, we demonstrated that MDA-MB231 and SKOV3 cell migration ability was significantly impaired by the PDT treatment mediated by 3@nPMMA and 6@nPMMA nanoparticles, likely indicating the capability of this approach to reduce metastatic tumor potential.
Collapse
Affiliation(s)
- Marco Ballestri
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council, 40129 Bologna, Italy
| | - Emanuela Marras
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Enrico Caruso
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Fabrizio Bolognese
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Miryam Chiara Malacarne
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
| | - Elisa Martella
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council, 40129 Bologna, Italy
| | - Matilde Tubertini
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council, 40129 Bologna, Italy
| | - Marzia Bruna Gariboldi
- Department of Biotechnology and Life Sciences (DBSV), University of Insubria, 21100 Varese, Italy
- Correspondence: (M.B.G.); (G.V.); Tel.: +39-033-133-9418 (M.B.C.); +39-051-639-8283 (G.V.)
| | - Greta Varchi
- Institute for the Organic Synthesis and Photoreactivity, Italian National Research Council, 40129 Bologna, Italy
- Correspondence: (M.B.G.); (G.V.); Tel.: +39-033-133-9418 (M.B.C.); +39-051-639-8283 (G.V.)
| |
Collapse
|
11
|
Nkune NW, Matlou GG, Abrahamse H. Photodynamic Therapy Efficacy of Novel Zinc Phthalocyanine Tetra Sodium 2-Mercaptoacetate Combined with Cannabidiol on Metastatic Melanoma. Pharmaceutics 2022; 14:2418. [PMID: 36365236 PMCID: PMC9695911 DOI: 10.3390/pharmaceutics14112418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 04/04/2024] Open
Abstract
This work reports for the first time on the synthesis, characterization, and photodynamic therapy effect of a novel water-soluble zinc (II) 2(3), 9(10), 16(17), 23(24)-tetrakis-(sodium 2-mercaptoacetate) phthalocyanine (ZnPcTS41), on metastatic melanoma cells (A375) combined with cannabidiol (CBD). The ZnPcTS41 structure was confirmed using FTIR, NMR, MS, and elemental analysis while the electronic absorption spectrum was studied using UV-VIS. The study reports further on the dose-dependent effects of ZnPcTS41 (1-8 µM) and CBD alone (0.3-1.1 µM) at 636 nm with 10 J/cm2 on cellular morphology and viability. The IC50 concentrations of ZnPcTS41 and CBD were found to be 5.3 µM and 0.63 µM, respectively. The cytotoxicity effects of the ZnPcTS41 enhanced with CBD on A375 cells were assessed using MTT cell viability assay, ATP cellular proliferation and inverted light microscopy. Cell death induction was also determined via Annexin V-FITC-PI. The combination of CBD- and ZnPcTS41-mediated PDT resulted in a significant reduction in cell viability (15%***) and an increase in the late apoptotic cell population (25%*). These findings suggest that enhancing PDT with anticancer agents such as CBD could possibly obliterate cancer cells and inhibit tumor recurrence.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa
| |
Collapse
|
12
|
Advances in the Application of Nanomaterials to the Treatment of Melanoma. Pharmaceutics 2022; 14:pharmaceutics14102090. [PMID: 36297527 PMCID: PMC9610396 DOI: 10.3390/pharmaceutics14102090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Melanoma can be divided into cutaneous melanoma, uveal melanoma, mucosal melanoma, etc. It is a very aggressive tumor that is prone to metastasis. Patients with metastatic melanoma have a poor prognosis and shorter survival. Although current melanoma treatments have been dramatically improved, there are still many problems such as systemic toxicity and the off-target effects of drugs. The use of nanoparticles may overcome some inadequacies of current melanoma treatments. In this review, we summarize the limitations of current therapies for cutaneous melanoma, uveal melanoma, and mucosal melanoma, as well as the adjunct role of nanoparticles in different treatment modalities. We suggest that nanomaterials may have an effective intervention in melanoma treatment in the future.
Collapse
|
13
|
Tong L, Zhang S, Huang R, Yi H, Wang JW. Extracellular vesicles as a novel photosensitive drug delivery system for enhanced photodynamic therapy. Front Bioeng Biotechnol 2022; 10:1032318. [PMID: 36237218 PMCID: PMC9550933 DOI: 10.3389/fbioe.2022.1032318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising non-invasive therapeutic approach that utilizes photosensitizers (PSs) to generate highly reactive oxygen species (ROS), including singlet oxygen, for removal of targeted cells. PDT has been proven efficacious for the treatment of several diseases, including cancer, cardiovascular disease, inflammatory bowel disease, and diabetic ocular disease. However, the therapeutic efficacy of PDT is limited and often accompanied by side effects, largely due to non-specific delivery of PSs beyond the desired lesion site. Over the past decade, despite various nanoparticular drug delivery systems developed have markedly improved the treatment efficacy while reducing the off-target effects of PSs, concerns over the safety and toxicity of synthetic nanomaterials following intravenous administration are raised. Extracellular vesicles (EVs), a type of nanoparticle released from cells, are emerging as a natural drug delivery system for PSs in light of EV's potentially low immunogenicity and biocompatibility compared with other nanoparticles. This review aims to provide an overview of the research progress in PS delivery systems and propose EVs as an alternative PS delivery system for PDT. Moreover, the challenges and future perspectives of EVs for PS delivery are discussed.
Collapse
Affiliation(s)
- Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Sitong Zhang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rong Huang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Iron oxide nanoparticles coated with polydopamine as a potential nano-photothermal agent for treatment of melanoma cancer: an in vivo study. Lasers Med Sci 2022; 37:3413-3421. [PMID: 35900685 DOI: 10.1007/s10103-022-03599-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/19/2022] [Indexed: 10/16/2022]
Abstract
Melanoma is a metastatic cancer resistant to a wide range of therapies, including standard chemotherapy and radiation therapy, and cannot be treated with existing treatments owing to its intrinsic drug resistance. In terms of convenience and cheap cost of fabrication, one of the novel treatments is using polydopamine-coated iron oxide nanoparticles (IONs@PDA). Iron oxide nanoparticles (IONs) were synthesized (7.36 nm) and coated with polydopamine (15-20 nm). To examine the effect of photothermal ablation in melanoma cells (B16-F10), a Q-switched ruby laser (λ = 694 nm, spot size = 4 mm, output power = 5 J/s) was used. The prepared nanoprobe was applied to mice, and their survival after treatment was evaluated. Then histopathological studies were done on the livers and skins of the treated mice. The nanoparticles absorb the laser, raising the temperature and initiating photothermal treatment, with significant apoptosis (74%) after the 4th time of treatment. Photothermal therapy (PTT) by using IONs@PDA proved to be effective in the treatment of melanoma cells (tumor size of < 2 mm) without side effects. The lifespan of mice was significantly increased in a group of mice post-administered IONs@PDA and laser ablation. The fabricated nanoprobe (IONs@PDA) enhanced the melanoma cell apoptosis in the mice model, and it has promise for the treatment of melanoma (B16-F10) cells using photothermal therapy.
Collapse
|
15
|
Chu S, Shi X, Tian Y, Gao F. pH-Responsive Polymer Nanomaterials for Tumor Therapy. Front Oncol 2022; 12:855019. [PMID: 35392227 PMCID: PMC8980858 DOI: 10.3389/fonc.2022.855019] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
The complexity of the tumor microenvironment presents significant challenges to cancer therapy, while providing opportunities for targeted drug delivery. Using characteristic signals of the tumor microenvironment, various stimuli-responsive drug delivery systems can be constructed for targeted drug delivery to tumor sites. Among these, the pH is frequently utilized, owing to the pH of the tumor microenvironment being lower than that of blood and healthy tissues. pH-responsive polymer carriers can improve the efficiency of drug delivery in vivo, allow targeted drug delivery, and reduce adverse drug reactions, enabling multifunctional and personalized treatment. pH-responsive polymers have gained increasing interest due to their advantageous properties and potential for applicability in tumor therapy. In this review, recent advances in, and common applications of, pH-responsive polymer nanomaterials for drug delivery in cancer therapy are summarized, with a focus on the different types of pH-responsive polymers. Moreover, the challenges and future applications in this field are prospected.
Collapse
Affiliation(s)
- Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Fengxiang Gao
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
16
|
Nkune NW, Kruger CA, Abrahamse H. Synthesis of a novel nanobioconjugate for targeted photodynamic therapy of colon cancer enhanced with cannabidiol. Oncotarget 2022; 13:156-172. [PMID: 35070080 PMCID: PMC8768846 DOI: 10.18632/oncotarget.28171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising primary treatment option for colorectal cancer (CRC), however CRC is accelerated by resilient CRC stem-like cells, which decrease its efficacy. In recent years, researchers have shown an emerging interest in the anticancer stem cell effects of cannabidiol (CBD). This study developed a targeted nanobioconjugate for specific ZnPcS4 photosensitizer intracellular accumulation within in vitro cultured human CRC cells (CaCo-2) for enhanced PDT primary treatment, as well as limited its secondary spread by combining this treatment with CBD. The final nanobioconjugate (FNBC) was successfully synthesized and characterized using various methods. The cytotoxicity of the FNBC and CBD were tested on CRC cells using laser irradiation at 673 nm with a fluency of 10 J/cm2. 24 h post treatment, morphological changes were assessed via microscopy, cell viability was measured using Annexin V-FITC and cellular nuclear DNA was visualized under fluorescent microscopy, following Hoechst staining. FNBC and CBD combinative treatment induced the most significant photodamage, leaving a staggering 6%*** viable cells. Overall, through active targeting of CRC cells using the FNBC, the enhanced PDT primary treatment of CRC was achieved, and the combinative treatment with CBD noted significant limitations on its secondary spread.
Collapse
Affiliation(s)
- Nkune Williams Nkune
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Cherie Ann Kruger
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|