1
|
Zhai W, Yang W, Ge J, Xiao X, Wu K, She K, Zhou Y, Kong Y, Wu L, Luo S, Pu X. ADAMTS4 exacerbates lung cancer progression via regulating c-Myc protein stability and activating MAPK signaling pathway. Biol Direct 2024; 19:94. [PMID: 39415271 PMCID: PMC11483991 DOI: 10.1186/s13062-024-00512-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/08/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Lung cancer is one of the most frequent cancers and the leading cause of cancer-related deaths worldwide with poor prognosis. A disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) is crucial in the regulation of the extracellular matrix (ECM), impacting its formation, homeostasis and remodeling, and has been linked to cancer progression. However, the specific involvement of ADAMTS4 in the development of lung cancer remains unclear. METHODS ADAMTS4 expression was identified in human lung cancer samples by immunohistochemical (IHC) staining and the correlation of ADAMTS4 with clinical outcome was determined. The functional impact of ADAMTS4 on malignant phenotypes of lung cancer cells was explored both in vitro and in vivo. The mechanisms underlying ADAMTS4-mediated lung cancer progression were explored by ubiquitination-related assays. RESULTS Our study revealed a significant upregulation of ADAMTS4 at the protein level in lung cancer tissues compared to para-carcinoma normal tissues. High ADAMTS4 expression inversely correlated with the prognosis of lung cancer patients. Knockdown of ADAMTS4 inhibited the proliferation and migration of lung cancer cells, as well as the tubule formation of HUVECs, while ADAMTS4 overexpression exerted opposite effects. Mechanistically, we found that ADAMTS4 stabilized c-Myc by inhibiting its ubiquitination, thereby promoting the in vitro and in vivo growth of lung cancer cells and inducing HUVECs tubule formation in lung cancer. In addition, our results suggested that ADAMTS4 overexpression activated MAPK signaling pathway. CONCLUSIONS We highlighted the promoting role of ADAMTS4 in lung cancer progression and proposed ADAMTS4 as a promising therapeutic target for lung cancer patients.
Collapse
Affiliation(s)
- Wei Zhai
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Wensheng Yang
- Department of Thoracic Surgery, The Affiliated Shaoyang Hospital, Hengyang Medical School, University of South China, No. 36, Hongqi Road, Daxiang District, Shaoyang, 422000, Hunan, China
| | - Jing Ge
- Department of Geriatrics and Institute of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277, Jiefang Road, Wuhan, 430030, Hubei, China
| | - Xuelian Xiao
- Department of Medical Administration, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Kang Wu
- Sansure Biotech Inc.,, No. 680, Lusong Road, Yuelu District, Changsha, 410205, Hunan, China
| | - Kelin She
- Department of Thoracic Surgery, Hunan Provincial Pecople's Hospital, The First Affiliated Hospital of Huan Nomal University, No. 61, Jiefang West Road, Furong District, Changsha, 410013, Hunan, China
| | - Yu Zhou
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Yi Kong
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Lin Wu
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Shiya Luo
- Sansure Biotech Inc.,, No. 680, Lusong Road, Yuelu District, Changsha, 410205, Hunan, China
| | - Xingxiang Pu
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Sharma Y, Ghatak S, Sen CK, Mohanty S. Emerging technologies in regenerative medicine: The future of wound care and therapy. J Mol Med (Berl) 2024:10.1007/s00109-024-02493-x. [PMID: 39358606 DOI: 10.1007/s00109-024-02493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Wound healing, an intricate biological process, comprises orderly phases of simple biological processed including hemostasis, inflammation, angiogenesis, cell proliferation, and ECM remodeling. The regulation of the shift in these phases can be influenced by systemic or environmental conditions. Any untimely transitions between these phases can lead to chronic wounds and scarring, imposing a significant socio-economic burden on patients. Current treatment modalities are largely supportive in nature and primarily involve the prevention of infection and controlling inflammation. This often results in delayed healing and wound complications. Recent strides in regenerative medicine and tissue engineering offer innovative and patient-specific solutions. Mesenchymal stem cells (MSCs) and their secretome have gained specific prominence in this regard. Additionally, technologies like tissue nano-transfection enable in situ gene editing, a need-specific approach without the requirement of complex laboratory procedures. Innovating approaches like 3D bioprinting and ECM bioscaffolds also hold the potential to address wounds at the molecular and cellular levels. These regenerative approaches target common healing obstacles, such as hyper-inflammation thereby promoting self-recovery through crucial signaling pathway stimulation. The rationale of this review is to examine the benefits and limitations of both current and emerging technologies in wound care and to offer insights into potential advancements in the field. The shift towards such patient-centric therapies reflects a paradigmatic change in wound care strategies.
Collapse
Affiliation(s)
- Yashvi Sharma
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
3
|
Chalard AE, Porritt H, Lam Po Tang EJ, Taberner AJ, Winbo A, Ahmad AM, Fitremann J, Malmström J. Dynamic composite hydrogels of gelatin methacryloyl (GelMA) with supramolecular fibers for tissue engineering applications. BIOMATERIALS ADVANCES 2024; 163:213957. [PMID: 39024864 DOI: 10.1016/j.bioadv.2024.213957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
In the field of tissue engineering, there is a growing need for biomaterials with structural properties that replicate the native characteristics of the extracellular matrix (ECM). It is important to include fibrous structures into ECM mimics, especially when constructing scar models. Additionally, including a dynamic aspect to cell-laden biomaterials is particularly interesting, since native ECM is constantly reshaped by cells. Composite hydrogels are developed to bring different combinations of structures and properties to a scaffold by using different types and sources of materials. In this work, we aimed to combine gelatin methacryloyl (GelMA) with biocompatible supramolecular fibers made of a small self-assembling sugar-derived molecule (N-heptyl-D-galactonamide, GalC7). The GalC7 fibers were directly grown in the GelMA through a thermal process, and it was shown that the presence of the fibrous network increased the Young's modulus of GelMA. Due to the non-covalent interactions that govern the self-assembly, these fibers were observed to dissolve over time, leading to a dynamic softening of the composite gels. Cardiac fibroblast cells were successfully encapsulated into composite gels for 7 days, showing excellent biocompatibility and fibroblasts extending in an elongated morphology, most likely in the channels left by the fibers after their degradation. These novel composite hydrogels present unique properties and could be used as tools to study biological processes such as fibrosis, vascularization and invasion.
Collapse
Affiliation(s)
- Anaïs E Chalard
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Harrison Porritt
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Emily J Lam Po Tang
- The Auckland Bioengineering Institute (ABI), The University of Auckland, Auckland, New Zealand
| | - Andrew J Taberner
- The Auckland Bioengineering Institute (ABI), The University of Auckland, Auckland, New Zealand; Department of Engineering Science and Biomedical Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
| | - Annika Winbo
- Department of Physiology, The University of Auckland, Auckland, New Zealand; Manaaki Manawa Centre for Heart Research, The University of Auckland, Auckland, New Zealand
| | - Amatul M Ahmad
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Juliette Fitremann
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Jenny Malmström
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| |
Collapse
|
4
|
Quílez C, Bebiano LB, Jones E, Maver U, Meesters L, Parzymies P, Petiot E, Rikken G, Risueño I, Zaidi H, Zidarič T, Bekeschus S, H van den Bogaard E, Caley M, Colley H, López NG, Letsiou S, Marquette C, Maver T, Pereira RF, Tobin DJ, Velasco D. Targeting the Complexity of In Vitro Skin Models: A Review of Cutting-Edge Developments. J Invest Dermatol 2024:S0022-202X(24)01499-4. [PMID: 39127929 DOI: 10.1016/j.jid.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Accepted: 04/10/2024] [Indexed: 08/12/2024]
Abstract
Skin in vitro models offer much promise for research, testing drugs, cosmetics, and medical devices, reducing animal testing and extensive clinical trials. There are several in vitro approaches to mimicking human skin behavior, ranging from simple cell monolayer to complex organotypic and bioengineered 3-dimensional models. Some have been approved for preclinical studies in cosmetics, pharmaceuticals, and chemicals. However, development of physiologically reliable in vitro human skin models remains in its infancy. This review reports on advances in in vitro complex skin models to study skin homeostasis, aging, and skin disease.
Collapse
Affiliation(s)
- Cristina Quílez
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Luís B Bebiano
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
| | - Eleri Jones
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia; Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Luca Meesters
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Piotr Parzymies
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Emma Petiot
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Gijs Rikken
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ignacio Risueño
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
| | - Hamza Zaidi
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Tanja Zidarič
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Sander Bekeschus
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Rostock, Germany; ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP Greifswald), Greifswald, Germany
| | | | - Matthew Caley
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Helen Colley
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Nuria Gago López
- Melanoma group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sophia Letsiou
- Department of Biomedical Sciences, University of West Attica, Athens, Greece; Department of Food Science and Technology, University of West Attica, Athens, Greece
| | - Christophe Marquette
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Tina Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia; Department of Pharmacology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rúben F Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Desmond J Tobin
- Charles Institute of Dermatology, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Diego Velasco
- Bioengineering Department, Universidad Carlos III de Madrid, Leganés, Spain; Fundación Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain.
| |
Collapse
|
5
|
Madzharova E, Sabino F, Kalogeropoulos K, Francavilla C, Auf dem Keller U. Substrate O-glycosylation actively regulates extracellular proteolysis. Protein Sci 2024; 33:e5128. [PMID: 39074261 DOI: 10.1002/pro.5128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/30/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024]
Abstract
Extracellular proteolysis critically regulates cellular and tissue responses and is often dysregulated in human diseases. The crosstalk between proteolytic processing and other major post-translational modifications (PTMs) is emerging as an important regulatory mechanism to modulate protease activity and maintain cellular and tissue homeostasis. Here, we focus on matrix metalloproteinase (MMP)-mediated cleavages and N-acetylgalactosamine (GalNAc)-type of O-glycosylation, two major PTMs of proteins in the extracellular space. We investigated the influence of truncated O-glycan trees, also referred to as Tn antigen, following the inactivation of C1GALT1-specific chaperone 1 (COSMC) on the general and MMP9-specific proteolytic processing in MDA-MB-231 breast cancer cells. Quantitative assessment of the proteome and N-terminome using terminal amine isotopic labelling of substrates (TAILS) technology revealed enhanced proteolysis by MMP9 within the extracellular proteomes of MDA-MB-231 cells expressing Tn antigen. In addition, we detected substantial modifications in the proteome and discovered novel ectodomain shedding events regulated by the truncation of O-glycans. These results highlight the critical role of mature O-glycosylation in fine-tuning proteolytic processing and proteome homeostasis by modulating protein susceptibility to proteolytic degradation. These data suggest a complex interplay between proteolysis and O-GalNAc glycosylation, possibly affecting cancer phenotypes.
Collapse
Affiliation(s)
- Elizabeta Madzharova
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Fabio Sabino
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Chiara Francavilla
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
6
|
Yin S, Wu H, Huang Y, Lu C, Cui J, Li Y, Xue B, Wu J, Jiang C, Gu X, Wang W, Cao Y. Structurally and mechanically tuned macroporous hydrogels for scalable mesenchymal stem cell-extracellular matrix spheroid production. Proc Natl Acad Sci U S A 2024; 121:e2404210121. [PMID: 38954541 PMCID: PMC11253011 DOI: 10.1073/pnas.2404210121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/01/2024] [Indexed: 07/04/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are essential in regenerative medicine. However, conventional expansion and harvesting methods often fail to maintain the essential extracellular matrix (ECM) components, which are crucial for their functionality and efficacy in therapeutic applications. Here, we introduce a bone marrow-inspired macroporous hydrogel designed for the large-scale production of MSC-ECM spheroids. Through a soft-templating approach leveraging liquid-liquid phase separation, we engineer macroporous hydrogels with customizable features, including pore size, stiffness, bioactive ligand distribution, and enzyme-responsive degradability. These tailored environments are conducive to optimal MSC proliferation and ease of harvesting. We find that soft hydrogels enhance mechanotransduction in MSCs, establishing a standard for hydrogel-based 3D cell culture. Within these hydrogels, MSCs exist as both cohesive spheroids, preserving their innate vitality, and as migrating entities that actively secrete functional ECM proteins. Additionally, we also introduce a gentle, enzymatic harvesting method that breaks down the hydrogels, allowing MSCs and secreted ECM to naturally form MSC-ECM spheroids. These spheroids display heightened stemness and differentiation capacity, mirroring the benefits of a native ECM milieu. Our research underscores the significance of sophisticated materials design in nurturing distinct MSC subpopulations, facilitating the generation of MSC-ECM spheroids with enhanced therapeutic potential.
Collapse
Affiliation(s)
- Sheng Yin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250021, China
| | - Haipeng Wu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250021, China
| | - Yaying Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
| | - Chenjing Lu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250021, China
| | - Jian Cui
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
| | - Ying Li
- Institute of Advanced Materials and Flexible Electronics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing210044, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
| | - Junhua Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250021, China
- Medical School, Nanjing University, Nanjing210093, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250021, China
- Medical School, Nanjing University, Nanjing210093, China
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing210008, China
| | - Xiaosong Gu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250021, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
- Institute for Brain Sciences, Nanjing University, Nanjing210093, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan250021, China
- Institute for Brain Sciences, Nanjing University, Nanjing210093, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210093, China
- Chemistry and Biomedicine Innovation Center, the Ministry of Education Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| |
Collapse
|
7
|
Barbinta-Patrascu ME, Bita B, Negut I. From Nature to Technology: Exploring the Potential of Plant-Based Materials and Modified Plants in Biomimetics, Bionics, and Green Innovations. Biomimetics (Basel) 2024; 9:390. [PMID: 39056831 PMCID: PMC11274542 DOI: 10.3390/biomimetics9070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
This review explores the extensive applications of plants in areas of biomimetics and bioinspiration, highlighting their role in developing sustainable solutions across various fields such as medicine, materials science, and environmental technology. Plants not only serve essential ecological functions but also provide a rich source of inspiration for innovations in green nanotechnology, biomedicine, and architecture. In the past decade, the focus has shifted towards utilizing plant-based and vegetal waste materials in creating eco-friendly and cost-effective materials with remarkable properties. These materials are employed in making advancements in drug delivery, environmental remediation, and the production of renewable energy. Specifically, the review discusses the use of (nano)bionic plants capable of detecting explosives and environmental contaminants, underscoring their potential in improving quality of life and even in lifesaving applications. The work also refers to the architectural inspirations drawn from the plant world to develop novel design concepts that are both functional and aesthetic. It elaborates on how engineered plants and vegetal waste have been transformed into value-added materials through innovative applications, especially highlighting their roles in wastewater treatment and as electronic components. Moreover, the integration of plants in the synthesis of biocompatible materials for medical applications such as tissue engineering scaffolds and artificial muscles demonstrates their versatility and capacity to replace more traditional synthetic materials, aligning with global sustainability goals. This paper provides a comprehensive overview of the current and potential uses of living plants in technological advancements, advocating for a deeper exploration of vegetal materials to address pressing environmental and technological challenges.
Collapse
Affiliation(s)
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 077125 Magurele, Romania;
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| |
Collapse
|
8
|
Rezapour M, Walker SJ, Ornelles DA, McNutt PM, Atala A, Gurcan MN. Analysis of gene expression dynamics and differential expression in viral infections using generalized linear models and quasi-likelihood methods. Front Microbiol 2024; 15:1342328. [PMID: 38655085 PMCID: PMC11037428 DOI: 10.3389/fmicb.2024.1342328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Our study undertakes a detailed exploration of gene expression dynamics within human lung organ tissue equivalents (OTEs) in response to Influenza A virus (IAV), Human metapneumovirus (MPV), and Parainfluenza virus type 3 (PIV3) infections. Through the analysis of RNA-Seq data from 19,671 genes, we aim to identify differentially expressed genes under various infection conditions, elucidating the complexities of virus-host interactions. Methods We employ Generalized Linear Models (GLMs) with Quasi-Likelihood (QL) F-tests (GLMQL) and introduce the novel Magnitude-Altitude Score (MAS) and Relaxed Magnitude-Altitude Score (RMAS) algorithms to navigate the intricate landscape of RNA-Seq data. This approach facilitates the precise identification of potential biomarkers, highlighting the host's reliance on innate immune mechanisms. Our comprehensive methodological framework includes RNA extraction, library preparation, sequencing, and Gene Ontology (GO) enrichment analysis to interpret the biological significance of our findings. Results The differential expression analysis unveils significant changes in gene expression triggered by IAV, MPV, and PIV3 infections. The MAS and RMAS algorithms enable focused identification of biomarkers, revealing a consistent activation of interferon-stimulated genes (e.g., IFIT1, IFIT2, IFIT3, OAS1) across all viruses. Our GO analysis provides deep insights into the host's defense mechanisms and viral strategies exploiting host cellular functions. Notably, changes in cellular structures, such as cilium assembly and mitochondrial ribosome assembly, indicate a strategic shift in cellular priorities. The precision of our methodology is validated by a 92% mean accuracy in classifying respiratory virus infections using multinomial logistic regression, demonstrating the superior efficacy of our approach over traditional methods. Discussion This study highlights the intricate interplay between viral infections and host gene expression, underscoring the need for targeted therapeutic interventions. The stability and reliability of the MAS/RMAS ranking method, even under stringent statistical corrections, and the critical importance of adequate sample size for biomarker reliability are significant findings. Our comprehensive analysis not only advances our understanding of the host's response to viral infections but also sets a new benchmark for the identification of biomarkers, paving the way for the development of effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mostafa Rezapour
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Stephen J. Walker
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - David A. Ornelles
- Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Patrick M. McNutt
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Metin Nafi Gurcan
- Center for Artificial Intelligence Research, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
9
|
Kornsuthisopon C, Nowwarote N, Chansaenroj A, Photichailert S, Rochanavibhata S, Klincumhom N, Petit S, Dingli F, Loew D, Fournier BPJ, Osathanon T. Human dental pulp stem cells derived extracellular matrix promotes mineralization via Hippo and Wnt pathways. Sci Rep 2024; 14:6777. [PMID: 38514682 PMCID: PMC10957957 DOI: 10.1038/s41598-024-56845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Extracellular matrix (ECM) is an intricate structure providing the microenvironment niche that influences stem cell differentiation. This study aimed to investigate the efficacy of decellularized ECM derived from human dental pulp stem cells (dECM_DPSCs) and gingival-derived mesenchymal stem cells (dECM_GSCs) as an inductive scaffold for osteogenic differentiation of GSCs. The proteomic analysis demonstrated that common and signature matrisome proteins from dECM_DPSCs and dECM_GSCs were related to osteogenesis/osteogenic differentiation. RNA sequencing data from GSCs reseeded on dECM_DPSCs revealed that dECM_DPSCs upregulated genes related to the Hippo and Wnt signaling pathways in GSCs. In the inhibitor experiments, results revealed that dECM_DPSCs superiorly promoted GSCs osteogenic differentiation, mainly mediated through Hippo and Wnt signaling. The present study emphasizes the promising translational application of dECM_DPSCs as a bio-scaffold rich in favorable regenerative microenvironment for tissue engineering.
Collapse
Affiliation(s)
- Chatvadee Kornsuthisopon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd. Pathumwan, Bangkok, 10330, Thailand
| | - Nunthawan Nowwarote
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR1138, Molecular Oral Pathophysiology, 75006, Paris, France
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, 75006, Paris, France
| | - Ajjima Chansaenroj
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd. Pathumwan, Bangkok, 10330, Thailand
| | - Suphalak Photichailert
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd. Pathumwan, Bangkok, 10330, Thailand
| | - Sunisa Rochanavibhata
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nuttha Klincumhom
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd. Pathumwan, Bangkok, 10330, Thailand
| | - Stephane Petit
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, 75006, Paris, France
| | - Florent Dingli
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, PSL Research University, 26 Rue d'Ulm, 75248 Cedex 05, Paris, France
| | - Damarys Loew
- Institut Curie, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, PSL Research University, 26 Rue d'Ulm, 75248 Cedex 05, Paris, France
| | - Benjamin P J Fournier
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR1138, Molecular Oral Pathophysiology, 75006, Paris, France.
- Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, 75006, Paris, France.
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Rd. Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
10
|
Mishra J, Chakraborty S, Niharika, Roy A, Manna S, Baral T, Nandi P, Patra SK. Mechanotransduction and epigenetic modulations of chromatin: Role of mechanical signals in gene regulation. J Cell Biochem 2024; 125:e30531. [PMID: 38345428 DOI: 10.1002/jcb.30531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 03/12/2024]
Abstract
Mechanical forces may be generated within a cell due to tissue stiffness, cytoskeletal reorganization, and the changes (even subtle) in the cell's physical surroundings. These changes of forces impose a mechanical tension within the intracellular protein network (both cytosolic and nuclear). Mechanical tension could be released by a series of protein-protein interactions often facilitated by membrane lipids, lectins and sugar molecules and thus generate a type of signal to drive cellular processes, including cell differentiation, polarity, growth, adhesion, movement, and survival. Recent experimental data have accentuated the molecular mechanism of this mechanical signal transduction pathway, dubbed mechanotransduction. Mechanosensitive proteins in the cell's plasma membrane discern the physical forces and channel the information to the cell interior. Cells respond to the message by altering their cytoskeletal arrangement and directly transmitting the signal to the nucleus through the connection of the cytoskeleton and nucleoskeleton before the information despatched to the nucleus by biochemical signaling pathways. Nuclear transmission of the force leads to the activation of chromatin modifiers and modulation of the epigenetic landscape, inducing chromatin reorganization and gene expression regulation; by the time chemical messengers (transcription factors) arrive into the nucleus. While significant research has been done on the role of mechanotransduction in tumor development and cancer progression/metastasis, the mechanistic basis of force-activated carcinogenesis is still enigmatic. Here, in this review, we have discussed the various cues and molecular connections to better comprehend the cellular mechanotransduction pathway, and we also explored the detailed role of some of the multiple players (proteins and macromolecular complexes) involved in mechanotransduction. Thus, we have described an avenue: how mechanical stress directs the epigenetic modifiers to modulate the epigenome of the cells and how aberrant stress leads to the cancer phenotype.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, Biochemistry and Molecular Biology Group, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
11
|
Zhu Y, Yang M, Xu W, Zhang Y, Pan L, Wang L, Wang F, Lu Y. The collagen matrix regulates the survival and function of pancreatic islets. Endocrine 2024; 83:537-547. [PMID: 37999835 DOI: 10.1007/s12020-023-03592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
The extracellular matrix (ECM) provides an appropriate microenvironment for many kinds of cells, including pancreatic cells. Collagens are the most abundant components of the ECM. Type I, IV, V and VI collagen has been detected in pancreatic islets, and each type plays important role in the proliferation, survival, function and differentiation of pancreatic cells. In some cases, collagens show behaviours similar to those of growth factors and regulate the biological behaviour of β cells by binding with certain growth factors, including IGFs, EGFs and FGFs. The transcriptional coactivator YAP/TAZ has been widely recognised as a mechanosensor that senses changes in the physical characteristics of the ECM and inhibition of YAP/TAZ enhances insulin production and secretion. Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterised by the destruction of insulin-producing β cells. The crosstalk between collagens and immune cells plays a key role in the development and differentiation of immune cells. Further, Supplementation with collagens during islet transplantation is a promising strategy for improving the quality of the islets. But, excessive collagen deposition results in pancreatic fibrosis and pancreatic carcinoma. Targeting inhibit Piezo, autophagy or IL-6 may reduce excessive collagen deposition-induced pancreatic fibrosis and pancreatic carcinoma. This review provides insights into the treatment of T1DM to prolong life expectancy and provides the potential targets for treating collagen deposition-induced pancreatic fibrosis and pancreatic carcinoma.
Collapse
Affiliation(s)
- Yingying Zhu
- Traditional Chinese Medical college, Shandong University of Traditional Chinese Medicine, Jinan, 250300, Shandong, China
| | - Mei Yang
- Traditional Chinese Medical college, Shandong University of Traditional Chinese Medicine, Jinan, 250300, Shandong, China
| | - Wanli Xu
- Traditional Chinese Medical college, Shandong University of Traditional Chinese Medicine, Jinan, 250300, Shandong, China
| | - Yun Zhang
- Traditional Chinese Medical college, Shandong University of Traditional Chinese Medicine, Jinan, 250300, Shandong, China
| | - Linlin Pan
- Traditional Chinese Medical college, Shandong University of Traditional Chinese Medicine, Jinan, 250300, Shandong, China
| | - Lina Wang
- Traditional Chinese Medical college, Shandong University of Traditional Chinese Medicine, Jinan, 250300, Shandong, China
| | - Furong Wang
- Traditional Chinese Medical college, Shandong University of Traditional Chinese Medicine, Jinan, 250300, Shandong, China.
| | - Yanting Lu
- Traditional Chinese Medical college, Shandong University of Traditional Chinese Medicine, Jinan, 250300, Shandong, China.
| |
Collapse
|
12
|
Radzki D, Negri A, Kusiak A, Obuchowski M. Matrix Metalloproteinases in the Periodontium-Vital in Tissue Turnover and Unfortunate in Periodontitis. Int J Mol Sci 2024; 25:2763. [PMID: 38474009 DOI: 10.3390/ijms25052763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The extracellular matrix (ECM) is a complex non-cellular three-dimensional macromolecular network present within all tissues and organs, forming the foundation on which cells sit, and composed of proteins (such as collagen), glycosaminoglycans, proteoglycans, minerals, and water. The ECM provides a fundamental framework for the cellular constituents of tissue and biochemical support to surrounding cells. The ECM is a highly dynamic structure that is constantly being remodeled. Matrix metalloproteinases (MMPs) are among the most important proteolytic enzymes of the ECM and are capable of degrading all ECM molecules. MMPs play a relevant role in physiological as well as pathological processes; MMPs participate in embryogenesis, morphogenesis, wound healing, and tissue remodeling, and therefore, their impaired activity may result in several problems. MMP activity is also associated with chronic inflammation, tissue breakdown, fibrosis, and cancer invasion and metastasis. The periodontium is a unique anatomical site, composed of a variety of connective tissues, created by the ECM. During periodontitis, a chronic inflammation affecting the periodontium, increased presence and activity of MMPs is observed, resulting in irreversible losses of periodontal tissues. MMP expression and activity may be controlled in various ways, one of which is the inhibition of their activity by an endogenous group of tissue inhibitors of metalloproteinases (TIMPs), as well as reversion-inducing cysteine-rich protein with Kazal motifs (RECK).
Collapse
Affiliation(s)
- Dominik Radzki
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Alessandro Negri
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Aida Kusiak
- Department of Periodontology and Oral Mucosa Diseases, Faculty of Medicine, Medical University of Gdańsk, 80-208 Gdańsk, Poland
| | - Michał Obuchowski
- Division of Molecular Bacteriology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| |
Collapse
|
13
|
Celis T, Bullens DMA, Hoet PHM, Ghosh M. Development and validation of a human bronchial epithelial spheroid model to study respiratory toxicity in vitro. Arch Toxicol 2024; 98:493-505. [PMID: 38148415 DOI: 10.1007/s00204-023-03619-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/04/2023] [Indexed: 12/28/2023]
Abstract
The use of laboratory animals in research has been extensively criticized. While most of the critique has been centered around the ethical aspect, also the economic and scientific aspects have been frequently mentioned as points of concern. As a result, the use of alternative methods has gradually become more enticing. The most used alternatives to laboratory animals are the 2D monolayer cell cultures. However, the limited translatability of these monolayer cell cultures to in vivo has led to the development of 3D cell cultures that are believed to better capture the in vivo physiology and pathology. Here we report on the development of a physiologically more relevant 3D cell model (spheroids) comprised of human bronchial epithelial (16HBE14o-) cells, for use in respiratory toxicity research. Culturing 16HBE14o-cells as hanging-drops led to the formation of stable spheroids which showed an increased expression of CLDN1 when compared to 2D monolayer cultured cells. In addition, cell-cycle analysis revealed an increased sub-G0 population and signs of G0/G1 arrest in spheroids. Afterwards, standard operating procedures (SOPs) were established, and existing protocols optimized, for compatibility with spheroids. Spheroids were successfully used to assess cytotoxicity, genotoxicity, apoptosis/necrosis, and oxidative stress after exposure to known cytotoxic or genotoxic compounds. The development of the bronchial epithelial spheroids and the establishment of SOPs can contribute to a more reliable toxicity assessment of chemicals and may aid in bridging the gap between in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Thomas Celis
- Environment and Health Unit, Department of Public Health and Primary Care, KU Leuven, 3000, Leuven, Belgium
| | - Dominique M A Bullens
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000, Leuven, Belgium
| | - Peter H M Hoet
- Environment and Health Unit, Department of Public Health and Primary Care, KU Leuven, 3000, Leuven, Belgium.
| | - Manosij Ghosh
- Environment and Health Unit, Department of Public Health and Primary Care, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
14
|
Chin MHW, Reid B, Lachina V, Acton SE, Coppens MO. Bioinspired 3D microprinted cell scaffolds: Integration of graph theory to recapitulate complex network wiring in lymph nodes. Biotechnol J 2024; 19:e2300359. [PMID: 37986209 DOI: 10.1002/biot.202300359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
Physical networks are ubiquitous in nature, but many of them possess a complex organizational structure that is difficult to recapitulate in artificial systems. This is especially the case in biomedical and tissue engineering, where the microstructural details of 3D cell scaffolds are important. Studies of biological networks-such as fibroblastic reticular cell (FRC) networks-have revealed the crucial role of network topology in a range of biological functions. However, cell scaffolds are rarely analyzed, or designed, using graph theory. To understand how networks affect adhered cells, 3D culture platforms capturing the complex topological properties of biologically relevant networks would be needed. In this work, we took inspiration from the small-world organization (high clustering and low path length) of FRC networks to design cell scaffolds. An algorithmic toolset was created to generate the networks and process them to improve their 3D printability. We employed tools from graph theory to show that the networks were small-world (omega factor, ω = -0.10 ± 0.02; small-world propensity, SWP = 0.74 ± 0.01). 3D microprinting was employed to physicalize networks as scaffolds, which supported the survival of FRCs. This work, therefore, represents a bioinspired, graph theory-driven approach to control the networks of microscale cell niches.
Collapse
Affiliation(s)
- Matthew H W Chin
- EPSRC "Frontier Engineering" Centre for Nature-Inspired Engineering (CNIE) and Department of Chemical Engineering, University College London, Torrington Place, London, UK
| | - Barry Reid
- EPSRC "Frontier Engineering" Centre for Nature-Inspired Engineering (CNIE) and Department of Chemical Engineering, University College London, Torrington Place, London, UK
| | - Veronika Lachina
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Sophie E Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Marc-Olivier Coppens
- EPSRC "Frontier Engineering" Centre for Nature-Inspired Engineering (CNIE) and Department of Chemical Engineering, University College London, Torrington Place, London, UK
| |
Collapse
|
15
|
Ahmed W, Huang S, Chen L. Engineered exosomes derived from stem cells: a new brain-targeted strategy. Expert Opin Drug Deliv 2024; 21:91-110. [PMID: 38258509 DOI: 10.1080/17425247.2024.2306877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
INTRODUCTION Using engineered exosomes produced from stem cells is an experimental therapeutic approach for treating brain diseases. According to reports, preclinical research has demonstrated notable neurogenesis and angiogenesis effects using modified stem cell-derived exosomes. These biological nanoparticles have a variety of anti-apoptotic, anti-inflammatory, and antioxidant properties that make them very promising for treating nervous system disorders. AREAS COVERED This review examines different ways to enhance the delivery of modified stem cell-derived exosomes, how they infiltrate the blood-brain barrier (BBB), and how they facilitate their access to the brain. We would also like to determine whether these nanoparticles have the most significant transmission rates through BBB when targeting brain lesions. EXPERT OPINION Using engineered stem cell-derived exosomes for treating brain disorders has generated considerable attention toward clinical research and application. However, stem cell-derived exosomes lack consistency, and their mechanisms of action are uncertain. Therefore, upcoming research needs to prioritize examining the underlying mechanisms and strategies via which these nanoparticles combat neurological disorders.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Neurosurgery, Integrated Traditional Chinese and Western Medicine Hospital, Southern Medical University, Guangzhou, Guangdong, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Songze Huang
- Department of Neurosurgery, Integrated Traditional Chinese and Western Medicine Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lukui Chen
- Department of Neurosurgery, Integrated Traditional Chinese and Western Medicine Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Bhattacharya A, Alam K, Roy NS, Kaur K, Kaity S, Ravichandiran V, Roy S. Exploring the interaction between extracellular matrix components in a 3D organoid disease model to replicate the pathophysiology of breast cancer. J Exp Clin Cancer Res 2023; 42:343. [PMID: 38102637 PMCID: PMC10724947 DOI: 10.1186/s13046-023-02926-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
In vitro models are necessary to study the pathophysiology of the disease and the development of effective, tailored treatment methods owing to the complexity and heterogeneity of breast cancer and the large population affected by it. The cellular connections and tumor microenvironments observed in vivo are often not recapitulated in conventional two-dimensional (2D) cell cultures. Therefore, developing 3D in vitro models that mimic the complex architecture and physiological circumstances of breast tumors is crucial for advancing our understanding of the illness. A 3D scaffold-free in vitro disease model mimics breast cancer pathophysiology by allowing cells to self-assemble/pattern into 3D structures, in contrast with other 3D models that rely on artificial scaffolds. It is possible that this model, whether applied to breast tumors using patient-derived primary cells (fibroblasts, endothelial cells, and cancer cells), can accurately replicate the observed heterogeneity. The complicated interactions between different cell types are modelled by integrating critical components of the tumor microenvironment, such as the extracellular matrix, vascular endothelial cells, and tumor growth factors. Tissue interactions, immune cell infiltration, and the effects of the milieu on drug resistance can be studied using this scaffold-free 3D model. The scaffold-free 3D in vitro disease model for mimicking tumor pathophysiology in breast cancer is a useful tool for studying the molecular basis of the disease, identifying new therapeutic targets, and evaluating treatment modalities. It provides a more physiologically appropriate high-throughput platform for screening large compound library in a 96-384 well format. We critically discussed the rapid development of personalized treatment strategies and accelerated drug screening platforms to close the gap between traditional 2D cell culture and in vivo investigations.
Collapse
Affiliation(s)
- Anamitra Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Kamare Alam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Nakka Sharmila Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Kulwinder Kaur
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine a Health Sciences, Dublin, Ireland
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Santanu Kaity
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Velayutham Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India
| | - Subhadeep Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
17
|
Kuntschar S, Cardamone G, Klann K, Bauer R, Meyer SP, Raue R, Rappl P, Münch C, Brüne B, Schmid T. Mmp12 Is Translationally Regulated in Macrophages during the Course of Inflammation. Int J Mol Sci 2023; 24:16981. [PMID: 38069304 PMCID: PMC10707645 DOI: 10.3390/ijms242316981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Despite the importance of rapid adaptive responses in the course of inflammation and the notion that post-transcriptional regulation plays an important role herein, relevant translational alterations, especially during the resolution phase, remain largely elusive. In the present study, we analyzed translational changes in inflammatory bone marrow-derived macrophages upon resolution-promoting efferocytosis. Total RNA-sequencing confirmed that apoptotic cell phagocytosis induced a pro-resolution signature in LPS/IFNγ-stimulated macrophages (Mϕ). While inflammation-dependent transcriptional changes were relatively small between efferocytic and non-efferocytic Mϕ; considerable differences were observed at the level of de novo synthesized proteins. Interestingly, translationally regulated targets in response to inflammatory stimuli were mostly downregulated, with only minimal impact of efferocytosis. Amongst these targets, pro-resolving matrix metallopeptidase 12 (Mmp12) was identified as a translationally repressed candidate during early inflammation that recovered during the resolution phase. Functionally, reduced MMP12 production enhanced matrix-dependent migration of Mϕ. Conclusively, translational control of MMP12 emerged as an efficient strategy to alter the migratory properties of Mϕ throughout the inflammatory response, enabling Mϕ migration within the early inflammatory phase while restricting migration during the resolution phase.
Collapse
Affiliation(s)
- Silvia Kuntschar
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Giulia Cardamone
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Kevin Klann
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Rebekka Bauer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Sofie Patrizia Meyer
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Peter Rappl
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, 60596 Frankfurt, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
| |
Collapse
|
18
|
Raje K, Ohashi K, Fujita S. Three-Dimensional Printer-Assisted Electrospinning for Fabricating Intricate Biological Tissue Mimics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2913. [PMID: 37999268 PMCID: PMC10675084 DOI: 10.3390/nano13222913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Although regenerative medicine necessitates advanced three-dimensional (3D) scaffolds for organ and tissue applications, creating intricate structures across scales, from nano- to meso-like biological tissues, remains a challenge. Electrospinning of nanofibers offers promise due to its capacity to craft not only the dimensions and surfaces of individual fibers but also intricate attributes, such as anisotropy and porosity, across various materials. In this study, we used a 3D printer to design a mold with polylactic acid for gel modeling. This gel template, which was mounted on a metal wire, facilitated microfiber electrospinning. After spinning, these structures were treated with EDTA to remove the template and were then cleansed and dried, resulting in 3D microfibrous (3DMF) structures, with average fiber diameters of approximately 1 µm on the outer and inner surfaces. Notably, these structures matched their intended design dimensions without distortion or shrinkage, demonstrating the adaptability of this method for various template sizes. The cylindrical structures showed high elasticity and stretchability with an elastic modulus of 6.23 MPa. Furthermore, our method successfully mimicked complex biological tissue structures, such as the inner architecture of the voice box and the hollow partitioned structure of the heart's tricuspid valve. Achieving specific intricate shapes required multiple spinning sessions and subsequent assemblies. In essence, our approach holds potential for crafting artificial organs and forming the foundational materials for cell culture scaffolds, addressing the challenges of crafting intricate multiscale structures.
Collapse
Affiliation(s)
- Komal Raje
- Department of Advanced Interdisciplinary Science and Technology, University of Fukui, Fukui 910-8507, Japan;
| | - Keisuke Ohashi
- Department of Frontier Fiber Technology and Sciences, University of Fukui, Fukui 910-8507, Japan
| | - Satoshi Fujita
- Department of Advanced Interdisciplinary Science and Technology, University of Fukui, Fukui 910-8507, Japan;
- Department of Frontier Fiber Technology and Sciences, University of Fukui, Fukui 910-8507, Japan
- Life Science Innovation Center, University of Fukui, Fukui 910-8507, Japan
| |
Collapse
|
19
|
Gresita A, Raja I, Petcu E, Hadjiargyrou M. Collagen-Coated Hyperelastic Bone Promotes Osteoblast Adhesion and Proliferation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6996. [PMID: 37959593 PMCID: PMC10649997 DOI: 10.3390/ma16216996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/24/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023]
Abstract
Successfully reconstructing bone and restoring its dynamic function represents a significant challenge for medicine. Critical size defects (CSDs), resulting from trauma, tumor removal, or degenerative conditions, do not naturally heal and often require complex bone grafting. However, these grafts carry risks, such as tissue rejection, infections, and surgical site damage, necessitating the development of alternative treatments. Three-dimensional and four-dimensional printed synthetic biomaterials represent a viable alternative, as they carry low production costs and are highly reproducible. Hyperelastic bone (HB), a biocompatible synthetic polymer consisting of 90% hydroxyapatite and 10% poly(lactic-co-glycolic acid, PLGA), was examined for its potential to support cell adhesion, migration, and proliferation. Specifically, we seeded collagen-coated HB with MG-63 human osteosarcoma cells. Our analysis revealed robust cell adhesion and proliferation over 7 days in vitro, with cells forming uniform monolayers on the external surface of the scaffold. However, no cells were present on the core of the fibers. The cells expressed bone differentiation markers on days 3 and 5. By day 7, the scaffold began to degrade, developing microscopic fissures and fragmentation. In summary, collagen-coated HB scaffolds support cell adhesion and proliferation but exhibit reduced structural support after 7 days in culture. Nevertheless, the intricate 3D architecture holds promise for cellular migration, vascularization, and early osteogenesis.
Collapse
Affiliation(s)
- Andrei Gresita
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (A.G.); (I.R.); (E.P.)
| | - Iman Raja
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (A.G.); (I.R.); (E.P.)
| | - Eugen Petcu
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; (A.G.); (I.R.); (E.P.)
| | - Michael Hadjiargyrou
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| |
Collapse
|
20
|
Zeiringer S, Wiltschko L, Glader C, Reiser M, Absenger-Novak M, Fröhlich E, Roblegg E. Development and Characterization of an In Vitro Intestinal Model Including Extracellular Matrix and Macrovascular Endothelium. Mol Pharm 2023; 20:5173-5184. [PMID: 37677739 PMCID: PMC10548470 DOI: 10.1021/acs.molpharmaceut.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
In vitro intestinal models are used to study biological processes, drug and food absorption, or cytotoxicity, minimizing the use of animals in the laboratory. They usually consist of enterocytes and mucus-producing cells cultured for 3 weeks, e.g., on Transwells, to obtain a fully differentiated cell layer simulating the human epithelium. Other important components are the extracellular matrix (ECM) and strong vascularization. The former serves as structural support for cells and promotes cellular processes such as differentiation, migration, and growth. The latter includes endothelial cells, which coordinate vascularization and immune cell migration and facilitate the transport of ingested substances or drugs to the liver. In most cases, animal-derived hydrogels such as Matrigel or collagen are used as ECM in in vitro intestinal models, and endothelial cells are only partially considered, if at all. However, it is well-known that animal-derived products can lead to altered cell behavior and incorrect results. To circumvent these limitations, synthetic and modifiable hydrogels (Peptigel and Vitrogel) were studied here to mimic xenofree ECM, and the data were compared with Matrigel. Careful rheological characterization was performed, and the effect on cell proliferation was investigated. The results showed that Vitrogel exhibited shear-thinning behavior with an internal structure recovery of 78.9 ± 11.2%, providing the best properties among the gels investigated. Therefore, a coculture of Caco-2 and HT29-MTX cells (ratio 7:3) was grown on Vitrogel, while simultaneously endothelial cells were cultured on the basolateral side by inverse cultivation. The model was characterized in terms of cell proliferation, differentiation, and drug permeability. It was found that the cells cultured on Vitrogel induced a 1.7-fold increase in cell proliferation and facilitated the formation of microvilli and tight junctions after 2 weeks of cultivation. At the same time, the coculture showed full differentiation indicated by high alkaline phosphatase release of Caco-2 cells (95.0 ± 15.9%) and a mucus layer produced by HT29-MTX cells. Drug tests led to ex vivo comparable permeability coefficients (Papp) (i.e., Papp; antipyrine = (33.64 ± 5.13) × 10-6 cm/s, Papp; atenolol = (0.59 ± 0.16) × 10-6 cm/s). These results indicate that the newly developed intestinal model can be used for rapid and efficient assessment of drug permeability, excluding unexpected results due to animal-derived materials.
Collapse
Affiliation(s)
- Scarlett Zeiringer
- University
of Graz, Institute of Pharmaceutical
Sciences, Pharmaceutical Technology and Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria
| | - Laura Wiltschko
- University
of Graz, Institute of Pharmaceutical
Sciences, Pharmaceutical Technology and Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria
- Joanneum
Research-Health, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Christina Glader
- University
of Graz, Institute of Pharmaceutical
Sciences, Pharmaceutical Technology and Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria
- Research
Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Martin Reiser
- University
of Graz, Institute of Pharmaceutical
Sciences, Pharmaceutical Technology and Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria
| | - Markus Absenger-Novak
- Center
for Medical Research, Medical University
of Graz, Stiftingtalstraße 24, 8010 Graz, Austria
| | - Eleonore Fröhlich
- Center
for Medical Research, Medical University
of Graz, Stiftingtalstraße 24, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Eva Roblegg
- University
of Graz, Institute of Pharmaceutical
Sciences, Pharmaceutical Technology and Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria
- Research
Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
21
|
Bernava G, Iop L. Advances in the design, generation, and application of tissue-engineered myocardial equivalents. Front Bioeng Biotechnol 2023; 11:1247572. [PMID: 37811368 PMCID: PMC10559975 DOI: 10.3389/fbioe.2023.1247572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Due to the limited regenerative ability of cardiomyocytes, the disabling irreversible condition of myocardial failure can only be treated with conservative and temporary therapeutic approaches, not able to repair the damage directly, or with organ transplantation. Among the regenerative strategies, intramyocardial cell injection or intravascular cell infusion should attenuate damage to the myocardium and reduce the risk of heart failure. However, these cell delivery-based therapies suffer from significant drawbacks and have a low success rate. Indeed, cardiac tissue engineering efforts are directed to repair, replace, and regenerate native myocardial tissue function. In a regenerative strategy, biomaterials and biomimetic stimuli play a key role in promoting cell adhesion, proliferation, differentiation, and neo-tissue formation. Thus, appropriate biochemical and biophysical cues should be combined with scaffolds emulating extracellular matrix in order to support cell growth and prompt favorable cardiac microenvironment and tissue regeneration. In this review, we provide an overview of recent developments that occurred in the biomimetic design and fabrication of cardiac scaffolds and patches. Furthermore, we sift in vitro and in situ strategies in several preclinical and clinical applications. Finally, we evaluate the possible use of bioengineered cardiac tissue equivalents as in vitro models for disease studies and drug tests.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, Padua Medical School, University of Padua, Padua, Italy
| |
Collapse
|
22
|
Hey G, Willman M, Patel A, Goutnik M, Willman J, Lucke-Wold B. Stem Cell Scaffolds for the Treatment of Spinal Cord Injury-A Review. BIOMECHANICS (BASEL, SWITZERLAND) 2023; 3:322-342. [PMID: 37664542 PMCID: PMC10469078 DOI: 10.3390/biomechanics3030028] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Spinal cord injury (SCI) is a profoundly debilitating yet common central nervous system condition resulting in significant morbidity and mortality rates. Major causes of SCI encompass traumatic incidences such as motor vehicle accidents, falls, and sports injuries. Present treatment strategies for SCI aim to improve and enhance neurologic functionality. The ability for neural stem cells (NSCs) to differentiate into diverse neural and glial cell precursors has stimulated the investigation of stem cell scaffolds as potential therapeutics for SCI. Various scaffolding modalities including composite materials, natural polymers, synthetic polymers, and hydrogels have been explored. However, most trials remain largely in the preclinical stage, emphasizing the need to further develop and refine these treatment strategies before clinical implementation. In this review, we delve into the physiological processes that underpin NSC differentiation, including substrates and signaling pathways required for axonal regrowth post-injury, and provide an overview of current and emerging stem cell scaffolding platforms for SCI.
Collapse
Affiliation(s)
- Grace Hey
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Matthew Willman
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Aashay Patel
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Michael Goutnik
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jonathan Willman
- College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
23
|
Dong L, Fu L, Zhu T, Wu Y, Li Z, Ding J, Zhang J, Wang X, Zhao J, Yu G. A five-collagen-based risk model in lung adenocarcinoma: prognostic significance and immune landscape. Front Oncol 2023; 13:1180723. [PMID: 37476379 PMCID: PMC10354438 DOI: 10.3389/fonc.2023.1180723] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/22/2023] [Indexed: 07/22/2023] Open
Abstract
As part of the tumor microenvironment (TME), collagen plays a significant role in cancer fibrosis formation. However, the collagen family expression profile and clinical features in lung adenocarcinoma (LUAD) are poorly understood. The objective of the present work was to investigate the expression pattern of genes from the collagen family in LUAD and to develop a predictive signature based on collagen family. The Cancer Genome Atlas (TCGA) samples were used as the training set, and five additional cohort samples obtained from the Gene Expression Omnibus (GEO) database were used as the validation set. A predictive model based on five collagen genes, including COL1A1, COL4A3, COL5A1, COL11A1, and COL22A1, was created by analyzing samples from the TCGA cohort using LASSO Cox analysis and univariate/multivariable Cox regression. Using Collagen-Risk scores, LUAD patients were then divided into high- and low-risk groups. KM survival analysis showed that collagen signature presented a robust prognostic power. GO and KEGG analyses confirmed that collagen signature was associated with extracellular matrix organization, ECM-receptor interaction, PI3K-Akts and AGE-RAGE signaling activation. High-risk patients exhibited a considerable activation of the p53 pathway and cell cycle, according to GSEA analysis. The Collage-Risk model showed unique features in immune cell infiltration and tumor-associated macrophage (TAM) polarization of the TME. Additionally, we deeply revealed the association of collagen signature with immune checkpoints (ICPs), tumor mutation burden (TMB), and tumor purity. We first constructed a reliable prognostic model based on TME principal component-collagen, which would enable clinicians to treat patients with LUAD more individually.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
24
|
Hoque MA, Mahmood N, Ali KM, Sefat E, Huang Y, Petersen E, Harrington S, Fang X, Gluck JM. Development of a Pneumatic-Driven Fiber-Shaped Robot Scaffold for Use as a Complex 3D Dynamic Culture System. Biomimetics (Basel) 2023; 8:biomimetics8020170. [PMID: 37092422 PMCID: PMC10123682 DOI: 10.3390/biomimetics8020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
Cells can sense and respond to different kinds of continuous mechanical strain in the human body. Mechanical stimulation needs to be included within the in vitro culture system to better mimic the existing complexity of in vivo biological systems. Existing commercial dynamic culture systems are generally two-dimensional (2D) which fail to mimic the three-dimensional (3D) native microenvironment. In this study, a pneumatically driven fiber robot has been developed as a platform for 3D dynamic cell culture. The fiber robot can generate tunable contractions upon stimulation. The surface of the fiber robot is formed by a braiding structure, which provides promising surface contact and adequate space for cell culture. An in-house dynamic stimulation using the fiber robot was set up to maintain NIH3T3 cells in a controlled environment. The biocompatibility of the developed dynamic culture systems was analyzed using LIVE/DEAD™ and alamarBlue™ assays. The results showed that the dynamic culture system was able to support cell proliferation with minimal cytotoxicity similar to static cultures. However, we observed a decrease in cell viability in the case of a high strain rate in dynamic cultures. Differences in cell arrangement and proliferation were observed between braided sleeves made of different materials (nylon and ultra-high molecular weight polyethylene). In summary, a simple and cost-effective 3D dynamic culture system has been proposed, which can be easily implemented to study complex biological phenomena in vitro.
Collapse
Affiliation(s)
- Muh Amdadul Hoque
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Nasif Mahmood
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Kiran M Ali
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Eelya Sefat
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Yihan Huang
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Emily Petersen
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Shane Harrington
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Xiaomeng Fang
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| | - Jessica M Gluck
- Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
25
|
Ma B, Yu R. Pan-cancer analysis of ADAMs: A promising biomarker for prognosis and response to chemotherapy and immunotherapy. Front Genet 2023; 14:1105900. [PMID: 37082201 PMCID: PMC10110990 DOI: 10.3389/fgene.2023.1105900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Background: Members of a disintegrin and metalloproteinase (ADAM) family play a vital role in cancer development. However, a comprehensive analysis of the landscape of the ADAM family in pan-cancer remains to be performed.Methods: The correlation of the expression level and prognostic value with ADAMs in a pan-cancer cohort and the relationship between ADAMs and the stemness score, tumour microenvironment (TME), chemotherapy-related drug sensitivity, immune subtype, and immunotherapy outcome were investigated.Results: ADAMs were differentially expressed between tumour and para-carcinoma tissues in the pan-cancer cohort, and the expression of ADAMs was significantly correlated with patient prognosis. Furthermore, ADAMs were significantly correlated with the stromal score and immune score based on the TME analysis. Additionally, ADAMs were also correlated with DNAss and RNAss in the pan-cancer cohort. On investigating the CellMiner database, ADAMs were revealed to be significantly correlated with the sensitivity of various drugs, including raloxifene and tamoxifen. Moreover, in the IMvigor210 and GSE78220 cohorts, ADAMs were correlated with immunotherapy response and immune activation genes. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) were utilised to determine the differential level of ADAM9 in cancer and para-carcinoma tissues in patients’ samples.Conclusion: This study elucidates the importance of ADAMs in cancer progression and lays a foundation for further exploration of ADAMs as potential pan-cancer targets.
Collapse
Affiliation(s)
- Bo Ma
- *Correspondence: Bo Ma, ; Riyue Yu,
| | - Riyue Yu
- *Correspondence: Bo Ma, ; Riyue Yu,
| |
Collapse
|
26
|
Derman ID, Singh YP, Saini S, Nagamine M, Banerjee D, Ozbolat IT. Bioengineering and Clinical Translation of Human Lung and its Components. Adv Biol (Weinh) 2023; 7:e2200267. [PMID: 36658734 PMCID: PMC10121779 DOI: 10.1002/adbi.202200267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Indexed: 01/21/2023]
Abstract
Clinical lung transplantation has rapidly established itself as the gold standard of treatment for end-stage lung diseases in a restricted group of patients since the first successful lung transplant occurred. Although significant progress has been made in lung transplantation, there are still numerous obstacles on the path to clinical success. The development of bioartificial lung grafts using patient-derived cells may serve as an alternative treatment modality; however, challenges include developing appropriate scaffold materials, advanced culture strategies for lung-specific multiple cell populations, and fully matured constructs to ensure increased transplant lifetime following implantation. This review highlights the development of tissue-engineered tracheal and lung equivalents over the past two decades, key problems in lung transplantation in a clinical environment, the advancements made in scaffolds, bioprinting technologies, bioreactors, organoids, and organ-on-a-chip technologies. The review aims to fill the lacuna in existing literature toward a holistic bioartificial lung tissue, including trachea, capillaries, airways, bifurcating bronchioles, lung disease models, and their clinical translation. Herein, the efforts are on bridging the application of lung tissue engineering methods in a clinical environment as it is thought that tissue engineering holds enormous promise for overcoming the challenges associated with the clinical translation of bioengineered human lung and its components.
Collapse
Affiliation(s)
- I. Deniz Derman
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
| | - Yogendra Pratap Singh
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
| | - Shweta Saini
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, India
| | - Momoka Nagamine
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
- Department of Chemistry, Penn State University; University Park, PA,16802, USA
| | - Dishary Banerjee
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University; University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University; University Park, PA, 16802, USA
- Biomedical Engineering Department, Penn State University; University Park, PA, 16802, USA
- Materials Research Institute, Penn State University; University Park, PA, 16802, USA
- Cancer Institute, Penn State University; University Park, PA, 16802, USA
- Neurosurgery Department, Penn State University; University Park, PA, 16802, USA
- Department of Medical Oncology, Cukurova University, Adana, Turkey
| |
Collapse
|
27
|
Casajuana Ester M, Day RM. Production and Utility of Extracellular Vesicles with 3D Culture Methods. Pharmaceutics 2023; 15:pharmaceutics15020663. [PMID: 36839984 PMCID: PMC9961751 DOI: 10.3390/pharmaceutics15020663] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
In recent years, extracellular vesicles (EVs) have emerged as promising biomarkers, cell-free therapeutic agents, and drug delivery carriers. Despite their great clinical potential, poor yield and unscalable production of EVs remain significant challenges. When using 3D culture methods, such as scaffolds and bioreactors, large numbers of cells can be expanded and the cell environment can be manipulated to control the cell phenotype. This has been employed to successfully increase the production of EVs as well as to enhance their therapeutic effects. The physiological relevance of 3D cultures, such as spheroids, has also provided a strategy for understanding the role of EVs in the pathogenesis of several diseases and to evaluate their role as tools to deliver drugs. Additionally, 3D culture methods can encapsulate EVs to achieve more sustained therapeutic effects as well as prevent premature clearance of EVs to enable more localised delivery and concentrated exosome dosage. This review highlights the opportunities and drawbacks of different 3D culture methods and their use in EV research.
Collapse
|
28
|
Patino-Guerrero A, Ponce Wong RD, Kodibagkar VD, Zhu W, Migrino RQ, Graudejus O, Nikkhah M. Development and Characterization of Isogenic Cardiac Organoids from Human-Induced Pluripotent Stem Cells Under Supplement Starvation Regimen. ACS Biomater Sci Eng 2023; 9:944-958. [PMID: 36583992 DOI: 10.1021/acsbiomaterials.2c01290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The prevalence of cardiovascular risk factors is expected to increase the occurrence of cardiovascular diseases (CVDs) worldwide. Cardiac organoids are promising candidates for bridging the gap between in vitro experimentation and translational applications in drug development and cardiac repair due to their attractive features. Here we present the fabrication and characterization of isogenic scaffold-free cardiac organoids derived from human induced pluripotent stem cells (hiPSCs) formed under a supplement-deprivation regimen that allows for metabolic synchronization and maturation of hiPSC-derived cardiac cells. We propose the formation of coculture cardiac organoids that include hiPSC-derived cardiomyocytes and hiPSC-derived cardiac fibroblasts (hiPSC-CMs and hiPSC-CFs, respectively). The cardiac organoids were characterized through extensive morphological assessment, evaluation of cellular ultrastructures, and analysis of transcriptomic and electrophysiological profiles. The morphology and transcriptomic profile of the organoids were improved by coculture of hiPSC-CMs with hiPSC-CFs. Specifically, upregulation of Ca2+ handling-related genes, such as RYR2 and SERCA, and structure-related genes, such as TNNT2 and MYH6, was observed. Additionally, the electrophysiological characterization of the organoids under supplement deprivation shows a trend for reduced conduction velocity for coculture organoids. These studies help us gain a better understanding of the role of other isogenic cells such as hiPSC-CFs in the formation of mature cardiac organoids, along with the introduction of exogenous chemical cues, such as supplement starvation.
Collapse
Affiliation(s)
- Alejandra Patino-Guerrero
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona8528, United States
| | | | - Vikram D Kodibagkar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona8528, United States
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Mayo Clinic Arizona, Scottsdale, Arizona85259, United States
| | - Raymond Q Migrino
- Phoenix Veterans Affairs Health Care System, Phoenix, Arizona85012, United States.,University of Arizona College of Medicine, Phoenix, Arizona85004, United States
| | - Oliver Graudejus
- BMSEED, Mesa, Arizona85201, United States.,School of Molecular Sciences, Arizona State University, Tempe, Arizona85287, United States
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona8528, United States.,Center for Personalized Diagnostics Biodesign Institute, Arizona State University, Tempe, Arizona85281, United States
| |
Collapse
|
29
|
Paris F, Marrazzo P, Pizzuti V, Marchionni C, Rossi M, Michelotti M, Petrovic B, Ciani E, Simonazzi G, Pession A, Bonsi L, Alviano F. Characterization of Perinatal Stem Cell Spheroids for the Development of Cell Therapy Strategy. Bioengineering (Basel) 2023; 10:bioengineering10020189. [PMID: 36829683 PMCID: PMC9952228 DOI: 10.3390/bioengineering10020189] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a complex metabolic disease characterized by a massive loss of insulin-producing cells due to an autoimmune reaction. Currently, daily subcutaneous administration of exogenous insulin is the only effective treatment. Therefore, in recent years considerable interest has been given to stem cell therapy and in particular to the use of three-dimensional (3D) cell cultures to better reproduce in vivo conditions. The goal of this study is to provide a reliable cellular model that could be investigated for regenerative medicine applications for the replacement of insulin-producing cells in T1DM. To pursue this aim we create a co-culture spheroid of amniotic epithelial cells (AECs) and Wharton's jelly mesenchymal stromal cells (WJ-MSCs) in a one-to-one ratio. The resulting co-culture spheroids were analyzed for viability, extracellular matrix production, and hypoxic state in both early- and long-term cultures. Our results suggest that co-culture spheroids are stable in long-term culture and are still viable with a consistent extracellular matrix production evaluated with immunofluorescence staining. These findings suggest that this co-culture may potentially be differentiated into endo-pancreatic cells for regenerative medicine applications in T1DM.
Collapse
Affiliation(s)
- Francesca Paris
- Unit of Histology, Embryology and Applied Biology, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Pasquale Marrazzo
- Unit of Histology, Embryology and Applied Biology, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
- Correspondence: (P.M.); (L.B.)
| | - Valeria Pizzuti
- Unit of Histology, Embryology and Applied Biology, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Cosetta Marchionni
- Unit of Histology, Embryology and Applied Biology, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Maura Rossi
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Martina Michelotti
- Unit of Histology, Embryology and Applied Biology, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Biljana Petrovic
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Science, University of Bologna, 40126 Bologna, Italy
| | - Giuliana Simonazzi
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Obstetrics Unit, Department of Obstetrics and Gynecology, IRCCS Azienda Ospedaliero-Universitaria Sant’Orsola, 40138 Bologna, Italy
| | - Andrea Pession
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Laura Bonsi
- Unit of Histology, Embryology and Applied Biology, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
- Correspondence: (P.M.); (L.B.)
| | - Francesco Alviano
- Unit of Histology, Embryology and Applied Biology, Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
30
|
Jiang Z, Xu Y, Fu M, Zhu D, Li N, Yang G. Genetically modified cell spheroids for tissue engineering and regenerative medicine. J Control Release 2023; 354:588-605. [PMID: 36657601 DOI: 10.1016/j.jconrel.2023.01.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023]
Abstract
Cell spheroids offer cell-to-cell interactions and show advantages in survival rate and paracrine effect to solve clinical and biomedical inquiries ranging from tissue engineering and regenerative medicine to disease pathophysiology. Therefore, cell spheroids are ideal vehicles for gene delivery. Genetically modified spheroids can enhance specific gene expression to promote tissue regeneration. Gene deliveries to cell spheroids are via viral vectors or non-viral vectors. Some new technologies like CRISPR/Cas9 also have been used in genetically modified methods to deliver exogenous gene to the host chromosome. It has been shown that genetically modified cell spheroids had the potential to differentiate into bone, cartilage, vascular, nerve, cardiomyocytes, skin, and skeletal muscle as well as organs like the liver to replace the diseased organ in the animal and pre-clinical trials. This article reviews the recent articles about genetically modified spheroid cells and explains the fabrication, applications, development timeline, limitations, and future directions of genetically modified cell spheroid.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yi Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
31
|
Tan XJ, Cheng EM, Mohd Nasir NF, Abdul Majid MS, Mohd Jamir MR, Khor SF, Lee KY, You KY, Mohamad CWSR. Lumped-Element Circuit Modeling for Composite Scaffold with Nano-Hydroxyapatite and Wangi Rice Starch. Polymers (Basel) 2023; 15:polym15020354. [PMID: 36679235 PMCID: PMC9862369 DOI: 10.3390/polym15020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Mechanistic studies of the interaction of electromagnetic (EM) fields with biomaterials has motivated a growing need for accurate models to describe the EM behavior of biomaterials exposed to these fields. In this paper, biodegradable bone scaffolds were fabricated using Wangi rice starch and nano-hydroxyapatite (nHA). The effects of porosity and composition on the fabricated scaffold were discussed via electrical impedance spectroscopy analysis. The fabricated scaffold was subjected to an electromagnetic field within the X-band and Ku-band (microwave spectrum) during impedance/dielectric measurement. The impedance spectra were analyzed with lumped-element models. The impedance spectra of the scaffold can be embodied in equivalent circuit models composed of passive components of the circuit, i.e., resistors, inductors and capacitors. It represents the morphological, structural and chemical characteristics of the bone scaffold. The developed models describe the impedance characteristics of plant tissue. In this study, it was found that the ε' and ε″ of scaffold composites exhibited up and down trends over frequencies for both X-band and Ku-band. The circuit models presented the lowest mean percentage errors of Z' and Z″, i.e., 3.60% and 13.80%, respectively.
Collapse
Affiliation(s)
- Xiao Jian Tan
- Centre for Multimodal Signal Processing, Tunku Abdul Rahman University of Management and Technology (TAR UMT), Jalan Genting Kelang, Setapak, Kuala Lumpur 53300, Malaysia
- Department of Electrical and Electronics Engineering, Faculty of Engineering and Technology, Tunku Abdul Rahman University of Management and Technology (TAR UMT), Jalan Genting Kelang, Setapak, Kuala Lumpur 53300, Malaysia
- Sports Engineering Research Centre (SERC), Universiti Malaysia Perlis (UniMAP), Perlis 02600, Malaysia
- Correspondence:
| | - Ee Meng Cheng
- Sports Engineering Research Centre (SERC), Universiti Malaysia Perlis (UniMAP), Perlis 02600, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis 02600, Malaysia
- Advanced Communication Engineering (ACE) Centre of Excellence, Universiti Malaysia Perlis (UniMAP), Perlis 02600, Malaysia
| | - Nashrul Fazli Mohd Nasir
- Sports Engineering Research Centre (SERC), Universiti Malaysia Perlis (UniMAP), Perlis 02600, Malaysia
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis 02600, Malaysia
| | - Mohd Shukry Abdul Majid
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis 02600, Malaysia
| | - Mohd Ridzuan Mohd Jamir
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis 02600, Malaysia
| | - Shing Fhan Khor
- Faculty of Electrical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis 02600, Malaysia
- Centre of Excellence for Renewable Energy (CERE), Universiti Malaysia Perlis, Perlis 02600, Malaysia
| | - Kim Yee Lee
- Lee Kong Chian Faculty of Engineering & Science, Tunku Abdul Rahman University, Sungai Long Campus, Jalan Sungai Long, Sungai Long City, Cheras, Kajang 43000, Selangor, Malaysia
| | - Kok Yeow You
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia
| | | |
Collapse
|
32
|
Rybachuk O, Savytska N, Pinet É, Yaminsky Y, Medvediev V. Heterogeneous pHPMA hydrogel promotes neuronal differentiation of bone marrow derived stromal cells in vitroand in vivo. Biomed Mater 2023; 18. [PMID: 36542861 DOI: 10.1088/1748-605x/acadc3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Synthetic hydrogels composed of polymer pore frames are commonly used in medicine, from pharmacologically targeted drug delivery to the creation of bioengineering constructions used in implantation surgery. Among various possible materials, the most common are poly-[N(2-hydroxypropyl)methacrylamide] (pHPMA) derivatives. One of the pHPMA derivatives is biocompatible hydrogel, NeuroGel. Upon contact with nervous tissue, the NeuroGel's structure can support the chemical and physiological conditions of the tissue necessary for the growth of native cells. Owing to the different pore diameters in the hydrogel, not only macromolecules, but also cells can migrate. This study evaluated the differentiation of bone marrow stromal cells (BMSCs) into neurons, as well as the effectiveness of using this biofabricated system in spinal cord injuryin vivo. The hydrogel was populated with BMSCs by injection or rehydration. After cultivation, these fragments (hydrogel + BMSCs) were implanted into the injured rat spinal cord. Fragments were immunostained before implantation and seven months after implantation. During cultivation with the hydrogel, both variants (injection/rehydration) of the BMSCs culture retained their viability and demonstrated a significant number of Ki-67-positive cells, indicating the preservation of their proliferative activity. In hydrogel fragments, BMSCs also maintained their viability during the period of cocultivation and were Ki-67-positive, but in significantly fewer numbers than in the cell culture. In addition, in fragments of hydrogel with grafted BMSCs, both by the injection or rehydration versions, we observed a significant number up to 57%-63.5% of NeuN-positive cells. These results suggest that the heterogeneous pHPMA hydrogel promotes neuronal differentiation of bone marrow-derived stromal cells. Furthermore, these data demonstrate the possible use of NeuroGel implants with grafted BMSCs for implantation into damaged areas of the spinal cord, with subsequent nerve fiber germination, nerve cell regeneration, and damaged segment restoration.
Collapse
Affiliation(s)
- Oksana Rybachuk
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv, Ukraine.,Institute of Genetic and Regenerative Medicine, M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine, NAMS of Ukraine, Kyiv, Ukraine
| | - Natalia Savytska
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv, Ukraine.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | | | - Yurii Yaminsky
- State Institution 'Romodanov Neurosurgery Institute, NAMS of Ukraine', Kyiv, Ukraine
| | - Volodymyr Medvediev
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv, Ukraine.,Bogomolets National Medical University, Kyiv, Ukraine
| |
Collapse
|
33
|
Dalmao-Fernandez A, Aizenshtadt A, Bakke HG, Krauss S, Rustan AC, Thoresen GH, Kase ET. Development of three-dimensional primary human myospheres as culture model of skeletal muscle cells for metabolic studies. Front Bioeng Biotechnol 2023; 11:1130693. [PMID: 37034250 PMCID: PMC10076718 DOI: 10.3389/fbioe.2023.1130693] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction: Skeletal muscle is a major contributor to whole-body energy homeostasis and the utilization of fatty acids and glucose. At present, 2D cell models have been the most used cellular models to study skeletal muscle energy metabolism. However, the transferability of the results to in vivo might be limited. This project aimed to develop and characterize a skeletal muscle 3D cell model (myospheres) as an easy and low-cost tool to study molecular mechanisms of energy metabolism. Methods and results: We demonstrated that human primary myoblasts form myospheres without external matrix support and carry structural and molecular characteristics of mature skeletal muscle after 10 days of differentiation. We found significant metabolic differences between the 2D myotubes model and myospheres. In particular, myospheres showed increased lipid oxidative metabolism than the 2D myotubes model, which oxidized relatively more glucose and accumulated more oleic acid. Discussion and conclusion: These analyses demonstrate model differences that can have an impact and should be taken into consideration for studying energy metabolism and metabolic disorders in skeletal muscle.
Collapse
Affiliation(s)
- Andrea Dalmao-Fernandez
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- *Correspondence: Andrea Dalmao-Fernandez,
| | - Aleksandra Aizenshtadt
- Hybrid Technology Hub Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Hege G. Bakke
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Stefan Krauss
- Hybrid Technology Hub Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Arild C. Rustan
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - G. Hege Thoresen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eili Tranheim Kase
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
34
|
Role of Patient-Derived Models of Cancer in Translational Oncology. Cancers (Basel) 2022; 15:cancers15010139. [PMID: 36612135 PMCID: PMC9817860 DOI: 10.3390/cancers15010139] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/04/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer is a heterogeneous disease. Each individual tumor is unique and characterized by structural, cellular, genetic and molecular features. Therefore, patient-derived cancer models are indispensable tools in cancer research and have been actively introduced into the healthcare system. For instance, patient-derived models provide a good reproducibility of susceptibility and resistance of cancer cells against drugs, allowing personalized therapy for patients. In this article, we review the advantages and disadvantages of the following patient-derived models of cancer: (1) PDC-patient-derived cell culture, (2) PDS-patient-derived spheroids and PDO-patient-derived organoids, (3) PDTSC-patient-derived tissue slice cultures, (4) PDX-patient-derived xenografts, humanized PDX, as well as PDXC-PDX-derived cell cultures and PDXO-PDX-derived organoids. We also provide an overview of current clinical investigations and new developments in the area of patient-derived cancer models. Moreover, attention is paid to databases of patient-derived cancer models, which are collected in specialized repositories. We believe that the widespread use of patient-derived cancer models will improve our knowledge in cancer cell biology and contribute to the development of more effective personalized cancer treatment strategies.
Collapse
|
35
|
Castillo Ransanz L, Van Altena PFJ, Heine VM, Accardo A. Engineered cell culture microenvironments for mechanobiology studies of brain neural cells. Front Bioeng Biotechnol 2022; 10:1096054. [PMID: 36588937 PMCID: PMC9794772 DOI: 10.3389/fbioe.2022.1096054] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
The biomechanical properties of the brain microenvironment, which is composed of different neural cell types, the extracellular matrix, and blood vessels, are critical for normal brain development and neural functioning. Stiffness, viscoelasticity and spatial organization of brain tissue modulate proliferation, migration, differentiation, and cell function. However, the mechanical aspects of the neural microenvironment are largely ignored in current cell culture systems. Considering the high promises of human induced pluripotent stem cell- (iPSC-) based models for disease modelling and new treatment development, and in light of the physiological relevance of neuromechanobiological features, applications of in vitro engineered neuronal microenvironments should be explored thoroughly to develop more representative in vitro brain models. In this context, recently developed biomaterials in combination with micro- and nanofabrication techniques 1) allow investigating how mechanical properties affect neural cell development and functioning; 2) enable optimal cell microenvironment engineering strategies to advance neural cell models; and 3) provide a quantitative tool to assess changes in the neuromechanobiological properties of the brain microenvironment induced by pathology. In this review, we discuss the biological and engineering aspects involved in studying neuromechanobiology within scaffold-free and scaffold-based 2D and 3D iPSC-based brain models and approaches employing primary lineages (neural/glial), cell lines and other stem cells. Finally, we discuss future experimental directions of engineered microenvironments in neuroscience.
Collapse
Affiliation(s)
- Lucía Castillo Ransanz
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Pieter F. J. Van Altena
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| | - Vivi M. Heine
- Department of Child and Adolescence Psychiatry, Amsterdam Neuroscience, Emma Children’s Hospital, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Department of Complex Trait Genetics, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
36
|
Alfonso-Pérez T, Baonza G, Herranz G, Martín-Belmonte F. Deciphering the interplay between autophagy and polarity in epithelial tubulogenesis. Semin Cell Dev Biol 2022; 131:160-172. [PMID: 35641407 DOI: 10.1016/j.semcdb.2022.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022]
Abstract
The Metazoan complexity arises from a primary building block, the epithelium, which comprises a layer of polarized cells that divide the organism into compartments. Most of these body compartments are organs formed by epithelial tubes that enclose an internal hollow space or lumen. Over the last decades, multiple studies have unmasked the paramount events required to form this lumen de novo. In epithelial cells, these events mainly involve recognizing external clues, establishing and maintaining apicobasal polarity, endo-lysosomal trafficking, and expanding the created lumen. Although canonical autophagy has been classically considered a catabolic process needed for cell survival, multiple studies have also emphasized its crucial role in epithelial polarity, morphogenesis and cellular homeostasis. Furthermore, non-canonical autophagy pathways have been recently discovered as atypical secretory routes. Both canonical and non-canonical pathways play essential roles in epithelial polarity and lumen formation. This review addresses how the molecular machinery for epithelial polarity and autophagy interplay in different processes and how autophagy functions influence lumenogenesis, emphasizing its role in the lumen formation key events.
Collapse
Affiliation(s)
- Tatiana Alfonso-Pérez
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Gabriel Baonza
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain
| | - Gonzalo Herranz
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Fernando Martín-Belmonte
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular "Severo, Ochoa", CSIC-UAM, Madrid 28049, Spain; Ramon & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid 28034, Spain.
| |
Collapse
|
37
|
Role of Vitronectin and Its Receptors in Neuronal Function and Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms232012387. [PMID: 36293243 PMCID: PMC9604229 DOI: 10.3390/ijms232012387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Vitronectin (VTN), a multifunctional glycoprotein with various physiological functions, exists in plasma and the extracellular matrix. It is known to be involved in the cell attachment, spreading and migration through binding to the integrin receptor, mainly via the RGD sequence. VTN is also widely used in the maintenance and expansion of pluripotent stem cells, but its effects go beyond that. Recent evidence shows more functions of VTN in the nervous system as it participates in neural differentiation, neuronutrition and neurogenesis, as well as in regulating axon size, supporting and guiding neurite extension. Furthermore, VTN was proved to play a key role in protecting the brain as it can reduce the permeability of the blood-brain barrier by interacting with integrin receptors in vascular endothelial cells. Moreover, evidence suggests that VTN is associated with neurodegenerative diseases, such as Alzheimer's disease, but its function has not been fully understood. This review summarizes the functions of VTN and its receptors in neurons and describes the role of VTN in the blood-brain barrier and neurodegenerative diseases.
Collapse
|
38
|
Singh G, Senapati S, Satpathi S, Behera PK, Das B, Nayak B. Establishment of decellularized extracellular matrix scaffold derived from caprine pancreas as a novel alternative template over porcine pancreatic scaffold for prospective biomedical application. FASEB J 2022; 36:e22574. [PMID: 36165227 DOI: 10.1096/fj.202200807r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
In this study, the caprine pancreas has been presented as an alternative to the porcine organ for pancreatic xenotransplantation with lesser risk factors. The obtained caprine pancreas underwent a systematic cycle of detergent perfusion for decellularization. It was perfused using anionic (0.5% w/v sodium dodecyl sulfate) as well as non-ionic (0.1% v/v triton X-100, t-octyl phenoxy polyethoxy ethanol) detergents and washed intermittently with 1XPBS supplemented with 0.1% v/v antibiotic and nucleases in a gravitation-driven set-up. After 48 h, a white decellularized pancreas was obtained, and its extracellular matrix (ECM) content was examined for scaffold-like properties. The ECM content was assessed for removal of cellular content, and nuclear material was evaluated with temporal H&E staining. Quantified DNA was found to be present in a negligible amount in the resultant decellularized pancreas tissue (DPT), thus prohibiting it from triggering any immunogenicity. Collagen and fibronectin were confirmed to be preserved upon trichrome and immunohistochemical staining, respectively. SEM and AFM images reveal interconnected collagen fibril networks in the DPT, confirming that collagen was unaffected. sGAG was visualized using Prussian blue staining and quantified with DMMB assay, where DPT has effectively retained this ECM component. Uniaxial tensile analysis revealed that DPT possesses better elasticity than NPT (native pancreatic tissue). Physical parameters like tensile strength, stiffness, biodegradation, and swelling index were retained in the DPT with negligible loss. The cytocompatibility analysis of DPT has shown no cytotoxic effect for up to 72 h on normal insulin-producing cells (MIN-6) and cancerous glioblastoma (LN229) cells in vitro. The scaffold was recellularized using isolated mouse islets, which have established in vitro cell proliferation for up to 9 days. The scaffold received at the end of the decellularization cycle was found to be non-toxic to the cells, retained biological and physical properties of the native ECM, suitable for recellularization, and can be used as a safer and better alternative as a transplantable organ from a xenogeneic source.
Collapse
Affiliation(s)
- Garima Singh
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | | | | | - Biswajit Das
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
39
|
Di Carmine S, Scott MM, McLean MH, McSorley HJ. The role of interleukin-33 in organ fibrosis. DISCOVERY IMMUNOLOGY 2022; 1:kyac006. [PMID: 38566909 PMCID: PMC10917208 DOI: 10.1093/discim/kyac006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/06/2022] [Accepted: 09/22/2022] [Indexed: 04/04/2024]
Abstract
Interleukin (IL)-33 is highly expressed in the nucleus of cells present at barrier sites and signals via the ST2 receptor. IL-33 signalling via ST2 is essential for return to tissue homeostasis after acute inflammation, promoting fibrinogenesis and wound healing at injury sites. However, this wound-healing response becomes aberrant during chronic or sustained inflammation, leading to transforming growth factor beta (TGF-β) release, excessive extracellular matrix deposition, and fibrosis. This review addresses the role of the IL-33 pathway in fibrotic diseases of the lung, liver, gastrointestinal tract, skin, kidney and heart. In the lung and liver, IL-33 release leads to the activation of pro-fibrotic TGF-β, and in these sites, IL-33 has clear pro-fibrotic roles. In the gastrointestinal tract, skin, and kidney, the role of IL-33 is more complex, being both pro-fibrotic and tissue protective. Finally, in the heart, IL-33 serves cardioprotective functions by favouring tissue healing and preventing cardiomyocyte death. Altogether, this review indicates the presence of an unclear and delicate balance between resolving and pro-fibrotic capabilities of IL-33, which has a central role in the modulation of type 2 inflammation and fibrosis in response to tissue injury.
Collapse
Affiliation(s)
- Samuele Di Carmine
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, UK
| | - Molly M Scott
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
| | - Mairi H McLean
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, UK
| | - Henry J McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dundee, UK
| |
Collapse
|
40
|
Bharathi R, Ganesh SS, Harini G, Vatsala K, Anushikaa R, Aravind S, Abinaya S, Selvamurugan N. Chitosan-based scaffolds as drug delivery systems in bone tissue engineering. Int J Biol Macromol 2022; 222:132-153. [PMID: 36108752 DOI: 10.1016/j.ijbiomac.2022.09.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
The bone tissue engineering approach for treating large bone defects becomes necessary when the tissue damage surpasses the threshold of the inherent regenerative ability of the human body. A myriad of natural biodegradable polymers and scaffold fabrication techniques have emerged in the last decade. Chitosan (CS) is especially attractive as a bone scaffold material to support cell attachment and proliferation and mineralization of the bone matrix. The primary amino groups in CS are responsible for properties such as controlled drug release, mucoadhesion, in situ gelation, and transfection. CS-based smart drug delivery scaffolds that respond to environmental stimuli have been reported to have a localized sustained delivery of drugs in the large bone defect area. This review outlines the recent advances in the fabrication of CS-based scaffolds as a pharmaceutical carrier to deliver drugs such as antibiotics, growth factors, nucleic acids, and phenolic compounds for bone tissue regeneration.
Collapse
Affiliation(s)
- R Bharathi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Shree Ganesh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - G Harini
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kumari Vatsala
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - R Anushikaa
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Aravind
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - S Abinaya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
41
|
Rojas-Murillo JA, Simental-Mendía MA, Moncada-Saucedo NK, Delgado-Gonzalez P, Islas JF, Roacho-Pérez JA, Garza-Treviño EN. Physical, Mechanical, and Biological Properties of Fibrin Scaffolds for Cartilage Repair. Int J Mol Sci 2022; 23:ijms23179879. [PMID: 36077276 PMCID: PMC9456199 DOI: 10.3390/ijms23179879] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Articular cartilage is a highly organized tissue that provides remarkable load-bearing and low friction properties, allowing for smooth movement of diarthrodial joints; however, due to the avascular, aneural, and non-lymphatic characteristics of cartilage, joint cartilage has self-regeneration and repair limitations. Cartilage tissue engineering is a promising alternative for chondral defect repair. It proposes models that mimic natural tissue structure through the use of cells, scaffolds, and signaling factors to repair, replace, maintain, or improve the specific function of the tissue. In chondral tissue engineering, fibrin is a biocompatible biomaterial suitable for cell growth and differentiation with adequate properties to regenerate damaged cartilage. Additionally, its mechanical, biological, and physical properties can be enhanced by combining it with other materials or biological components. This review addresses the biological, physical, and mechanical properties of fibrin as a biomaterial for cartilage tissue engineering and as an element to enhance the regeneration or repair of chondral lesions.
Collapse
Affiliation(s)
- Juan Antonio Rojas-Murillo
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Mario A. Simental-Mendía
- Servicio de Ortopedia y Traumatología, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Nidia K. Moncada-Saucedo
- Departamento de Hematología, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Paulina Delgado-Gonzalez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - José Francisco Islas
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Jorge A. Roacho-Pérez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Elsa N. Garza-Treviño
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
- Correspondence: ; Tel.: +52-81-83294173
| |
Collapse
|
42
|
Kobayashi M, Ishida N, Hashimoto Y, Negishi J, Saga H, Sasaki Y, Akiyoshi K, Kimura T, Kishida A. Extraction and Biological Evaluation of Matrix-Bound Nanovesicles (MBVs) from High-Hydrostatic Pressure-Decellularized Tissues. Int J Mol Sci 2022; 23:ijms23168868. [PMID: 36012126 PMCID: PMC9407827 DOI: 10.3390/ijms23168868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 12/22/2022] Open
Abstract
Decellularized tissues are widely used as promising materials in tissue engineering and regenerative medicine. Research on the microstructure and components of the extracellular matrix (ECM) was conducted to improve the current understanding of decellularized tissue functionality. The presence of matrix-bound nanovesicles (MBVs) embedded within the ECM was recently reported. Results of a previous experimental investigation revealed that decellularized tissues prepared using high hydrostatic pressure (HHP) exhibited good in vivo performance. In the current study, according to the hypothesis that MBVs are one of the functional components in HHP-decellularized tissue, we investigated the extraction of MBVs and the associated effects on vascular endothelial cells. Using nanoparticle tracking assay (NTA), transmission electron microscopy (TEM), and RNA analysis, nanosized (100–300 nm) and membranous particles containing small RNA were detected in MBVs derived from HHP-decellularized small intestinal submucosa (SIS), urinary bladder matrix (UBM), and liver. To evaluate the effect on the growth of vascular endothelial cells, which are important in the tissue regeneration process, isolated SIS-derived MBVs were exposed to vascular endothelial cells to induce cell proliferation. These results indicate that MBVs can be extracted from HHP-decellularized tissues and may play a significant role in tissue remodeling.
Collapse
Affiliation(s)
- Mako Kobayashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku 101-0062, Japan
| | - Naoki Ishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku 101-0062, Japan
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku 101-0062, Japan
| | - Jun Negishi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
| | - Hideki Saga
- KM Biologics Co., Ltd., 1314-1 Kyokushi Kawabe, Kikuchi-shi 869-1298, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, A3-317, Kyoto University, Katsura, Nishikyo-ku 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, A3-317, Kyoto University, Katsura, Nishikyo-ku 615-8510, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku 101-0062, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku 101-0062, Japan
- Correspondence: ; Tel.: +81-35-2808028
| |
Collapse
|
43
|
Chia SPS, Kong SLY, Pang JKS, Soh BS. 3D Human Organoids: The Next "Viral" Model for the Molecular Basis of Infectious Diseases. Biomedicines 2022; 10:1541. [PMID: 35884846 PMCID: PMC9312734 DOI: 10.3390/biomedicines10071541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 pandemic has driven the scientific community to adopt an efficient and reliable model that could keep up with the infectious disease arms race. Coinciding with the pandemic, three dimensional (3D) human organoids technology has also gained traction in the field of infectious disease. An in vitro construct that can closely resemble the in vivo organ, organoid technology could bridge the gap between the traditional two-dimensional (2D) cell culture and animal models. By harnessing the multi-lineage characteristic of the organoid that allows for the recapitulation of the organotypic structure and functions, 3D human organoids have emerged as an essential tool in the field of infectious disease research. In this review, we will be providing a comparison between conventional systems and organoid models. We will also be highlighting how organoids played a role in modelling common infectious diseases and molecular mechanisms behind the pathogenesis of causative agents. Additionally, we present the limitations associated with the current organoid models and innovative strategies that could resolve these shortcomings.
Collapse
Affiliation(s)
- Shirley Pei Shan Chia
- Disease Modeling and Therapeutics Laboratory, ASTAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore; (S.P.S.C.); (S.L.Y.K.); (J.K.S.P.)
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Sharleen Li Ying Kong
- Disease Modeling and Therapeutics Laboratory, ASTAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore; (S.P.S.C.); (S.L.Y.K.); (J.K.S.P.)
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Jeremy Kah Sheng Pang
- Disease Modeling and Therapeutics Laboratory, ASTAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore; (S.P.S.C.); (S.L.Y.K.); (J.K.S.P.)
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Boon-Seng Soh
- Disease Modeling and Therapeutics Laboratory, ASTAR Institute of Molecular and Cell Biology, Singapore 138673, Singapore; (S.P.S.C.); (S.L.Y.K.); (J.K.S.P.)
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| |
Collapse
|
44
|
Zhang L, Wan Z, Yuan Z, Yang J, Zhang Y, Cai Q, Huang J, Zhao Y. Construction of multifunctional cell aggregates in angiogenesis and osteogenesis through incorporating hVE-cad-Fc-modified PLGA/β-TCP microparticles for enhancing bone regeneration. J Mater Chem B 2022; 10:3344-3356. [PMID: 35380570 DOI: 10.1039/d2tb00359g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multicellular aggregates have been widely utilized for regenerative medicine; however, the heterogeneous structure and undesired bioactivity of cell-only aggregates hinder their clinical translation. In this study, we fabricated an innovative kind of microparticle-integrated cellular aggregate with multifunctional activities in angiogenesis and osteogenesis, by combining stem cells from human exfoliated deciduous teeth (SHEDs) and bioactive composite microparticles. The poly(lactide-co-glycolide) (PLGA)-based bioactive microparticles (PTV microparticles) were ∼15 μm in diameter, with dispersed β-tricalcium phosphate (β-TCP) nanoparticles and surface-modified vascular endothelialcadherin fusion protein (hVE-cad-Fc). After co-culturing with microparticles in U-bottomed culture plates, SHEDs could firmly attach to the microparticles with a homogeneous distribution. The PTV microparticle-integrated SHED aggregates (PTV/SHED aggregates) showed significant positive CD31 and ALP expression, as well as the significantly upregulated osteogenesis makers (Runx2, ALP, and OCN) and angiogenesis makers (Ang-1 and CD31), compared with PLGA, PLGA/β-TCP (PT) and PLGA/hVE-cad-Fc (PV) microparticle-integrated SHED aggregates. Finally, in mice, 3 mm calvarial defects filled with the PTV microparticle-integrated SHED aggregates achieved abundant vascularized neo-bone regeneration within 4 weeks. Overall, we believe that these multifunctional PTV/SHED aggregates could be used as modules for bottom-up regenerative medicine, and provide a promising method for vascularized bone regeneration.
Collapse
Affiliation(s)
- Linxue Zhang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, PR China.
| | - Zhuo Wan
- State Key Laboratory of Organic-Inorganic Composites & Beijing Laboratory of Biomedical Materials & Beijing University of Chemical Technology, Beijing 100029, PR China. .,Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, PR China.
| | - Zuoying Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, PR China.
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education & College of Life Science, Nankai University, Tianjin 300071, PR China
| | - Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, PR China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites & Beijing Laboratory of Biomedical Materials & Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, PR China.
| | - Yuming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, PR China.
| |
Collapse
|
45
|
Shinkar K, Rhode K. Could 3D extrusion bioprinting serve to be a real alternative to organ transplantation in the future? ANNALS OF 3D PRINTED MEDICINE 2022. [DOI: 10.1016/j.stlm.2022.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
46
|
Study on the Incorporation of Chitosan Flakes in Electrospun Polycaprolactone Scaffolds. Polymers (Basel) 2022; 14:polym14081496. [PMID: 35458246 PMCID: PMC9032814 DOI: 10.3390/polym14081496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 12/18/2022] Open
Abstract
Hybrid scaffolds obtained by combining two or more biopolymers are studied in the context of tissue regeneration due to the possibility of achieving new functional properties or structural features. The aim of this work was to produce a new type of hybrid polycaprolactone (PCL)/chitosan (CS) electrospun mat through the controlled deposition of CS flakes interspaced between the PCL fibers. A poly(ethylene oxide) (PEO) solution was used to transport CS flakes with controlled size. This, and the PCL solution, were simultaneously electrospun onto a rotatory mandrel in a perpendicular setup. Different PCL/CS mass ratios were also studied. The morphology of the resulting fibers, evaluated by SEM, confirmed the presence of the CS flakes between the PCL fibers. The addition of PEO/CS fibers resulted in hydrophilic mats with lower Young’s modulus relatively to PCL mats. In vitro cell culture results indicated that the addition of CS lowers both the adhesion and the proliferation of human dermal fibroblasts. The present work demonstrates the feasibility of achieving a controlled deposition of a polymeric component in granular form onto a collector where electrospun nanofibers are being deposited, thereby producing a hybrid scaffold.
Collapse
|
47
|
Valdoz JC, Franks NA, Cribbs CG, Jacobs DJ, Dodson EL, Knight CJ, Poulson PD, Garfield SR, Johnson BC, Hemeyer BM, Sudo MT, Saunooke JA, Kartchner BC, Saxton A, Vallecillo-Zuniga ML, Santos M, Chamberlain B, Christensen KA, Nordin GP, Narayanan AS, Raghu G, Van Ry PM. Soluble ECM promotes organotypic formation in lung alveolar model. Biomaterials 2022; 283:121464. [DOI: 10.1016/j.biomaterials.2022.121464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/15/2022] [Accepted: 03/06/2022] [Indexed: 11/25/2022]
|
48
|
Identification and In Silico Characterization of a Novel COLGALT2 Gene Variant in a Child with Mucosal Rectal Prolapse. Int J Mol Sci 2022; 23:ijms23073670. [PMID: 35409030 PMCID: PMC8999070 DOI: 10.3390/ijms23073670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Rectal prolapse is influenced by many factors including connective tissue dysfunction. Currently, there is no data about genetic contribution in the etiology of this disorder. In this study, we performed trio whole-exome sequencing in an 11-year-old girl with mucosal rectal prolapse and her parents and sibling. Genetic testing revealed a novel heterozygous missense variant c.1406G>T; p.G469V in exon 11 of the COLGALT2 gene encoding the GLT25 D2 enzyme. Sanger sequencing confirmed this variant only in the patient while the mother, father and sister showed a wild-type sequence. The pathogenicity of the novel variant was predicted using 10 different in silico tools that classified it as pathogenic. Further, in silico prediction, according to Phyre2, Project HOPE, I-Mutant3.0 and MutPred2 showed that the missense variant can decrease protein stability and cause alterations in the physical properties of amino acids resulting in structural and functional changes of the GLT25D2 protein. In conclusion, the present study identifies a previously unknown missense mutation in the COLGALT2 gene that encodes the enzyme involved in collagen glycosylation. The clinical features observed in the patient and the results of in silico analysis suggest that the new genetic variant can be pathogenic.
Collapse
|
49
|
Fatimi A, Okoro OV, Podstawczyk D, Siminska-Stanny J, Shavandi A. Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review. Gels 2022; 8:179. [PMID: 35323292 PMCID: PMC8948717 DOI: 10.3390/gels8030179] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Three-dimensional (3D) printing is well acknowledged to constitute an important technology in tissue engineering, largely due to the increasing global demand for organ replacement and tissue regeneration. In 3D bioprinting, which is a step ahead of 3D biomaterial printing, the ink employed is impregnated with cells, without compromising ink printability. This allows for immediate scaffold cellularization and generation of complex structures. The use of cell-laden inks or bio-inks provides the opportunity for enhanced cell differentiation for organ fabrication and regeneration. Recognizing the importance of such bio-inks, the current study comprehensively explores the state of the art of the utilization of bio-inks based on natural polymers (biopolymers), such as cellulose, agarose, alginate, decellularized matrix, in 3D bioprinting. Discussions regarding progress in bioprinting, techniques and approaches employed in the bioprinting of natural polymers, and limitations and prospects concerning future trends in human-scale tissue and organ fabrication are also presented.
Collapse
Affiliation(s)
- Ahmed Fatimi
- Department of Chemistry, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila, Beni-Mellal 23000, Morocco
- ERSIC, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila, Beni-Mellal 23000, Morocco
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Julia Siminska-Stanny
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
| |
Collapse
|