1
|
Joshi M, Sharma S, Onteru SK, Singh D. Comprehensive proteomic analysis of buffalo milk extracellular vesicles. Int J Biol Macromol 2024; 282:136735. [PMID: 39433188 DOI: 10.1016/j.ijbiomac.2024.136735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Extracellular vesicles are secretory vesicles involved in cell-to-cell communication via their encapsulated cargo of proteins, lipids, and nucleic acids. Bovine milk provides a rich source of extracellular vesicles (mEVs) that have been studied as therapeutics and drug delivery systems. Therefore, insight into the mEV cargo, such as its proteome, may help in understanding the molecular mechanism underlying the potential health benefits attributed to the mEVs. Hence, mEVs were isolated from healthy buffalo milk after screening the milk somatic cell count. The total proteins of mEVs were analyzed using LC-MS, and 331 proteins were found commonly present among three buffalo milk samples. These proteins were primarily derived from extracellular regions and lysosomes. The major biological roles associated with the proteins were immune response, metabolism, and cell cycle regulation. The molecular functions of the proteins were transporter activity, catalytic activity, and GTPase activity. Further, comparative analysis with the previously available bovine mEVs proteome data showed 114 proteins to be newly identified in the buffalo mEVs. The biological pathways associated with these proteins may play a major role in muscle development. These findings shed a light on the potential health benefits of buffalo mEVs as therapeutics as well as drug delivery vehicles.
Collapse
Affiliation(s)
- Mansi Joshi
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Sanjay Sharma
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, Haryana 132001, India.
| |
Collapse
|
2
|
Khan MZ, Chen W, Wang X, Liang H, Wei L, Huang B, Kou X, Liu X, Zhang Z, Chai W, Khan A, Peng Y, Wang C. A review of genetic resources and trends of omics applications in donkey research: focus on China. Front Vet Sci 2024; 11:1366128. [PMID: 39464628 PMCID: PMC11502298 DOI: 10.3389/fvets.2024.1366128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/12/2024] [Indexed: 10/29/2024] Open
Abstract
Omics methodologies, such as genomics, transcriptomics, proteomics, metabolomics, lipidomics and microbiomics, have revolutionized biological research by allowing comprehensive molecular analysis in livestock animals. However, despite being widely used in various animal species, research on donkeys has been notably scarce. China, renowned for its rich history in donkey husbandry, plays a pivotal role in their conservation and utilization. China boasts 24 distinct donkey breeds, necessitating conservation efforts, especially for smaller breeds facing extinction threats. So far, omics approaches have been employed in studies of donkey milk and meat, shedding light on their composition and quality. Similarly, omics methods have been utilized to explore the molecular basis associated with donkey growth, meat production, and quality traits. Omics analysis has also unraveled the critical role of donkey microbiota in health and nutrition, with gut microbiome studies revealing associations with factors such as pregnancy, age, transportation stress, and altitude. Furthermore, omics applications have addressed donkey health issues, including infectious diseases and reproductive problems. In addition, these applications have also provided insights into the improvement of donkey reproductive efficiency research. In conclusion, omics methodologies are essential for advancing knowledge about donkeys, their genetic diversity, and their applications across various domains. However, omics research in donkeys is still in its infancy, and there is a need for continued research to enhance donkey breeding, production, and welfare in China and beyond.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xinrui Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Lin Wei
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Xiaotong Liu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Zhenwei Zhang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yongdong Peng
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
3
|
Lu D, Zhang X, Ye H, Wang J, Han D. Milk-Derived Extracellular Vesicles Carrying ssc-let-7 c Alleviate Early Intestinal Inflammation and Regulate Macrophage Polarization via Targeting the PTEN-Mediated PI3K/Akt Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22092-22104. [PMID: 39188059 DOI: 10.1021/acs.jafc.4c03155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Milk-derived extracellular vesicles (mEVs) are beneficial to the health of infants. However, the effect of mEVs on early intestinal inflammation is not well established. Herein, weaned colitic mice were used to explore the potential effects and underlying mechanisms of porcine mEVs (pmEVs) on intestinal inflammation during early life. We found that pmEVs administration attenuated early life intestinal inflammation and promoted colonic barrier integrity in mice. The anti-inflammatory effect of pmEVs was achieved by shifting a proinflammatory macrophage (M1) toward an anti-inflammatory macrophage (M2). Moreover, pmEVs can be absorbed by macrophages and reduce proinflammatory polarization (stimulated by LPS) in vitro. Noteworthily, ssc-let-7c was found to be highly expressed in pmEVs that can regulate the polarization of macrophages by targeting the tensin homologue deleted on chromosome ten (PTEN), thereby activating the PI3K/Akt pathway. Collectively, our findings revealed a crucial role of mEVs in early intestinal immunity and its underlying mechanism.
Collapse
Affiliation(s)
- Dongdong Lu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Adaptation Physiology Group, Department of Animal Science, Wageningen University& Research, Wageningen 6700 AH, The Netherlands
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hao Ye
- Adaptation Physiology Group, Department of Animal Science, Wageningen University& Research, Wageningen 6700 AH, The Netherlands
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Yu N, Chang X, Hu J, Li J, Ma J, Huang L. mRNA expression profiles in muscle-derived extracellular vesicles of Large White and wild boar piglets reveal their potential roles in immunity and muscle phenotype. Front Vet Sci 2024; 11:1452704. [PMID: 39421829 PMCID: PMC11484452 DOI: 10.3389/fvets.2024.1452704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Extracellular vesicles (EVs) known for their pivotal role in intercellular communication through RNA delivery, hold paramount implications for understanding muscle phenotypic variations in diverse pig breeds. Methods In this study, we compared the mRNA expression profiles of longissimus dorsi muscles and muscle-derived extracellular vesicles (M-EVs), and also examined the diversity of enriched genes in M-EVs between weaned wild boars and commercial Large White pigs with respect to their numbers and biological functions. Results The results of the study showed that the variation in the expression profiles of mRNAs between muscles and M-EVs was much greater than the variability between the respective breeds. Meanwhile, the enrichment trend of low-expressed genes (ranked <1,000) was significantly (p-value ≤ 0.05) powerful in M-EVs compared to highly expressed genes in muscles. In addition, M-EVs carried a smaller proportion of coding sequences and a larger proportion of untranslated region sequences compared to muscles. There were 2,110 genes enriched in M-EVs (MEGs) in Large White pigs and 2,322 MEGs in wild boars, with 1,490 MEGs shared interbreeds including cyclin D2 (CCND2), which inhibits myogenic differentiation. Of the 89 KEGG pathways that were significantly enriched (p-value ≤ 0.05) for these MEGs, 13 unique to Large White pigs were mainly related to immunity, 27 unique to wild boars were functionally diverse but included cell fate regulation such as the Notch signaling pathway and the TGF-beta signaling pathway, and 49 were common to both breeds were also functionally complex but partially related to innate immunity, such as the Complement and coagulation cascades and the Fc gamma R-mediated phagocytosis. Discussion These findings suggest that mRNAs in M-EVs have the potential to serve as indicators of muscle phenotype differences between the two pig breeds, highlighting the need for further exploration into the role of EV-RNAs in pig phenotype formation.
Collapse
Affiliation(s)
| | | | | | | | - Junwu Ma
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lusheng Huang
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Cendron F, Rosani U, Franzoi M, Boselli C, Maggi F, De Marchi M, Penasa M. Analysis of miRNAs in milk of four livestock species. BMC Genomics 2024; 25:859. [PMID: 39277740 PMCID: PMC11401297 DOI: 10.1186/s12864-024-10783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Milk is essential for mammalian nutrition because it provides vital nutrients for growth and development. Milk composition, which is influenced by genetic and environmental factors, supports lactation, a complex process crucial for milk production and quality. Recent research has focused on noncoding RNAs, particularly microRNAs (miRNAs), which are present in body fluids and regulate gene expression post-transcriptionally. This study comprehensively characterizes miRNAs in milk of four livestock species, namely Bubalus bubalis, Capra hircus, Equus asinus, and Ovis aries and identifies potential target genes. RESULTS High-throughput sequencing of milk RNA resulted in distinct read counts across species: B. bubalis (8,790,441 reads), C. hircus (12,976,275 reads), E. asinus (9,385,067 reads), and O. aries (7,295,297 reads). E. asinus had the highest RNA mapping rate (94.6%) and O. aries the lowest (84.8%). A substantially greater proportion of miRNAs over other small RNAs was observed for the donkey milk sample (7.74%) compared to buffalo (0.87%), goat (1.57%), and sheep (1.12%). Shared miRNAs, which included miR-200a, miR-200b, miR-200c, and miR-23a among others, showed varying expression levels across species, confirmed by qPCR analysis. Functional annotation of predicted miRNA target genes highlighted diverse roles, with an enrichment in functions linked to metabolism and immunity. Pathway analysis identified immune response pathways as significant, with several miRNAs targeting specific genes across species, suggesting their regulatory function in milk. CONCLUSIONS Both conserved and species-specific miRNAs were detected in milk of the investigated species. The identified target genes of these miRNAs have important roles in neonatal development, adaptation, growth, and immune response. Furthermore, they influence milk and meat production traits in livestock.
Collapse
Affiliation(s)
- Filippo Cendron
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, Legnaro (PD), 35020, Italy.
| | - Umberto Rosani
- Department of Biology (DiBio), University of Padova, Viale Giuseppe Colombo 3, Padua, 35131, Italy
| | - Marco Franzoi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, Legnaro (PD), 35020, Italy
| | - Carlo Boselli
- Istituto Zooprofilattico Sperimentale del Lazio E Della Toscana "M. Aleandri" - National Reference Centre for Ovine and Caprine Milk and Dairy Products Quality (C.Re.L.D.O.C.), Rome, 00178, Italy
| | - Flavio Maggi
- Azienda Sanitaria Locale, Roma 4, Distretto 4, Via G. Verdi 1, Rignano Flaminio, Rome, 00068, Italy
| | - Massimo De Marchi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, Legnaro (PD), 35020, Italy
| | - Mauro Penasa
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale Dell'Università 16, Legnaro (PD), 35020, Italy
| |
Collapse
|
6
|
Mecocci S, Pietrucci D, Milanesi M, Capomaccio S, Pascucci L, Evangelista C, Basiricò L, Bernabucci U, Chillemi G, Cappelli K. Comparison of colostrum and milk extracellular vesicles small RNA cargo in water buffalo. Sci Rep 2024; 14:17991. [PMID: 39097641 PMCID: PMC11297979 DOI: 10.1038/s41598-024-67249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/09/2024] [Indexed: 08/05/2024] Open
Abstract
Recently, much interest has been raised for the characterization of signaling molecules carried by extracellular vesicles (EVs), which are particularly enriched in milk (mEVs). Such interest is linked to the capability of EVs to cross biological barriers, resist acidification in the gastric environment, and exert modulation of the immune system, mainly through their microRNA (miRNA) content. We characterized the small-RNA cargo of colostrum EVs (colosEVs) and mEVs from Italian Mediterranean buffalo through next generation sequencing. Colostrum (first milking after birth) and milk (day 50 of lactation) were sampled from seven subjects from five farms. ColosEVs and mEVs were subjected to morphological characterization, followed by high-depth sequencing of small RNA libraries produced from total RNA. The main difference was the amount of EV in the two samples, with colostrum showing 10 to 100-fold higher content than milk. For both matrices, miRNA was the most abundant RNA species (95% for colosEVs and 96% for mEVs) and three lists were identified: colosEV-specific, mEV-specific and shared most expressed. Gene ontology (GO) enrichment analysis on miRNA targets highlighted many terms related to the epigenetic, transcriptional and translational regulations across the three lists, with a higher number of enriched terms for colosEV-specific miRNAs. Terms specific to colosEVs were related to "cell differentiation" and "microvillus assembly", while for mEV "cardiac and blood vessel development" and "mitochondria" emergerd. Immune modulation terms were found for both sample-specific miRNAs. Overall, both matrices carry a similar molecular message in terms of biological processes potentially modulated into receiving cells, but there is significant difference in the abundance, with colostrum containing much more EVs than milk. Moreover, colosEVs carry molecules involved in signal transduction, cell cycle and immune response, as for mEVs and EVs of other previously characterized species, but with a special enrichment for miRNAs with epigenetic regulation capacities. These beneficial characteristics of colosEVs and mEVs are essential for the calf and could also be exploited for the therapeutic purposes in humans, although further studies are necessary to measure the sanitization treatment impact on EV conservation, especially in buffalo where milk is consumed almost exclusively after processing.
Collapse
Affiliation(s)
- Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Daniele Pietrucci
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100, Viterbo, Italy
| | - Marco Milanesi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100, Viterbo, Italy
| | - Stefano Capomaccio
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| | - Chiara Evangelista
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100, Viterbo, Italy
| | - Loredana Basiricò
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy
| | - Umberto Bernabucci
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100, Viterbo, Italy.
- Institute of Translational Pharmacology, National Research Council, CNR, 00133, Rome, Italy.
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, 06126, Perugia, Italy
| |
Collapse
|
7
|
Fu S, Zhu L, Yang X, Jiao Y, Hao G, Liu Y. Extracellular vesicles separated from goat milk by differential centrifugation coupled with sodium citrate pretreatments. Food Chem 2024; 446:138807. [PMID: 38422640 DOI: 10.1016/j.foodchem.2024.138807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Satisfactory separation of milk-derived extracellular vesicles (MEVs) is important for the downstream analysis of the functions and properties of MEVs. However, the presence of abundant proteins in milk hindered the separation of MEVs. In this study, three pretreatment methods, including sodium citrate (SC), acetic acid (AA), and high-speed centrifugation, were adopted to separate MEVs from goat milk while minimizing the impact of protein. The MEVs were then characterized by nanoparticle tracking, transmission electron microscopy and western blotting experiments. The results indicated that pretreatments with AA and SC greatly decreased the impact of casein, but AA pretreatment damaged the surface structure of MEVs. Additionally, the differential centrifugation process resulted in a slight loss of MEVs. Overall, MEVs with small size and high purity can be obtained under 125 k × g centrifugation combined with SC pretreatment, which suggests a promising method for separation of MEVs from goat milk.
Collapse
Affiliation(s)
- Shangchen Fu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Li Zhu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Xi Yang
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-0075, Japan.
| | - Yang Jiao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Guo Hao
- Shaanxi Goat Milk Product Quality Supervision and Inspection Center, Fuping 711700, Shaanxi, China.
| | - Yongfeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| |
Collapse
|
8
|
Prasadani M, Kodithuwakku S, Pennarossa G, Fazeli A, Brevini TAL. Therapeutic Potential of Bovine Milk-Derived Extracellular Vesicles. Int J Mol Sci 2024; 25:5543. [PMID: 38791583 PMCID: PMC11122584 DOI: 10.3390/ijms25105543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Milk is a fundamental component of the human diet, owing to its substantial nutritional content. In addition, milk contains nanoparticles called extracellular vesicles (EVs), which have indicated their potential beneficial roles such as cell-to-cell communication, disease biomarkers, and therapeutics agents. Amidst other types of EVs, milk EVs (MEVs) have their significance due to their high abundance, easy access, and stability in harsh environmental conditions, such as low pH in the gut. There have been plenty of studies conducted to evaluate the therapeutic potential of bovine MEVs over the past few years, and attention has been given to their engineering for drug delivery and targeted therapy. However, there is a gap between the experimental findings available and clinical trials due to the many challenges related to EV isolation, cargo, and the uniformity of the material. This review aims to provide a comprehensive comparison of various techniques for the isolation of MEVs and offers a summary of the therapeutic potential of bovine MEVs described over the last decade, analyzing potential challenges and further applications. Although a number of aspects still need to be further elucidated, the available data point to the role of MEVs as a potential candidate with therapeutics potential, and the supplementation of MEVs would pave the way to understanding their in-depth effects.
Collapse
Affiliation(s)
- Madhusha Prasadani
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia; (M.P.); (S.K.); (A.F.)
| | - Suranga Kodithuwakku
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia; (M.P.); (S.K.); (A.F.)
- Department of Animal Sciences, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Georgia Pennarossa
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Center for Stem Cell Research, Università degli Studi di Milano, 26900 Lodi, Italy;
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia; (M.P.); (S.K.); (A.F.)
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield S10 2SF, UK
| | - Tiziana A. L. Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Sciences, Center for Stem Cell Research, Università degli Studi di Milano, 26900 Lodi, Italy;
| |
Collapse
|
9
|
Salehi M, Negahdari B, Mehryab F, Shekari F. Milk-Derived Extracellular Vesicles: Biomedical Applications, Current Challenges, and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8304-8331. [PMID: 38587896 DOI: 10.1021/acs.jafc.3c07899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Extracellular vesicles (EVs) are nano to-micrometer-sized sacs that are released by almost all animal and plant cells and act as intercellular communicators by transferring their cargos between the source and target cells. As a safe and scalable alternative to conditioned medium-derived EVs, milk-derived EVs (miEVs) have recently gained a great deal of popularity. Numerous studies have shown that miEVs have intrinsic therapeutic actions that can treat diseases and enhance human health. Additionally, they can be used as natural drug carriers and novel classes of biomarkers. However, due to the complexity of the milk, the successful translation of miEVs from benchtop to bedside still faces several unfilled gaps, especially a lack of standardized protocols for the isolation of high-purity miEVs. In this work, by comprehensively reviewing the bovine miEVs studies, we provide an overview of current knowledge and research on miEVs while highlighting their challenges and enormous promise as a novel class of theranostics. It is hoped that this study will pave the way for clinical applications of miEVs by addressing their challenges and opportunities.
Collapse
Affiliation(s)
- Mahsa Salehi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14177-55469, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14177-55469, Iran
| | - Fatemeh Mehryab
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 14155-6153, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| |
Collapse
|
10
|
Santoro J, Nuzzo S, Franzese M, Salvatore M, Grimaldi AM. Goat milk extracellular vesicles: Separation comparison of natural carriers for theragnostic application. Heliyon 2024; 10:e27621. [PMID: 38509910 PMCID: PMC10950560 DOI: 10.1016/j.heliyon.2024.e27621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Goat milk is a complex biological fluid, which in addition to having a high nutritional value, it is an interesting source of extracellular vesicles (EVs). Despite the countless potential applications that they offer in many biological fields, is not easy to compare the different proposed systems, and this is a major limitation for the real translatability of these natural nanoplatforms for theragnostic purposes. Thus, it is useful to further investigate reproducible methods to separate goat milk EVs. The choice of methods but also the preprocessing of milk has an immense impact on the separation, quality, and yield of EVs. Here, we tested four protocols to separate EVs from unpasteurised goat milk: two based on differential ultracentrifugation (DUC) and two on size-exclusion chromatography (SEC). Moreover, we assessed two different approaches of pre-treatment (acidification and precipitation) to facilitate milk protein discharge. To the best of our knowledge, a similar comparison of all performed protocols on raw goat milk has never been published before. Therefore, enriched EV samples were successfully obtained from goat milk using both DUC and SEC. Taken together, our results may be helpful to obtain natural carriers for future theragnostic applications in personalised medicine.
Collapse
Affiliation(s)
- Jessie Santoro
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143, Napoli, Italy
| | - Silvia Nuzzo
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143, Napoli, Italy
| | - Monica Franzese
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143, Napoli, Italy
| | - Marco Salvatore
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143, Napoli, Italy
| | | |
Collapse
|
11
|
Meng Y, Sun J, Zhang G. Harnessing the power of goat milk-derived extracellular vesicles for medical breakthroughs: A review. Int J Biol Macromol 2024; 262:130044. [PMID: 38340922 DOI: 10.1016/j.ijbiomac.2024.130044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Research into goat milk-derived extracellular vesicles (GMVs) has grown in popularity in recent years owing to their potential uses in several sectors, including medicine. GMVs are tiny, lipid-bound structures that cells secrete and use to transport bioactive substances like proteins, lipids, and nucleic acids. They may be extracted from different body fluids, including blood, urine, and milk, and have been found to play crucial roles in cell-to-cell communication. GMVs are a promising field of study with applications in preventing and treating various disorders. Their immune-modulating properties, for instance, have been investigated, and they have shown promise in treating autoimmune illnesses and cancer. They may be loaded with therapeutic compounds and directed to particular cells or tissues, but they have also been studied for their potential use as drug-delivery vehicles. Goat milk extracellular vesicles are an intriguing study topic with many possible benefits. Although more study is required to thoroughly understand their functioning and prospective applications, they provide a promising path for creating novel medical treatments and technology.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan road, Dadong district, Shenyang 110042, China
| |
Collapse
|
12
|
Mahala S, Kumar A, Pandey HO, Saxena S, Khanna S, Kumar M, Kumar D, De UK, Pandey AK, Dutt T. Milk exosomal microRNA profiling identified miR-375 and miR-199-5p for regulation of immune response during subclinical mastitis of crossbred cattle. Mol Biol Rep 2024; 51:59. [PMID: 38165514 DOI: 10.1007/s11033-023-09070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/10/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The dairy industry has experienced significant economic losses as a result of mastitis, an inflammatory disease of cows, including both subclinical and clinical cases. Milk exosome microRNAs have gained attention due to their stable and selective wrapping nature, offering potential for the prognosis and diagnosis of bovine mastitis, the most common pathological condition of the mammary gland. METHODS AND RESULTS In the present investigation, the microRNA profile of milk exosomes was explored using high-throughput small RNA sequencing data in sub-clinical mastitic and healthy crossbred Vrindavani cattle. In both groups, 349 microRNAs were identified, with 238 (68.19%) microRNAs co-expressed; however, 35 and 76 distinct microRNAs were found in subclinical mastitic and healthy cattle, respectively. Differential expression analysis revealed 11 microRNAs upregulated, and 18 microRNAs were downregulated in sub-clinical mastitic cattle. The functional annotation of the target genes of differentially expressed known and novel microRNAs including bta-miR-375, bta-miR-199-5p and bta-miR-12030 reveals their involvement in the regulation of immune response and inflammatory mechanisms and could be involved in development of mastitis. CONCLUSIONS The analysis of milk exosomal miRNAs cargos hold great promise as an approach to study the underlying molecular mechanisms associated with mastitis in high milk producing dairy cattle. Concurrently, the significantly downregulated miR-375 may upregulate key target genes, including CTLA4, IHH, IRF1, and IL7R. These genes are negative regulators of immune response pathways, which could be associated with impaired inflammatory mechanisms in mammary cells. According to the findings, bta-miR-375 could be a promising biomarker for the development of mastitis in dairy cattle.
Collapse
Affiliation(s)
- Sudarshan Mahala
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - Amit Kumar
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India.
| | - Hari Om Pandey
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Shikha Saxena
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - Shivani Khanna
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - Manoj Kumar
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - Deepak Kumar
- Veterinary Biotechnology Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - Ujjwal Kumar De
- Medicine Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - Ashwni Kumar Pandey
- Animal Genetics Division, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
13
|
Ma T, Meng Z, Ghaffari M, Lv J, Xin H, Zhao Q. Characterization and profiling of the microRNA in small extracellular vesicles isolated from goat milk samples collected during the first week postpartum. JDS COMMUNICATIONS 2023; 4:507-512. [PMID: 38045901 PMCID: PMC10692291 DOI: 10.3168/jdsc.2022-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/06/2023] [Indexed: 12/05/2023]
Abstract
Colostrum contains nutrients, immunoglobulins, and various bioactive compounds such as microRNA (miRNA). Less is known about the temporal changes in miRNA profiles in ruminant milk samples during the first week postpartum. In this study, we characterized and compared the profiles of miRNA in the small extracellular vesicles (sEV) isolated from colostrum (CM, collected immediately after parturition, n = 8) and transition milk (TM, collected 7 d postpartum, n = 8) from eight 1-yr-old Guanzhong dairy goats with a milk yield of approximately 500 kg/year. A total of 192 unique sEV-associated miRNA (transcripts per million >1 at least 4 samples in either CM or TM) were identified in all samples. There were 29 miRNA uniquely identified in the TM samples while no miRNA was uniquely identified in the CM samples. The abundance of the top 10 miRNA accounted for 82.4% ± 4.0% (± SD) of the total abundance, with let-7 families (e.g., let-7a/b/c-5p) being predominant in all samples. The top 10 miRNA were predicted to target 1,008 unique genes that may regulate pathways such as focal adhesion, TGF-β signaling, and axon guidance. The expression patterns of EV miRNA were similar between the 2 sample groups, although the abundance of let-7c-5p and miR-30a-3p was higher, whereas that of let-7i-5p and miR-103-3p was lower in CM than in TM. In conclusion, the core miRNAome identified in the samples from CM and TM may play an important role in cell proliferation, bone homeostasis, and neuronal network formation in newborn goat kids. The lack of differential miRNA expression between the CM and TM samples may be due to a relatively short sampling interval in which diet composition, intake and health status of ewes, and environment were relatively stable.
Collapse
Affiliation(s)
- T. Ma
- Institute of Feed Research, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Z. Meng
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, 010030, China
| | - M.H. Ghaffari
- Institute of Animal Science, University of Bonn, Bonn, 53115, Germany
| | - J. Lv
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - H. Xin
- College of Animal Sciences and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Q. Zhao
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, 010030, China
| |
Collapse
|
14
|
Huang B, Khan MZ, Chai W, Ullah Q, Wang C. Exploring Genetic Markers: Mitochondrial DNA and Genomic Screening for Biodiversity and Production Traits in Donkeys. Animals (Basel) 2023; 13:2725. [PMID: 37684989 PMCID: PMC10486882 DOI: 10.3390/ani13172725] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Donkeys (Equus asinus) play a pivotal role as essential livestock in arid and semi-arid regions, serving various purposes such as transportation, agriculture, and milk production. Despite their significance, donkey breeding has often been overlooked in comparison to other livestock species, resulting in limited genetic improvement programs. Preserving donkey genetic resources within each country necessitates the establishment of breed conservation programs, focusing on managing genetic diversity among populations. In recent years, significant strides have been made in sequencing and analyzing complete mitochondrial DNA (mtDNA) molecules in donkeys. Notably, numerous studies have honed in on the mitochondrial D-loop region, renowned for its remarkable variability and higher substitution rate within the mtDNA genome, rendering it an effective genetic marker for assessing genetic diversity in donkeys. Furthermore, genetic markers at the RNA/DNA level have emerged as indispensable tools for enhancing production and reproduction traits in donkeys. Traditional animal breeding approaches based solely on phenotypic traits, such as milk yields, weight, and height, are influenced by both genetic and environmental factors. To overcome these challenges, genetic markers, such as polymorphisms, InDel, or entire gene sequences associated with desirable traits in animals, have achieved widespread usage in animal breeding practices. These markers have proven increasingly valuable for facilitating the selection of productive and reproductive traits in donkeys. This comprehensive review examines the cutting-edge research on mitochondrial DNA as a tool for assessing donkey biodiversity. Additionally, it highlights the role of genetic markers at the DNA/RNA level, enabling the informed selection of optimal production and reproductive traits in donkeys, thereby driving advancements in donkey genetic conservation and breeding programs.
Collapse
Affiliation(s)
- Bingjian Huang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
- College of Life Sciences, Liaocheng University, Liaocheng 252059, China
| | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
15
|
Grigalevičiūtė R, Matusevičius P, Plančiūnienė R, Stankevičius R, Radzevičiūtė-Valčiukė E, Balevičiūtė A, Želvys A, Zinkevičienė A, Zigmantaitė V, Kučinskas A, Kavaliauskas P. Understanding the Immunomodulatory Effects of Bovine Colostrum: Insights into IL-6/IL-10 Axis-Mediated Inflammatory Control. Vet Sci 2023; 10:519. [PMID: 37624306 PMCID: PMC10458264 DOI: 10.3390/vetsci10080519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Bovine colostrum (COL), the first milk secreted by lactating cows postpartum, is a rich source of bioactive compounds that exert a significant role in the survival, growth, and immune development of neonatal calves. This study investigated the immunomodulatory effects of COL on cytokine production in vitro using a Caco-2/THP-1 macrophage co-culture model stimulated with Phorbol 12-myristate 13-acetate (PMA). COL pretreatment significantly reduced IL-6 (241.3 pg/mL) production induced by PMA (p < 0.05), while increasing IL-10 production (45.3 pg/mL), in comparison to PMA control (441.1 and 12.5 pg/mL, respectively). Further investigations revealed that the IL-6 suppressive effect of colostrum was heat-sensitive and associated with components of higher molecular mass (100 kDa). Moreover, colostrum primarily influenced THP-1 macrophages rather than Caco-2 epithelial cells. The effects of colostrum on IL-6 production were associated with reduced NF-κB activation in THP-1 macrophages. In calf-FMT transplanted C57BL/6 murine model, colostrum decreased intestinal permeability, reduced immune cell infiltration and intestinal score, and suppressed IL-6 (142.0 pg/mL) production during S. typhimurium infection, in comparison to control animals (215.2 pg/mL). These results suggest the immunomodulatory activity of bovine colostrum and its potential applications in inflammatory disorders. Further studies are needed to elucidate the underlying mechanisms and validate the findings in bovine models.
Collapse
Affiliation(s)
- Ramunė Grigalevičiūtė
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Str. 18/7, LT-47181 Kaunas, Lithuania; (V.Z.); (A.K.)
- Department of Animal Nutrition, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (P.M.); (R.S.)
| | - Paulius Matusevičius
- Department of Animal Nutrition, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (P.M.); (R.S.)
| | - Rita Plančiūnienė
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Eiveniu Str. 4, LT-50161 Kaunas, Lithuania;
| | - Rolandas Stankevičius
- Department of Animal Nutrition, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania; (P.M.); (R.S.)
| | - Eivina Radzevičiūtė-Valčiukė
- Centre for Innovative Medicine, Department of Immunology, Santariskiu Str. 5, LT-08410 Vilnius, Lithuania; (E.R.-V.); (A.Ž.); (A.Z.)
| | - Austėja Balevičiūtė
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Solnavägen 1, 17177 Solna, Sweden;
| | - Augustinas Želvys
- Centre for Innovative Medicine, Department of Immunology, Santariskiu Str. 5, LT-08410 Vilnius, Lithuania; (E.R.-V.); (A.Ž.); (A.Z.)
| | - Auksė Zinkevičienė
- Centre for Innovative Medicine, Department of Immunology, Santariskiu Str. 5, LT-08410 Vilnius, Lithuania; (E.R.-V.); (A.Ž.); (A.Z.)
| | - Vilma Zigmantaitė
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Str. 18/7, LT-47181 Kaunas, Lithuania; (V.Z.); (A.K.)
| | - Audrius Kučinskas
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Str. 18/7, LT-47181 Kaunas, Lithuania; (V.Z.); (A.K.)
| | - Povilas Kavaliauskas
- Biological Research Center, Lithuanian University of Health Sciences, Tilzes Str. 18/7, LT-47181 Kaunas, Lithuania; (V.Z.); (A.K.)
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell University, 1300 York Avenue, New York, NY 10065, USA
- Department of Microbiology and Immunology, University of Maryland Baltimore School of Medicine, Baltimore, MD 21201, USA
- Institute of Infectious Diseases and Pathogenic Microbiology, Birstono Str. 38A, LT-59116 Prienai, Lithuania
| |
Collapse
|
16
|
Krupova Z, Leroux C, Péchoux C, Bevilacqua C, Martin P. Comparison of goat and cow milk-derived extracellular vesicle miRNomes. Sci Data 2023; 10:465. [PMID: 37468505 PMCID: PMC10356914 DOI: 10.1038/s41597-023-02347-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
miRNAs present in milk are mainly found in extracellular vesicles (EVs), which are nanosized membrane vesicles released by most of the cell types to ensure intercellular communication. The majority of the studies performed so far on these vesicles have been conducted on human and cow's milk and focused on their miRNA content. The objectives of this study were to profile the miRNA content of purified EVs from five healthy goats and to compare their miRNome to those obtained from five healthy cows, at an early stage of lactation. EV populations were morphologically characterized using Transmission Electron Microscopy and Nanoparticle Tracking Analysis. The presence of EV protein markers checked by Western blotting and the absence of contamination of preparations by milk proteins. The size distribution and concentration of bovine and goat milk-derived EVs were similar. RNA-sequencing were performed, and all sequences were mapped to the cow genome identifying a total of 295 miRNAs. This study reports for the first-time a goat miRNome from milk EVs and its validation using cow miRNomes.
Collapse
Affiliation(s)
- Zuzana Krupova
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, F-78350, Jouy-en-Josas, France
| | - Christine Leroux
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122, Saint-Genès-Champanelle, France.
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA.
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, F-78350, Jouy-en-Josas, France
| | - Claudia Bevilacqua
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, F-78350, Jouy-en-Josas, France
| | - Patrice Martin
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, F-78350, Jouy-en-Josas, France
| |
Collapse
|
17
|
De Ciucis CG, Fruscione F, De Paolis L, Mecocci S, Zinellu S, Guardone L, Franzoni G, Cappelli K, Razzuoli E. Toll-like Receptors and Cytokine Modulation by Goat Milk Extracellular Vesicles in a Model of Intestinal Inflammation. Int J Mol Sci 2023; 24:11096. [PMID: 37446274 DOI: 10.3390/ijms241311096] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Extracellular vesicles (EVs) are nanometric spherical structures, enclosed in a lipid bilayer membrane and secreted by multiple cell types under specific physiologic and pathologic conditions. Their complex cargo modulates immune cells within an inflammatory microenvironment. Milk is one of the most promising sources of EVs in terms of massive recovery, and milk extracellular vesicles (mEVs) have immunomodulatory and anti-inflammatory effects. The aim of this study was to characterize goat mEVs' immunomodulating activities on Toll-like receptors (TLRs) and related immune genes, including cytokines, using a porcine intestinal epithelial cell line (IPEC-J2) after the establishment of a pro-inflammatory environment. IPEC-J2 was exposed for 2 h to pro-inflammatory stimuli as a model of inflammatory bowel disease (IBD), namely LPS for Crohn's disease (CD) and H2O2 for ulcerative colitis (UC); then, cells were treated with goat mEVs for 48 h. RT-qPCR and ELISA data showed that cell exposure to LPS or H2O2 caused a pro-inflammatory response, with increased gene expression of CXCL8, TNFA, NOS2 and the release of pro-inflammatory cytokines. In the LPS model, the treatment with mEVs after LPS determined the down-regulation of NOS2, MMP9, TLR5, TGFB1, IFNB, IL18 and IL12A gene expressions, as well as lower release of IL-18 in culture supernatants. At the same time, we observed the increased expression of TLR1, TLR2, TLR8 and EBI3. On the contrary, the treatment with mEVs after H2O2 exposure, the model of UC, determined the increased expression of MMP9 alongside the decrease in TGFB1, TLR8 and DEFB1, with a lower release of IL-1Ra in culture supernatants. Overall, our data showed that a 48 h treatment with mEVs after a pro-inflammatory stimulus significantly modulated the expression of several TLRs and cytokines in swine intestinal cells, in association with a decreased inflammation. These results further highlight the immunomodulatory potential of these nanosized structures and suggest their potential application in vivo.
Collapse
Affiliation(s)
- Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Lisa Guardone
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| |
Collapse
|
18
|
Franzoni G, Mecocci S, De Ciucis CG, Mura L, Dell’Anno F, Zinellu S, Fruscione F, De Paolis L, Carta T, Anfossi AG, Dei Guidici S, Chiaradia E, Pascucci L, Oggiano A, Cappelli K, Razzuoli E. Goat milk extracellular vesicles: immuno-modulation effects on porcine monocyte-derived macrophages in vitro. Front Immunol 2023; 14:1209898. [PMID: 37469517 PMCID: PMC10352104 DOI: 10.3389/fimmu.2023.1209898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/26/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Extracellular vesicles (EVs) are nanometric-membrane-bound sub-cellular structures, which can be recovered from milk. Milk EVs have drawn increasing interest due to their potential biomedical applications, therefore it is important to investigate their impact on key immune cells, such as macrophages. Methods In this work, the immunomodulatory effects of goat milk EVs on untreated (moMФ) and classically activated (moM1) porcine monocyte-derived macrophages were investigated using flow cytometry, ELISA, and gene expression assays. Results These particles were efficiently internalized by macrophages and high doses (60 mg protein weight) triggered the upregulation of MHC I and MHC II DR on moMФ, but not on moM1. In moMФ, exposure to low doses (0.6 mg) of mEVs enhanced the gene expression of IL10, EBI3, and IFNB, whereas high doses up-regulated several pro-inflammatory cytokines. These nanosized structures slightly modulated cytokine gene expression on moM1. Accordingly, the cytokine (protein) contents in culture supernatants of moMФ were mildly affected by exposure to low doses of mEVs, whereas high doses promoted the increased release of TNF, IL-8, IL-1a, IL-1b, IL-1Ra, IL-6, IL-10, and IL-12. The cytokines content in moM1 supernatants was not critically affected. Discussion Overall, our data support a clinical application of these molecules: they polarized macrophages toward an M1-like phenotype, but this activation seemed to be controlled, to prevent potentially pathological over-reaction to stressors.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| | - Lorena Mura
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
- Department of Biomedical Sciences, School of Medicine, University of Sassari, Sassari, Italy
| | - Filippo Dell’Anno
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| | - Susanna Zinellu
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| | - Tania Carta
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Antonio G. Anfossi
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Silvia Dei Guidici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | | | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Perugia, Italy
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Genova, Italy
| |
Collapse
|
19
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
20
|
Santoro J, Mukhopadhya A, Oliver C, Brodkorb A, Giblin L, O'Driscoll L. An investigation of extracellular vesicles in bovine colostrum, first milk and milk over the lactation curve. Food Chem 2023; 401:134029. [DOI: 10.1016/j.foodchem.2022.134029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/04/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
|
21
|
Guo R, Jiang D, Gai Y, Qian R, Zhu Z, Gao Y, Jing B, Yang B, Lan X, An R. Chlorin e6-loaded goat milk-derived extracellular vesicles for Cerenkov luminescence-induced photodynamic therapy. Eur J Nucl Med Mol Imaging 2023; 50:508-524. [PMID: 36222853 DOI: 10.1007/s00259-022-05978-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/16/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Photodynamic therapy (PDT) is a promising cancer treatment strategy with rapid progress in preclinical and clinical settings. However, the limitations in penetration of external light and precise delivery of photosensitizers hamper its clinical translation. As such, the internal light source such as Cerenkov luminescence (CL) from decaying radioisotopes offers new opportunities. Herein, we show that goat milk-derived extracellular vesicles (GEV) can act as a carrier to deliver photosensitizer Chlorin e6 (Ce6) and tumor-avid 18F-FDG can activate CL-induced PDT for precision cancer theranostics. METHODS GEV was isolated via differential ultracentrifugation of commercial goat milk and photosensitizer Ce6 was loaded by co-incubation to obtain Ce6@GEV. Tumor uptake of Ce6@GEV was examined using confocal microscopy and flow cytometry. To demonstrate the ability of 18F-FDG to activate photodynamic effects against cancer cells, apoptosis rates were measured using flow cytometry, and the production of 1O2 was measured by reactive oxygen species (ROS) monitoring kit. Moreover, we used the IVIS device to detect Cherenkov radiation and Cerenkov radiation energy transfer (CRET). For animal experiments, a small-animal IVIS imaging system was used to visualize the accumulation of the GEV drug delivery system in tumors. PET/CT and CL images of the tumor site were performed at 0.5, 1, and 2 h. For in vivo antitumor therapy, changes of tumor volume, survival time, and body weight in six groups of tumor-bearing mice were monitored. Furthermore, the blood sample and organs of interest (heart, liver, spleen, lungs, kidneys, and tumor) were collected for hematological analysis, immunohistochemistry, and H&E staining. RESULTS Confocal microscopy of 4T1 cells incubated with Ce6@GEV for 4 h revealed strong red fluorescence signals in the cytoplasm, which demonstrated that Ce6 loaded in GEV could be efficiently delivered into tumor cells. When Ce6@GEV and 18F-FDG co-existed incubated with 4T1 cells, the cell viability plummeted from more than 88.02 ± 1.30% to 23.79 ± 1.59%, indicating excellent CL-induced PDT effects. In vivo fluorescence images showed a peak tumor/liver ratio of 1.36 ± 0.09 at 24 h after Ce6@GEV injection. For in vivo antitumor therapy, Ce6@GEV + 18F-FDG group had the best tumor inhibition rate (58.02%) compared with the other groups, with the longest survival rate (35 days, 40%). During the whole treatment process, neither blood biochemical analysis nor histological observation revealed vital organ damage, suggesting the biosafety of this treatment strategy. CONCLUSIONS The simultaneous accumulation of 18F-FDG and Ce6 in tumor tissues is expected to overcome the deficiency of traditional PDT. This strategy has the potential to extend PDT to a variety of tumors, including metastases, using targeted radiotracers to provide internal excitation of light-responsive therapeutics. We expect that our method will play a critical role in precision treatment of deep solid tumors.
Collapse
Affiliation(s)
- Rong Guo
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Ruijie Qian
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Ziyang Zhu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Yu Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Boping Jing
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Biao Yang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China.
| | - Rui An
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
22
|
Hamza E, Cosandey J, Gerber V, Koch C, Unger L. The potential of three whole blood microRNAs to predict outcome and monitor treatment response in sarcoid-bearing equids. Vet Res Commun 2023; 47:87-98. [PMID: 35484337 PMCID: PMC9873782 DOI: 10.1007/s11259-022-09930-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 01/28/2023]
Abstract
MicroRNAs (miRNAs) have been proposed as biomarkers for equine sarcoid (ES) disease. In this study, the suitability of three whole blood miRNAs to diagnose ES and to predict and monitor the outcome of therapy was explored. Using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), expression levels of eca-miR-127, eca-miR-379, and eca-miR-432 in whole blood of ES-affected equids before and at least one year after therapy were compared to those of unaffected control equids. Associations of age, sex, species, diagnosis, and therapy outcome with miRNA expression levels were examined using general linear models. In total, 48 ES-affected equids and 47 control equids were recruited. From the affected animals, 31 responded favorably to treatment, and 17 demonstrated a failure of therapy. None of the tested miRNAs were influenced by age. Male equids showed increased expression of eca-miR-127 compared to females and horses showed higher expression levels of eca-miR-379 and eca-miR-432 than donkeys. Eca-miR-127 was confirmed as a diagnostic discriminator between ES-affected and control equids. No difference in miRNA profiles before therapy was found when comparing ES-affected equids with success vs. failure of therapy. Eca-miR-379 and eca-miR-432 decreased over time in horses where therapy was successful, but not in those cases where it failed. Biological variables influence equine whole blood miRNA expression, which may complicate biomarker validation. While none of the tested miRNAs could predict the response to therapy in ES-affected equids and eca-miR-127 showed poor diagnostic accuracy for ES, eca-miR-379 and eca-miR-432 miRNAs might allow refinement of monitoring of success of ES therapy.
Collapse
Affiliation(s)
- E. Hamza
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland ,Departement of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - J. Cosandey
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - V. Gerber
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - C. Koch
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - L. Unger
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Zhang M, Lu Y, Wang L, Mao Y, Hu X, Chen Z. Current Status of Research on Small Extracellular Vesicles for the Diagnosis and Treatment of Urological Tumors. Cancers (Basel) 2022; 15:cancers15010100. [PMID: 36612097 PMCID: PMC9817817 DOI: 10.3390/cancers15010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Extracellular vesicles (EVs) are important mediators of communication between tumor cells and normal cells. These vesicles are rich in a variety of contents such as RNA, DNA, and proteins, and can be involved in angiogenesis, epithelial-mesenchymal transition, the formation of pre-metastatic ecological niches, and the regulation of the tumor microenvironment. Small extracellular vesicles (sEVs) are a type of EVs. Currently, the main treatments for urological tumors are surgery, radiotherapy, and targeted therapy. However, urological tumors are difficult to diagnose and treat due to their high metastatic rate, tendency to develop drug resistance, and the low sensitivity of liquid biopsies. Numerous studies have shown that sEVs offer novel therapeutic options for tumor treatment, such as tumor vaccines and tumor drug carriers. sEVs have attracted a great deal of attention owing to their contribution to in intercellular communication, and as novel biomarkers, and role in the treatment of urological tumors. This article reviews the research and applications of sEVs in the diagnosis and treatment of urological tumors.
Collapse
Affiliation(s)
- Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
- Correspondence: ; Tel.: +86-150-8373-7280
| |
Collapse
|
24
|
Mecocci S, De Paolis L, Zoccola R, Fruscione F, De Ciucis CG, Chiaradia E, Moccia V, Tognoloni A, Pascucci L, Zoppi S, Zappulli V, Chillemi G, Goria M, Cappelli K, Razzuoli E. Antimicrobial and Immunomodulatory Potential of Cow Colostrum Extracellular Vesicles (ColosEVs) in an Intestinal In Vitro Model. Biomedicines 2022; 10:3264. [PMID: 36552020 PMCID: PMC9775086 DOI: 10.3390/biomedicines10123264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Extracellular Vesicles (EVs) are nano-sized double-lipid-membrane-bound structures, acting mainly as signalling mediators between distant cells and, in particular, modulating the immune response and inflammation of targeted cells. Milk and colostrum contain high amounts of EVs that could be exploited as alternative natural systems in antimicrobial fighting. The aim of this study is to evaluate cow colostrum-derived EVs (colosEVs) for their antimicrobial, anti-inflammatory and immunomodulating effects in vitro to assess their suitability as natural antimicrobial agents as a strategy to cope with the drug resistance problem. ColosEVs were evaluated on a model of neonatal calf diarrhoea caused by Escherichia coli infection, a livestock disease where antibiotic therapy often has poor results. Colostrum from Piedmontese cows was collected within 24 h of calving and colosEVs were immediately isolated. IPEC-J2 cell line was pre-treated with colosEVs for 48 h and then infected with EPEC/NTEC field strains for 2 h. Bacterial adherence and IPEC-J2 gene expression analysis (RT-qPCR) of CXCL8, DEFB1, DEFB4A, TLR4, TLR5, NFKB1, MYD88, CGAS, RIGI and STING were evaluated. The colosEVs pre-treatment significantly reduced the ability of EPEC/NTEC strains to adhere to cell surfaces (p = 0.006), suggesting a role of ColosEVs in modulating host−pathogen interactions. Moreover, our results showed a significant decrease in TLR5 (p < 0.05), CGAS (p < 0.05) and STING (p < 0.01) gene expression in cells that were pre-treated with ColosEVs and then infected, thus highlighting a potential antimicrobial activity of ColosEVs. This is the first preliminarily study investigating ColosEV immunomodulatory and anti-inflammatory effects on an in vitro model of neonatal calf diarrhoea, showing its potential as a therapeutic and prophylactic tool.
Collapse
Affiliation(s)
- Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Roberto Zoccola
- S.C. Biotecnologie Applicate alle Produzioni, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, via Bologna 148, 10154 Torino, Italy
| | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | - Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| | | | - Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - Alessia Tognoloni
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Simona Zoppi
- S.C. Diagnostica Generale, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, via Bologna 148, 10154 Torino, Italy
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Legnaro, Italy
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Maria Goria
- S.C. Biotecnologie Applicate alle Produzioni, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, via Bologna 148, 10154 Torino, Italy
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy
| |
Collapse
|
25
|
Mecocci S, Trabalza-Marinucci M, Cappelli K. Extracellular Vesicles from Animal Milk: Great Potentialities and Critical Issues. Animals (Basel) 2022; 12:ani12233231. [PMID: 36496752 PMCID: PMC9740508 DOI: 10.3390/ani12233231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Other than representing the main source of nutrition for newborn mammals, milk delivers a sophisticated signaling system from mother to child that promotes postnatal health. The bioactive components transferred through the milk intake are important for the development of the newborn immune system and include oligosaccharides, lactoferrin, lysozyme, α-La, and immunoglobulins. In the last 15 years, a pivotal role in this mother-to-child exchange has been attributed to extracellular vesicles (EVs). EVs are micro- and nanosized structures enclosed in a phospholipidic double-layer membrane that are produced by all cell types and released in the extracellular environment, reaching both close and distant cells. EVs mediate the intercellular cross-talk from the producing to the receiving cell through the transfer of molecules contained within them such as proteins, antigens, lipids, metabolites, RNAs, and DNA fragments. The complex cargo can induce a wide range of functional modulations in the recipient cell (i.e., anti-inflammatory, immunomodulating, angiogenetic, and pro-regenerative modulations) depending on the type of producing cells and the stimuli that these cells receive. EVs can be recovered from every biological fluid, including blood, urine, bronchoalveolar lavage fluid, saliva, bile, and milk, which is one of the most promising scalable vesicle sources. This review aimed to present the state-of-the-art of animal-milk-derived EV (mEV) studies due to the exponential growth of this field. A focus on the beneficial potentialities for human health and the issues of studying vesicles from milk, particularly for the analytical methodologies applied, is reported.
Collapse
|
26
|
Extracellular Vesicles in Veterinary Medicine. Animals (Basel) 2022; 12:ani12192716. [PMID: 36230457 PMCID: PMC9559303 DOI: 10.3390/ani12192716] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-bound vesicles involved in many physiological and pathological processes not only in humans but also in all the organisms of the eukaryotic and prokaryotic kingdoms. EV shedding constitutes a fundamental universal mechanism of intra-kingdom and inter-kingdom intercellular communication. A tremendous increase of interest in EVs has therefore grown in the last decades, mainly in humans, but progressively also in animals, parasites, and bacteria. With the present review, we aim to summarize the current status of the EV research on domestic and wild animals, analyzing the content of scientific literature, including approximately 220 papers published between 1984 and 2021. Critical aspects evidenced through the veterinarian EV literature are discussed. Then, specific subsections describe details regarding EVs in physiology and pathophysiology, as biomarkers, and in therapy and vaccines. Further, the wide area of research related to animal milk-derived EVs is also presented in brief. The numerous studies on EVs related to parasites and parasitic diseases are excluded, deserving further specific attention. The literature shows that EVs are becoming increasingly addressed in veterinary studies and standardization in protocols and procedures is mandatory, as in human research, to maximize the knowledge and the possibility to exploit these naturally produced nanoparticles.
Collapse
|
27
|
Melnik BC, Schmitz G. Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. Int J Mol Sci 2022; 23:ijms231911503. [PMID: 36232796 PMCID: PMC9569743 DOI: 10.3390/ijms231911503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic β cell expansion and functional maturation during the birth-to-weaning period is driven by epigenetic programs primarily triggered by growth factors, hormones, and nutrients provided by human milk. As shown recently, exosomes derived from various origins interact with β cells. This review elucidates the potential role of milk-derived exosomes (MEX) and their microRNAs (miRs) on pancreatic β cell programming during the postnatal period of lactation as well as during continuous cow milk exposure of adult humans to bovine MEX. Mechanistic evidence suggests that MEX miRs stimulate mTORC1/c-MYC-dependent postnatal β cell proliferation and glycolysis, but attenuate β cell differentiation, mitochondrial function, and insulin synthesis and secretion. MEX miR content is negatively affected by maternal obesity, gestational diabetes, psychological stress, caesarean delivery, and is completely absent in infant formula. Weaning-related disappearance of MEX miRs may be the critical event switching β cells from proliferation to TGF-β/AMPK-mediated cell differentiation, whereas continued exposure of adult humans to bovine MEX miRs via intake of pasteurized cow milk may reverse β cell differentiation, promoting β cell de-differentiation. Whereas MEX miR signaling supports postnatal β cell proliferation (diabetes prevention), persistent bovine MEX exposure after the lactation period may de-differentiate β cells back to the postnatal phenotype (diabetes induction).
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-52-4198-8060
| | - Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
28
|
Mecocci S, De Paolis L, Fruscione F, Pietrucci D, De Ciucis CG, Giudici SD, Franzoni G, Chillemi G, Cappelli K, Razzuoli E. In vitro evaluation of immunomodulatory activities of goat milk Extracellular Vesicles (mEVs) in a model of gut inflammation. Res Vet Sci 2022; 152:546-556. [PMID: 36179548 DOI: 10.1016/j.rvsc.2022.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022]
Abstract
Gut represents a major immunological defense barrier with mucosal immune system and intestinal epithelial cells (IECs). In all intestinal diseases, in particular inflammatory bowel disease (IBD), both the absorption and the local immune system are compromised and alternative effective therapies are sought after. Extracellular Vesicles (EVs) have the capability to regulate immune cells within the inflammatory microenvironment, by dampening inflammation and restoring intestinal barrier integrity. Recently, the immune-modulatory role of EVs has also been confirmed for milk EVs (mEVs), notable for their easy production, high sample volumes, cost-effective scalable production and non-toxic and non-immunogenic behavior. In this context, the aim of this study was to evaluate goat mEV anti-inflammatory and immuno-modulating effects on an in vitro model (IPEC-J2) of intestinal inflammation through gene expression evaluation with RT-qPCR and cytokine release dosage with ELISA test. After the establishment of a pro-inflammatory environment due to LPS stimuli, IL6, CXCL8, IL12p35, IL12p40, IFNB, IL18, TLR7 and NOS2 resulted significantly up-regulated in stimulated IPEC-J2 cells compared to those of the basal culture. After 48 h of mEV treatment in inflamed IPEC-J2 a partial restoration of initial conditions was detected, with the IL18 and IL12p40 significant down-regulation, and IL12p35, EBI3, TLR7, BD1 and BD3 up-regulation. IL-18 reduced protein production was also detected in supernatants. Moreover, a decrease of MMP9 and NOS2 together with a strong up-regulation of MUC2 indicated a recovery of cellular homeostasis and, therefore, potential beneficial effects on the intestinal mucosa. Nevertheless, 48 h post-treatment, an increased gene expression and protein release of IL-8 was observed. This paper is one of the firsts to assess the effect of goat mEVs and the first one, in particular, of doing this on an in vitro model of gut inflammation. The obtained results show a potential capability of goat mEVs to modulate inflammation and to play beneficial effects on the intestinal mucosa.
Collapse
Affiliation(s)
- Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06123 Perugia, Italy; Sports Horse Research Center (CRCS), University of Perugia, 06123 Perugia, Italy.
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39/24, 16129 Genova, Italy.
| | - Floriana Fruscione
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39/24, 16129 Genova, Italy.
| | - Daniele Pietrucci
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, CNR, 70126 Bari, Italy; Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39/24, 16129 Genova, Italy.
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy.
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy.
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy.
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06123 Perugia, Italy; Sports Horse Research Center (CRCS), University of Perugia, 06123 Perugia, Italy.
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Piazza Borgo Pila 39/24, 16129 Genova, Italy.
| |
Collapse
|
29
|
miRNA expression patterns in blood leukocytes and milk somatic cells of goats infected with small ruminant lentivirus (SRLV). Sci Rep 2022; 12:13239. [PMID: 35918371 PMCID: PMC9344810 DOI: 10.1038/s41598-022-17276-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
The study aims to determine the selected miRNAs expression in milk somatic cells (MSC) and blood leukocytes (BL) of SRLV-seronegative (SRLV-SN) and SRLV-seropositive (SRLV-SP) goats. A functional in silico analysis of their target genes was also conducted. MiR-93-5p and miR-30e-5p were expressed only in BL, while miR-144 was expressed only in MSC, regardless of SRLV infection. In the SRLV-SP goats, higher miR-214-3p and miR-221-5p levels were found in the MSC than in the BL. Only miR-30e-5p was influenced by the lactation stage in BL in both groups, while only miR-93-5p was altered in BL of SRLV-SN goats. The target gene protein products exhibited contradictory functions, protecting the host from virus on the one hand and assisting viruses in their life cycle on the other. The differential expression of the miRNAs observed between the MSC and BL of SRLV-SP goats may suggest that the local immune response to the infection in the udder differs from the systemic response, and acts independently. Some miRNAs demonstrated different expression between lactation stages. It may be influenced by the metabolic burden occurring in early lactation and its peak. Some of the studied miRNAs may influence viral infection by regulating the expression of their target genes.
Collapse
|
30
|
Babaker MA, Aljoud FA, Alkhilaiwi F, Algarni A, Ahmed A, Khan MI, Saadeldin IM, Alzahrani FA. The Therapeutic Potential of Milk Extracellular Vesicles on Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23126812. [PMID: 35743255 PMCID: PMC9224713 DOI: 10.3390/ijms23126812] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer remains one of the leading prevalent cancers in the world and is the fourth most common cause of death from cancer. Unfortunately, the currently utilized chemotherapies fail in selectively targeting cancer cells and cause harm to healthy cells, which results in profound side effects. Researchers are focused on developing anti-cancer targeted medications, which is essential to making them safer, more effective, and more selective and to maximizing their therapeutic benefits. Milk-derived extracellular vesicles (EVs) from camels and cows have attracted much attention as a natural substitute product that effectively suppresses a wide range of tumor cells. This review sheds light on the biogenesis, methods of isolation, characterization, and molecular composition of milk EVs as well as the therapeutic potentials of milk EVs on colorectal cancer.
Collapse
Affiliation(s)
- Manal A. Babaker
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Fadwa A. Aljoud
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.); (F.A.)
| | - Faris Alkhilaiwi
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (F.A.A.); (F.A.)
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman Algarni
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Northern Border University, Arar 73221, Saudi Arabia;
| | - Asif Ahmed
- MirZyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham B7 4BB, UK;
- School of Health Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Mohammad Imran Khan
- Centre of Artificial Intelligence in Precision Medicines (CAIPM), King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Islam M. Saadeldin
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Correspondence: (I.M.S.); (F.A.A.)
| | - Faisal A. Alzahrani
- MirZyme Therapeutics, Innovation Birmingham Campus, Faraday Wharf, Birmingham B7 4BB, UK;
- Centre of Artificial Intelligence in Precision Medicines (CAIPM), King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Embryonic Stem Cells Unit, Department of Biochemistry, Faculty of Science, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (I.M.S.); (F.A.A.)
| |
Collapse
|
31
|
Mecocci S, Ottaviani A, Razzuoli E, Fiorani P, Pietrucci D, De Ciucis CG, Dei Giudici S, Franzoni G, Chillemi G, Cappelli K. Cow Milk Extracellular Vesicle Effects on an In Vitro Model of Intestinal Inflammation. Biomedicines 2022; 10:biomedicines10030570. [PMID: 35327370 PMCID: PMC8945533 DOI: 10.3390/biomedicines10030570] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/19/2022] [Accepted: 02/27/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer nano-dimensional spherical structures and act mainly as signaling mediators between cells, in particular modulating immunity and inflammation. Milk-derived EVs (mEVs) can have immunomodulatory and anti-inflammatory effects, and milk is one of the most promising food sources of EVs. In this context, this study aimed to evaluate bovine mEVs anti-inflammatory and immunomodulating effects on an in vitro co-culture (Caco-2 and THP-1) model of intestinal inflammation through gene expression evaluation with RT-qPCR and cytokine release through ELISA. After establishing a pro-inflammatory environment due to IFN-γ and LPS stimuli, CXCL8, IL1B, TNFA, IL12A, IL23A, TGFB1, NOS2, and MMP9 were significantly up-regulated in inflamed Caco-2 compared to the basal co-culture. Moreover, IL-17, IL-1β, IL-6, TNF-α release was increased in supernatants of THP-1. The mEV administration partially restored initial conditions with an effective anti-inflammatory activity. Indeed, a decrease in gene expression and protein production of most of the tested cytokines was detected, together with a significant gene expression decrease in MMP9 and the up-regulation of MUC2 and TJP1. These results showed a fundamental capability of mEVs to modulate inflammation and their potential beneficial effect on the intestinal mucosa.
Collapse
Affiliation(s)
- Samanta Mecocci
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy;
- Sports Horse Research Center (CRCS), University of Perugia, 06123 Perugia, Italy
| | - Alessio Ottaviani
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy;
- Correspondence: (E.R.); (G.C.); (K.C.); Tel.: +39-010-542274 (E.R.); +39-0761-357429 (G.C.); +39-075-5857722 (K.C.)
| | - Paola Fiorani
- Institute of Translational Pharmacology, National Research Council, CNR, 00133 Rome, Italy;
| | - Daniele Pietrucci
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, National Research Council, CNR, 70126 Bari, Italy;
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Chiara Grazia De Ciucis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Piazza Borgo Pila 39-24, 16129 Genova, Italy;
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (G.F.)
| | - Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (G.F.)
| | - Giovanni Chillemi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, National Research Council, CNR, 70126 Bari, Italy;
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
- Correspondence: (E.R.); (G.C.); (K.C.); Tel.: +39-010-542274 (E.R.); +39-0761-357429 (G.C.); +39-075-5857722 (K.C.)
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, 06123 Perugia, Italy;
- Sports Horse Research Center (CRCS), University of Perugia, 06123 Perugia, Italy
- Correspondence: (E.R.); (G.C.); (K.C.); Tel.: +39-010-542274 (E.R.); +39-0761-357429 (G.C.); +39-075-5857722 (K.C.)
| |
Collapse
|