1
|
Pei T, Bai X. Nonsurgical synergistic full-arch vertical intrusion treatment of bimaxillary protruded hyperdivergent skeletal Class II malocclusion using aligners. Angle Orthod 2024; 94:462-472. [PMID: 39229955 PMCID: PMC11210509 DOI: 10.2319/112923-790.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/01/2024] [Indexed: 09/05/2024] Open
Abstract
A bone-borne full-arch vertical control strategy using miniscrews was deployed with aligners to treat a case of skeletal hyperdivergent Class II malocclusion with bimaxillary protrusion. Miniscrews were inserted in the posterior buccal and palatal regions and the anterior buccal region of the maxilla to distribute vertical intrusive force through the upper arch by anchoring vertical elastics from the miniscrews to the aligners. Synergetic lower anterior intrusion was completed using bilateral posterior miniscrews to counteract the extrusive force generated. Substantial full upper arch and lower anterior vertical intrusion was achieved. In conjunction with en masse anterior-posterior retraction, synergetic posterior and anterior vertical intrusion facilitated counterclockwise rotation of the mandible, creating significant esthetic improvement. Anterior vertical elastics also provided flaring of the anterior teeth, reducing the side effect of lingual tipping from en masse retraction, while successfully controlling overbite and incisor torque during space closure. The bone-borne full-arch vertical intrusion strategy can work well with aligners to address hyperdivergent skeletal Class II malocclusion with bimaxillary protrusion.
Collapse
Affiliation(s)
- Tao Pei
- Corresponding author: Dr Tao Pei, Clinical Assistant Professor, Department of Orthodontics, Stomatology Center of Peking University Shenzhen Hospital, 1120 Lianhua Rd, Futian District, Shenzhen, Guangdong Province 518036, China (e-mail: )
| | | |
Collapse
|
2
|
Topârcean AM, Acatrinei A, Rusu I, Feștilă D, Câmpian RS, Kelemen B, Ghergie MCD. Genetic Insights into Skeletal Malocclusion: The Role of the FBN3 rs7351083 SNP in the Romanian Population. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1061. [PMID: 39064490 PMCID: PMC11279028 DOI: 10.3390/medicina60071061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Background and Objectives: irregularities in the growth and development of the jawbones can lead to misalignments of maxillary and mandibular structures, a complex condition known as skeletal malocclusion, one of the most common oral health problems. Skeletal malocclusions, particularly Class II and Class III, can significantly affect facial appearance, chewing efficiency, speech, and overall oral health, often requiring orthodontic treatment or surgery to correct. These dentofacial anomalies are influenced by genetic and environmental factors and exhibit diverse phenotypic expressions. Materials and Methods: in this study, we investigated the correlation between the rs7351083 SNP of the FBN3 gene that encodes a member of the fibrillin protein family and malocclusion risk in a group of 57 patients from Romania. Results: the results shed light on the relationship between the selected genetic marker and the investigated dentofacial disorder, revealing a positive association between the reference allele (A) and Class II and that the alternate allele (G) is associated with Class III. Conclusions: cephalometric analysis revealed no significant differences among genotypes, suggesting that while genetic factors are implicated in malocclusion, they may not directly affect cephalometric parameters or that the sample size was too small to detect these differences. The discovery of an A > T transversion in one individual with a Class II deformity underscores the genetic diversity within the population and the necessity of comprehensive genotyping to uncover rare genetic variants that might influence craniofacial development and the risk of malocclusion. This study highlights the need for larger studies to confirm these preliminary associations.
Collapse
Affiliation(s)
- Adina Maria Topârcean
- Oral Rehabilitation Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, Victor Babeș 8 Street, 400012 Cluj-Napoca, Romania; (A.M.T.); (R.S.C.)
| | - Arina Acatrinei
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian 42 Street, 400271 Cluj-Napoca, Romania; (A.A.); (I.R.); (B.K.)
- Doctoral School of Agricultural Engineering Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5 Street, 400372 Cluj Napoca, Romania
| | - Ioana Rusu
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian 42 Street, 400271 Cluj-Napoca, Romania; (A.A.); (I.R.); (B.K.)
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Republicii nr 44 Street, 400015 Cluj-Napoca, Romania
| | - Dana Feștilă
- Department of Conservative Odontology, “Iuliu Hațieganu” University of Medicine and Pharmacy, “Iuliu Hatieganu” Victor Babeș 8 Street, 400012 Cluj-Napoca, Romania;
| | - Radu Septimiu Câmpian
- Oral Rehabilitation Department, “Iuliu Hațieganu” University of Medicine and Pharmacy, Victor Babeș 8 Street, 400012 Cluj-Napoca, Romania; (A.M.T.); (R.S.C.)
| | - Beatrice Kelemen
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, Treboniu Laurian 42 Street, 400271 Cluj-Napoca, Romania; (A.A.); (I.R.); (B.K.)
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Republicii nr 44 Street, 400015 Cluj-Napoca, Romania
| | - Mircea Constantin Dinu Ghergie
- Department of Conservative Odontology, “Iuliu Hațieganu” University of Medicine and Pharmacy, “Iuliu Hatieganu” Victor Babeș 8 Street, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
3
|
Bezamat M, Carver CE, Vieira AR. Family-based GWAS for dental class I malocclusion and clefts. BMC Oral Health 2024; 24:665. [PMID: 38849772 PMCID: PMC11162011 DOI: 10.1186/s12903-024-04444-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Individuals born with cleft lip and/or palate who receive corrective surgery regularly have abnormal growth in the midface region such that they exhibit premaxillary hypoplasia. However, there are also genetic contributions to craniofacial morphology in the midface region, so although these individuals appear to have Class III skeletal discrepancy, their molar relationship may be Class I. Past genome-wide association studies (GWASs) on skeletal Class II and III malocclusion suggested that multiple genetic markers contribute to these phenotypes via a multifactorial inheritance model, but research has yet to examine the genetic markers associated with dental Class I malocclusion. Thus, our goal was to conduct a family based GWAS to identify genes across the genome that are associated with Class I malocclusion, as defined by molar relations, in humans with and without clefts. METHODS Our cohort consisted of 739 individuals from 47 Filipino families originally recruited in 2006 to investigate the genetic basis of orofacial clefts. All individuals supplied blood samples for DNA extraction and genotyping, and a 5,766 single nucleotide polymorphism (SNP) custom panel was used for the analyses. We performed a transmission disequilibrium test for participants with and without clefts to identify genetic contributors potentially involved with Class I malocclusion. RESULTS In the total cohort, 13 SNPs had associations that reached the genomic control threshold (p < 0.005), while five SNPs were associated with Class I in the cohort of participants without clefts, including four associations that were identified in the total cohort. The associations for the SNPs ABCA4 rs952499, SOX1-OT rs726455, and RORA rs877228 are of particular interest, as past research found associations between these genes and various craniofacial phenotypes, including cleft lip and/or palate. CONCLUSIONS These findings support the multifactorial inheritance model for dental Class I malocclusion and suggest a common genetic basis for different aspects of craniofacial development.
Collapse
Affiliation(s)
- Mariana Bezamat
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Chelsea E Carver
- Department of Oral and Craniofacial Sciences, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA, USA
| | - Alexandre R Vieira
- School of Dental Medicine, East Carolina University, Greenville, NC, 27834-4354, USA.
| |
Collapse
|
4
|
Lecca M, Scribante A, Errichiello E. Commentary on "Craniofacial Syndromes and class III phenotype: common genotype fingerprints? A scoping review and meta-analysis". Pediatr Res 2024; 95:1412-1414. [PMID: 38245629 DOI: 10.1038/s41390-024-03036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/22/2024]
Affiliation(s)
- Mauro Lecca
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy
| | - Andrea Scribante
- Unit of Dental Hygiene, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100, Pavia, Italy
- Unit of Orthodontics and Pediatric Dentistry, Section of Dentistry, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100, Pavia, Italy
| | - Edoardo Errichiello
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy.
- Neurogenetics Research Center, IRCCS Mondino Foundation, 27100, Pavia, Italy.
| |
Collapse
|
5
|
Zhou C, Duan P, He H, Song J, Hu M, Liu Y, Liu Y, Guo J, Jin F, Cao Y, Jiang L, Ye Q, Zhu M, Jiang B, Ruan W, Yuan X, Li H, Zou R, Tian Y, Gao L, Shu R, Chen J, Liu R, Zou S, Li X. Expert consensus on pediatric orthodontic therapies of malocclusions in children. Int J Oral Sci 2024; 16:32. [PMID: 38627388 PMCID: PMC11021504 DOI: 10.1038/s41368-024-00299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Malocclusion, identified by the World Health Organization (WHO) as one of three major oral diseases, profoundly impacts the dental-maxillofacial functions, facial esthetics, and long-term development of ~260 million children in China. Beyond its physical manifestations, malocclusion also significantly influences the psycho-social well-being of these children. Timely intervention in malocclusion can foster an environment conducive to dental-maxillofacial development and substantially decrease the incidence of malocclusion or reduce the severity and complexity of malocclusion in the permanent dentition, by mitigating the negative impact of abnormal environmental influences on the growth. Early orthodontic treatment encompasses accurate identification and treatment of dental and maxillofacial morphological and functional abnormalities during various stages of dental-maxillofacial development, ranging from fetal stages to the early permanent dentition phase. From an economic and societal standpoint, the urgency for effective early orthodontic treatments for malocclusions in childhood cannot be overstated, underlining its profound practical and social importance. This consensus paper discusses the characteristics and the detrimental effects of malocclusion in children, emphasizing critical need for early treatment. It elaborates on corresponding core principles and fundamental approaches in early orthodontics, proposing comprehensive guidance for preventive and interceptive orthodontic treatment, serving as a reference for clinicians engaged in early orthodontic treatment.
Collapse
Affiliation(s)
- Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peipei Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hong He
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration & Key Laboratory of Oral Biomedicine Ministry of Education & Hubei Key Laboratory of Stomatology & Department of Orthodontics & Center for Dentofacial Development and Sleep Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jinlin Song
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences & Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing Medical University & College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Min Hu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yuehua Liu
- Department of Orthodontic & Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Yan Liu
- Department of Orthodontics, Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jie Guo
- Department of Orthodontics, School and Hospital of Stomatology, College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, China
| | - Fang Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an, China
| | - Yang Cao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine & College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Zhu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine & National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Beizhan Jiang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Tongji University & Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Wenhua Ruan
- Department of Stomatology, The Children's Hospital, Zhejiang University School of Medicine & National Clinic Research Center for Child Health, Hangzhou, China
| | - Xiao Yuan
- Department of Orthodontics, The Affiliated Hospital of & School of Stomatology, Qingdao University, Qingdao, China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases & College of Stomatology, Xi'an Jiaotong University & Department of Orthodontics, Xi'an Jiaotong University, Xi'an, China
| | - Yulou Tian
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University & Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Li Gao
- Department of Pediatric Dentistry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Shu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianwei Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Renkai Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Fonseca-Souza G, Renostro-Souza A, Alves-Souza L, Junior GT, de Menezes-Oliveira MAH, Antunes LAA, Beisel-Memmert S, Kirschneck C, Feltrin-Souza J, Küchler EC. Association between dental age and malocclusions: a systematic review. BMC Oral Health 2024; 24:383. [PMID: 38528527 PMCID: PMC10964512 DOI: 10.1186/s12903-024-04143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The evidence in the literature suggests that some skeletal or dental malocclusions are involved with dental development, resulting in advanced or delayed dental age (DA). The purpose of this systematic review was to investigate the association between DA and different types of malocclusions. METHODS The search was carried out on PubMed, Scopus, Web of Science, Virtual Health Library, and in the gray literature. Observational studies that evaluated the association between DA and sagittal, vertical, or transversal malocclusions were included. The quality assessment was performed using the Newcastle-Ottawa Scale (NOS). The data from primary studies were narratively synthesized. The certainty of evidence was evaluated using the GRADE approach. The study was conducted from August 2023 to October 2023. RESULTS One Thousand Nine Hundred Ninety-One records were identified in the initial search. Twenty (n = 20) studies were included. Most of the studies (n=15) presented a moderate quality according to NOS. Twelve studies evaluated the association between DA and sagittal discrepancies; eight studies evaluated vertical discrepancies, and only one study analyzed a transversal discrepancy. Demirjian's method for DA assessment was the most used among the studies. The primary studies observed that patients of both sexes presenting a vertical growth pattern and males with skeletal Class III malocclusion tend to have advanced DA. The study that investigated transversal malocclusion found that unilateral posterior cross-bite is associated with delayed DA. The certainty of evidence was very low for all outcomes evaluated. CONCLUSION DA may be associated with the type of malocclusion. It is suggested that DA can be used as an initial diagnostic tool in orthodontics. Future well-designed studies should be performed in order to investigate the association between DA and different types of malocclusions in more detail. TRIAL REGISTRATION This study was registered in the PROSPERO database (CRD42023454207).
Collapse
Affiliation(s)
- Gabriela Fonseca-Souza
- Department of Stomatology, Federal University of Paraná, Av. Prefeito Lothário Meissner 632, Jardim Botânico, Curitiba, Paraná, 80210-170, Brazil
| | - Amanda Renostro-Souza
- Department of Biomaterials, University of Uberaba, Av. Nenê Sabino 1801, Bairro Universitário, Uberaba, Minas Gerais, 38055-500, Brazil
| | - Lhorrany Alves-Souza
- Department of Biomaterials, University of Uberaba, Av. Nenê Sabino 1801, Bairro Universitário, Uberaba, Minas Gerais, 38055-500, Brazil
| | - Geraldo Thedei Junior
- Department of Biomaterials, University of Uberaba, Av. Nenê Sabino 1801, Bairro Universitário, Uberaba, Minas Gerais, 38055-500, Brazil
| | | | - Lívia Azeredo Alves Antunes
- Department of Specific Formation, Fluminense Federal University, Rua Dr. Silvio Henrique Braune 22, Centro, Nova Friburgo, Rio de Janeiro, 28625‑650, Brazil
| | - Svenja Beisel-Memmert
- Department of Orthodontics, Medical Faculty, University Hospital Bonn, Welschnonnenstr. 17, Bonn, 53111, Germany
| | - Christian Kirschneck
- Department of Orthodontics, Medical Faculty, University Hospital Bonn, Welschnonnenstr. 17, Bonn, 53111, Germany
| | - Juliana Feltrin-Souza
- Department of Biomaterials, University of Uberaba, Av. Nenê Sabino 1801, Bairro Universitário, Uberaba, Minas Gerais, 38055-500, Brazil
| | - Erika Calvano Küchler
- Department of Orthodontics, Medical Faculty, University Hospital Bonn, Welschnonnenstr. 17, Bonn, 53111, Germany.
| |
Collapse
|
7
|
Paddenberg-Schubert E, Küchler E, Bitencourt Reis CL, Silva-Sousa AC, Kirschneck C. New insights into the genetics of mandibular retrognathism: novel candidate genes. J Orofac Orthop 2024:10.1007/s00056-023-00512-z. [PMID: 38296908 DOI: 10.1007/s00056-023-00512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/07/2023] [Indexed: 02/02/2024]
Abstract
PURPOSE Mandibular retrognathism (MR) is a common skeletal malocclusion in humans with a strong genetic component. Single nucleotide polymorphisms (SNPs) in genes encoding epidermal growth factor (EGF) and EGF receptor (EGFR) could be involved in the etiology of mandibular retrognathism. Therefore, in this study, we investigated whether SNPs in the genes encoding for EGF and EGFR are associated with MR in German teenagers. METHODS This nested case-control study evaluated German orthodontic patients, aged 10-18 years. DNA, which was isolated from buccal epithelial cells using two cytobrushes, was used for genotyping analysis and digital pretreatment lateral cephalograms were examined to calculate SNB and ANB. Patients with a retrognathic mandible (SNB < 78°) were included as cases, while patients with an orthognathic mandible (SNB = 78-82°) were included as controls. Four SNPs in the genes encoding for EGF and EGFR were chosen and genotyped using real-time PCR. Allele, genotype, and haplotype frequency were compared across groups (α = 5%). RESULTS Finally, 119 patients were included in this study (45 orthognathic mandible, 74 retrognathic mandible). The minor allele G in rs4444903 (EGF) was statistically more frequent in individuals with an orthognathic mandible (p = 0.008). The haplotype formed by the mutant alleles for rs4444903|rs2237051 (EGF; G|A) was statistically more frequent in the orthognathic mandible group (p = 0.007). The SNPs rs4444903 and rs2237051 in EGF, and rs2227983 in EGFR were statistically associated with a decreasing risk of developing a retrognathic mandible according to univariate and multivariate statistical analysis (p < 0.05). CONCLUSION SNPs in EGF (rs4444903 and rs2237051) and EGFR (rs2227983) were associated with MR in our German sample and could be genetic biomarkers for early and individualized diagnostic identification of retrognathic mandibular development by means of genetic screening tests.
Collapse
Affiliation(s)
- Eva Paddenberg-Schubert
- Department of Orthodontics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| | - Erika Küchler
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Caio Luiz Bitencourt Reis
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alice Corrêa Silva-Sousa
- Restorative Dentistry Department, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Bonn, Medical Faculty, Bonn, Germany
| |
Collapse
|
8
|
Dehesa-Santos A, Park JA, Lee SJ, Iglesias-Linares A. East Asian and Southern European craniofacial class III phenotype: two sides of the same coin? Clin Oral Investig 2024; 28:84. [PMID: 38195777 DOI: 10.1007/s00784-023-05386-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
OBJECTIVES The skeletal class III phenotype is a heterogeneous condition in populations of different ethnicities. This study aimed to analyse the joint and ethnicity-specific clustering of morphological features in skeletal class III patients of Asian and European origins. MATERIALS AND METHODS This cross-sectional study involved South Korean and Spanish participants who fulfilled the cephalometric, clinical, and ethnic-related selection criteria. Radiographic records were standardised, calibrated, and measured. A total of 54 skeletal variables were selected for varimax factorial analysis (VFA). Subsequently, a cluster analysis (CA) was performed (mixed method: k-means and hierarchical clustering). Method error and precision were assessed using ICC, Student's t-test, and the Dahlberg formula. RESULTS A total of 285 Korean and Spanish participants with skeletal class III malocclusions were analysed. After performing VFA and CA, the joint sample revealed three global clusters, and ethnicity-specific analysis revealed four Korean and five Spanish clusters. Cluster_1_global was predominantly Spanish (79.2%) and male (83.01%) and was characterised by a predominantly mesobrachycephalic pattern and a larger cranial base, maxilla, and mandible. Cluster_2_global and Cluster_3_global were mainly South Korean (73.9% and 75.6%, respectively) and depicted opposite phenotypes of mandibular projection and craniofacial pattern. CONCLUSIONS A distinct distribution of Spanish and South Korean participants was observed in the global analysis. Interethnic and interethnic differences were observed, primarily in the cranial base and maxilla size, mandible projection, and craniofacial pattern. CLINICAL RELEVANCE Accurate phenotyping, reflecting the complexity of skeletal class III phenotype across diverse populations, is critical for improving diagnostic predictability and future personalised treatment protocols.
Collapse
Affiliation(s)
- Alexandra Dehesa-Santos
- School of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal, S/N. Ciudad Universitaria, 28040, Madrid, Spain
| | - Ji-Ae Park
- Department of Orthodontics, Seoul National University School of Dentistry, 101 Daehak-Ro, Jongno-Gu, 03080, Seoul, South Korea
| | - Shin-Jae Lee
- Department of Orthodontics, Seoul National University School of Dentistry, 101 Daehak-Ro, Jongno-Gu, 03080, Seoul, South Korea
| | - Alejandro Iglesias-Linares
- School of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal, S/N. Ciudad Universitaria, 28040, Madrid, Spain.
- Craniofacial Biology and Orthodontics Research Group, School of Dentistry, BIOCRAN, Complutense University of Madrid, Pza. Ramón y Cajal, S/N. Ciudad Universitaria, 28040, Madrid, Spain.
| |
Collapse
|
9
|
Liu L, Lu L, Qiu M, Han N, Dai S, Shi S, He S, Zhang J, Yan Q, Chen S. Comprehensive modular analyses of scar subtypes illuminate underlying molecular mechanisms and potential therapeutic targets. Int Wound J 2024; 21:e14384. [PMID: 37697692 PMCID: PMC10784627 DOI: 10.1111/iwj.14384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
Pathological scarring resulting from traumas and wounds, such as hypertrophic scars and keloids, pose significant aesthetic, functional and psychological challenges. This study provides a comprehensive transcriptomic analysis of these conditions, aiming to illuminate underlying molecular mechanisms and potential therapeutic targets. We employed a co-expression and module analysis tool to identify significant gene clusters associated with distinct pathophysiological processes and mechanisms, notably lipid metabolism, sebum production, cellular energy metabolism and skin barrier function. This examination yielded critical insights into several skin conditions including folliculitis, skin fibrosis, fibrosarcoma and congenital ichthyosis. Particular attention was paid to Module Cluster (MCluster) 3, encompassing genes like BLK, TRPV1 and GABRD, all displaying high expression and potential implications in immune modulation. Preliminary immunohistochemistry validation supported these findings, showing elevated expression of these genes in non-fibrotic samples rich in immune activity. The complex interplay of different cell types in scar formation, such as fibroblasts, myofibroblasts, keratinocytes and mast cells, was also explored, revealing promising therapeutic strategies. This study underscores the promise of targeted gene therapy for pathological scars, paving the way for more personalised therapeutic approaches. The results necessitate further research to fully ascertain the roles of these identified genes and pathways in skin disease pathogenesis and potential therapeutics. Nonetheless, our work forms a strong foundation for a new era of personalised medicine for patients suffering from pathological scarring.
Collapse
Affiliation(s)
- Liang Liu
- College of Life SciencesZhejiang UniversityHangzhouChina
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhouChina
| | - Lantian Lu
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaAustralia
| | - Min Qiu
- Hangzhou Neoantigen Therapeutics Co., LtdHangzhouChina
| | - Ning Han
- Hangzhou AI‐Nano Therapeutics Co., Ltd.HangzhouChina
| | - Shijie Dai
- School of Life SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Shuiping Shi
- Hangzhou Neoantigen Therapeutics Co., LtdHangzhouChina
| | - Shanshan He
- College of Life SciencesZhejiang UniversityHangzhouChina
| | - Jing Zhang
- College of Life SciencesZhejiang UniversityHangzhouChina
| | - Qingfeng Yan
- College of Life SciencesZhejiang UniversityHangzhouChina
| | - Shuqing Chen
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhouChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
10
|
Dehesa-Santos A, Faria-Teixeira MC, Iglesias-Linares A. Skeletal Class III phenotype: Link between animal models and human genetics: A scoping review. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:21-44. [PMID: 38108095 DOI: 10.1002/jez.b.23230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/25/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023]
Abstract
This study aimed to identify evidence from animal studies examining genetic variants underlying maxillomandibular discrepancies resulting in a skeletal Class III (SCIII) malocclusion phenotype. Following the Manual for Evidence Synthesis of the JBI and the PRISMA extension for scoping reviews, a participant, concept, context question was formulated and systematic searches were executed in the PubMed, Scopus, WOS, Scielo, Open Gray, and Mednar databases. Of the 779 identified studies, 13 met the selection criteria and were included in the data extraction. The SCIII malocclusion phenotype was described as mandibular prognathism in the Danio rerio, Dicentrarchus labrax, and Equus africanus asinus models; and as maxillary deficiency in the Felis silvestris catus, Canis familiaris, Salmo trutta, and Mus musculus models. The identified genetic variants highlight the significance of BMP and TGF-β signaling. Their regulatory pathways and genetic interactions link them to cellular bone regulation events, particularly ossification regulation of postnatal cranial synchondroses. In conclusion, twenty genetic variants associated with the skeletal SCIII malocclusion phenotype were identified in animal models. Their interactions and regulatory pathways corroborate the role of these variants in bone growth, differentiation events, and ossification regulation of postnatal cranial synchondroses.
Collapse
Affiliation(s)
| | - Maria Cristina Faria-Teixeira
- School of Dentistry, Complutense University of Madrid, Madrid, Spain
- University Clinic of Stomatology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Alejandro Iglesias-Linares
- School of Dentistry, Complutense University of Madrid, Madrid, Spain
- BIOCRAN, Craniofacial Biology and Orthodontics Research Group, School of Dentistry, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
11
|
Kapila S, Vora SR, Rengasamy Venugopalan S, Elnagar MH, Akyalcin S. Connecting the dots towards precision orthodontics. Orthod Craniofac Res 2023; 26 Suppl 1:8-19. [PMID: 37968678 DOI: 10.1111/ocr.12725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 11/17/2023]
Abstract
Precision orthodontics entails the use of personalized clinical, biological, social and environmental knowledge of each patient for deep individualized clinical phenotyping and diagnosis combined with the delivery of care using advanced customized devices, technologies and biologics. From its historical origins as a mechanotherapy and materials driven profession, the most recent advances in orthodontics in the past three decades have been propelled by technological innovations including volumetric and surface 3D imaging and printing, advances in software that facilitate the derivation of diagnostic details, enhanced personalization of treatment plans and fabrication of custom appliances. Still, the use of these diagnostic and therapeutic technologies is largely phenotype driven, focusing mainly on facial/skeletal morphology and tooth positions. Future advances in orthodontics will involve comprehensive understanding of an individual's biology through omics, a field of biology that involves large-scale rapid analyses of DNA, mRNA, proteins and other biological regulators from a cell, tissue or organism. Such understanding will define individual biological attributes that will impact diagnosis, treatment decisions, risk assessment and prognostics of therapy. Equally important are the advances in artificial intelligence (AI) and machine learning, and its applications in orthodontics. AI is already being used to perform validation of approaches for diagnostic purposes such as landmark identification, cephalometric tracings, diagnosis of pathologies and facial phenotyping from radiographs and/or photographs. Other areas for future discoveries and utilization of AI will include clinical decision support, precision orthodontics, payer decisions and risk prediction. The synergies between deep 3D phenotyping and advances in materials, omics and AI will propel the technological and omics era towards achieving the goal of delivering optimized and predictable precision orthodontics.
Collapse
Affiliation(s)
- Sunil Kapila
- Strategic Initiatives and Operations, UCLA School of Dentistry, Los Angeles, California, USA
| | - Siddharth R Vora
- Oral Health Sciences, University of British Columbia, Vancouver, British Columbia, USA
| | | | - Mohammed H Elnagar
- Department of Orthodontics, College of Dentistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Sercan Akyalcin
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Rutili V, Quiroga Souki B, Nieri M, Farnese Morais Carlos AL, Pavoni C, Cozza P, McNamara JA, Giuntini V, Franchi L. Long-Term Assessment of Treatment Timing for Rapid Maxillary Expansion and Facemask Therapy Followed by Fixed Appliances: A Multicenter Retro-Prospective Study. J Clin Med 2023; 12:6930. [PMID: 37959395 PMCID: PMC10649687 DOI: 10.3390/jcm12216930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND to determine the role of treatment timing in the long-term effects produced by rapid maxillary expansion and facemask therapy (RME/FM) in Class III patients. METHODS This study compared two sample groups treated with RME/FM followed by fixed appliances: the early prepubertal group (EPG) (17 patients; mean age before treatment (T0), 5.8 ± 0.7 years; range, 4.3-6.9 years) and the late prepubertal group (LPG) (17 patients; mean age at T0, 10.1 ± 0.8 years; range, 9.0-11.1 years). Lateral cephalograms for the two groups were examined before treatment (T0) and at a long-term observation (T1) (EPG, 19.8 ± 1.0 years; LPG, 21.0 ± 2.1 years). Independent sample t-tests were performed to compare the two groups at T0 and T1. RESULTS No statistically significant differences were found for any of the cephalometric variables at T0, except for the total mandibular length, overjet, and inclination of the maxillary incisors to the palatal plane, which were greater in the LPG. At T1, no statistically significant differences were detected for any of the cephalometric variables. CONCLUSIONS There were no significant long-term differences when treating Class III patients with RME/FM, either during an early prepubertal phase (≤7 years of age) or during a late prepubertal phase (≥9 years of age).
Collapse
Affiliation(s)
- Valentina Rutili
- Graduate Orthodontic Program, Department of Experimental and Clinical Medicine, The University of Florence, 50121 Florence, Italy; (V.R.); (M.N.); (V.G.)
| | - Bernardo Quiroga Souki
- Graduate Orthodontic Program, Pontifical Catholic University of Minas Gerais, Belo Horizonte 30535-610, Brazil; (B.Q.S.); (A.L.F.M.C.)
| | - Michele Nieri
- Graduate Orthodontic Program, Department of Experimental and Clinical Medicine, The University of Florence, 50121 Florence, Italy; (V.R.); (M.N.); (V.G.)
| | - Ana Luiza Farnese Morais Carlos
- Graduate Orthodontic Program, Pontifical Catholic University of Minas Gerais, Belo Horizonte 30535-610, Brazil; (B.Q.S.); (A.L.F.M.C.)
| | - Chiara Pavoni
- Department of Faculty of Medicine and Surgery, UniCamillus, International Medical University, 00131 Rome, Italy; (C.P.); (P.C.)
| | - Paola Cozza
- Department of Faculty of Medicine and Surgery, UniCamillus, International Medical University, 00131 Rome, Italy; (C.P.); (P.C.)
| | - James A. McNamara
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry and Center for Human Growth and Development, The University of Michigan, Ann Arbor, MI 48109, USA;
| | - Veronica Giuntini
- Graduate Orthodontic Program, Department of Experimental and Clinical Medicine, The University of Florence, 50121 Florence, Italy; (V.R.); (M.N.); (V.G.)
| | - Lorenzo Franchi
- Graduate Orthodontic Program, Department of Experimental and Clinical Medicine, The University of Florence, 50121 Florence, Italy; (V.R.); (M.N.); (V.G.)
| |
Collapse
|
13
|
Lone IM, Zohud O, Midlej K, Awadi O, Masarwa S, Krohn S, Kirschneck C, Proff P, Watted N, Iraqi FA. Narrating the Genetic Landscape of Human Class I Occlusion: A Perspective-Infused Review. J Pers Med 2023; 13:1465. [PMID: 37888076 PMCID: PMC10608728 DOI: 10.3390/jpm13101465] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023] Open
Abstract
This review examines a prevalent condition with multifaceted etiology encompassing genetic, environmental, and oral behavioral factors. It stands as a significant ailment impacting oral functionality, aesthetics, and quality of life. Longitudinal studies indicate that malocclusion in primary dentition may progress to permanent malocclusion. Recognizing and managing malocclusion in primary dentition is gaining prominence. The World Health Organization ranks malocclusions as the third most widespread oral health issue globally. Angle's classification system is widely used to categorize malocclusions, with Class I occlusion considered the norm. However, its prevalence varies across populations due to genetic and examination disparities. Genetic factors, including variants in genes like MSX1, PAX9, and AXIN2, have been associated with an increased risk of Class I occlusion. This review aims to provide a comprehensive overview of clinical strategies for managing Class I occlusion and consolidate genetic insights from both human and murine populations. Additionally, genomic relationships among craniofacial genes will be assessed in individuals with Class I occlusion, along with a murine model, shedding light on phenotype-genotype associations of clinical relevance. The prevalence of Class I occlusion, its impact, and treatment approaches will be discussed, emphasizing the importance of early intervention. Additionally, the role of RNA alterations in skeletal Class I occlusion will be explored, focusing on variations in expression or structure that influence craniofacial development. Mouse models will be highlighted as crucial tools for investigating mandible size and prognathism and conducting QTL analysis to gain deeper genetic insights. This review amalgamates cellular, molecular, and clinical trait data to unravel correlations between malocclusion and Class I phenotypes.
Collapse
Affiliation(s)
- Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (I.M.L.); (O.Z.); (K.M.)
| | - Osayd Zohud
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (I.M.L.); (O.Z.); (K.M.)
| | - Kareem Midlej
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (I.M.L.); (O.Z.); (K.M.)
| | - Obaida Awadi
- Center for Dentistry Research and Aesthetics, Jatt 45911, Israel; (O.A.); (S.M.); (N.W.)
| | - Samir Masarwa
- Center for Dentistry Research and Aesthetics, Jatt 45911, Israel; (O.A.); (S.M.); (N.W.)
| | - Sebastian Krohn
- Department of Orthodontics, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany; (S.K.); (C.K.); (P.P.)
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany; (S.K.); (C.K.); (P.P.)
| | - Peter Proff
- Department of Orthodontics, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany; (S.K.); (C.K.); (P.P.)
| | - Nezar Watted
- Center for Dentistry Research and Aesthetics, Jatt 45911, Israel; (O.A.); (S.M.); (N.W.)
- Department of Orthodontics, Faculty of Dentistry, Arab America University, Jenin 919000, Palestine
- Gathering for Prosperity Initiative, Jatt 45911, Israel
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; (I.M.L.); (O.Z.); (K.M.)
- Department of Orthodontics, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany; (S.K.); (C.K.); (P.P.)
- Gathering for Prosperity Initiative, Jatt 45911, Israel
| |
Collapse
|
14
|
Zhou X, Zhang C, Yao S, Fan L, Ma L, Pan Y. Genetic architecture of non-syndromic skeletal class III malocclusion. Oral Dis 2023; 29:2423-2437. [PMID: 36350305 DOI: 10.1111/odi.14426] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
Non-syndromic skeletal Class III malocclusion is a major craniofacial disorder characterized by genetic and environmental factors. Patients with severe skeletal Class III malocclusion require orthognathic surgery to obtain aesthetic facial appearance and functional occlusion. Recent studies have demonstrated that susceptible chromosomal regions and genetic variants of candidate genes play important roles in the etiology of skeletal Class III malocclusion. Here, we provide a comprehensive review of our current understanding of the genetic factors that affect non-syndromic skeletal Class III malocclusion, including the patterns of inheritance and multiple genetic approaches. We then summarize the functional studies on related loci and genes using cell biology and animal models, which will help to implement individualized therapeutic interventions.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Chengcheng Zhang
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Siyue Yao
- The Affiliated Stomatology Hospital of Suzhou Vocational Health College, Suzhou, China
| | - Liwen Fan
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Lan Ma
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Yongchu Pan
- Department of Orthodontics, The Affiliated Stomatology Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Kalmari A, Hosseinzadeh Colagar A, Heydari M, Arash V. Missense polymorphisms potentially involved in mandibular prognathism. J Oral Biol Craniofac Res 2023; 13:453-460. [PMID: 37228872 PMCID: PMC10203774 DOI: 10.1016/j.jobcr.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/18/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Objective The current study aimed to identify and analyze missense single nucleotide polymorphisms (SNPs) that can potentially cause mandibular prognathism. Methods After reviewing the articles, 56 genes associated with mandibular prognathism were identified and their missense SNPs were retrieved from the NCBI website. Several web-based tools including CADD, PolyPhen-2, PROVEAN, SNAP2, PANTHER, FATHMM, and PON-P2 were used to filter out harmful SNPs. Additionally, ConSurf determined the level of evolutionary conservation at positions where SNPs occur. I-Mutant2 and MUpro predicted the effect of SNPs on protein stability. Furthermore, to investigate the structural and functional changes of proteins, HOPE and LOMETS tools were utilized. Results Based on predictions in at least four web-based tools, the results indicated that PLXNA2-rs4844658, DUSP6-rs2279574, and FBN3-rs33967815 are harmful. These SNPs are located at positions with variable or average conservation and have the potential to reduce the stability of their respective proteins. Moreover, they may impair protein activity by causing structural and functional changes. Conclusions In this study, we identified PLXNA2-rs4844658, DUSP6-rs2279574, and FBN3-rs33967815 as potential risk factors for mandibular prognathism using several web-based tools. According to the possible roles of PLXNA2, DUSP6, and FBN3 proteins in ossification pathways, we recommend that these SNPs be investigated further in experimental research. Through such studies, we hope to gain a better understanding of the molecular mechanisms involved in mandible formation.
Collapse
Affiliation(s)
- Amin Kalmari
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, Babolsar, PC:47416-95447, Mazandaran, Iran
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, Babolsar, PC:47416-95447, Mazandaran, Iran
| | - Mohammadkazem Heydari
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, Babolsar, PC:47416-95447, Mazandaran, Iran
| | - Valiollah Arash
- Department of Orthodontics, School of dentistry, Babol University of Medical Sciences, Babol, PC: 47176-47745, Mazandaran, Iran
| |
Collapse
|
16
|
Luppieri V, Pecori A, Spedicati B, Schito R, Pozzan L, Santin A, Girotto G, Cadenaro M, Concas MP. Odontostomatological Traits in North-Eastern Italy's Isolated Populations: An Epidemiological Cross-Sectional Study. J Clin Med 2023; 12:jcm12072746. [PMID: 37048829 PMCID: PMC10095173 DOI: 10.3390/jcm12072746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023] Open
Abstract
Malocclusions and temporomandibular disorders (TMDs) are oral health problems that are spread worldwide. To date, few studies focused on their prevalence and associated risk factors are available. This study aims to define the prevalence and distribution of odontostomatological traits and evaluate specific risk factors in isolated villages in north-eastern Italy, taking advantage of their environmental homogeneity. Nine hundred and forty-four participants aged six to eighty-nine years were enrolled. Thirty-one odontostomatological phenotypes, classified into five domains (airways, bad habits, extraoral and intraoral parameters, TMDs, and teeth), were evaluated. A descriptive statistical analysis was performed; mixed logistic models were used to test the relationships among the traits. According to the study's findings, Angle's class I was prevalent (65.3%) followed by class II malocclusion (24.3%); class III and reversed overjet were the least frequent malocclusions (10.4% and 1.8%, respectively). Temporomandibular joint (TMJ) click/noise was prevalent among TMDs (34.7%). The statistically significant (p-value < 0.05) risk factors were ankyloglossia for phonetic issues (OR 1.90) and bruxism for TMJ click/noise (OR 1.70) and pain (OR 2.20). Overall, this work provides a picture of the prevalence of malocclusions and TMDs in a large Italian sample and reveals risk factors to take into account in the development of preventive strategies and treatments.
Collapse
Affiliation(s)
- Valentina Luppieri
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo"-Trieste, Via dell'Istria 65, 34137 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Alessandro Pecori
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo"-Trieste, Via dell'Istria 65, 34137 Trieste, Italy
| | - Beatrice Spedicati
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo"-Trieste, Via dell'Istria 65, 34137 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Riccardo Schito
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Lucia Pozzan
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Aurora Santin
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Giorgia Girotto
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo"-Trieste, Via dell'Istria 65, 34137 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Milena Cadenaro
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo"-Trieste, Via dell'Istria 65, 34137 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo"-Trieste, Via dell'Istria 65, 34137 Trieste, Italy
| |
Collapse
|
17
|
Cortellari M, Bionda A, Cocco R, Sechi S, Liotta L, Crepaldi P. Genomic Analysis of the Endangered Fonni's Dog Breed: A Comparison of Genomic and Phenotypic Evaluation Scores. Animals (Basel) 2023; 13:ani13050818. [PMID: 36899675 PMCID: PMC10000202 DOI: 10.3390/ani13050818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
The Fonni's dog is an ancient Sardinian breed for livestock and property guarding. In recent years, the number of new registrations to the breeding book has slumped and, thus, this breed risks being lost forever. This work refocuses attention to the Fonni's dog, analysing its genomic makeup and comparing different phenotypical and genetic evaluation scores. Thirty Fonni's dogs were ranked by their general accordance to the breed typicality (typicality score) and to the provisional standard by official judges (judges' score). They were genotyped with a 230K SNP BeadChip and compared with 379 dogs of 24 breeds. Genomically, the Fonni's dogs placed themselves near shepherd dogs and showed a unique genetic signature, which was used to create the genomic score. This score better correlated with typicality (ρ = 0.69, p < 0.0001) than the judges' score (ρ = 0.63, p = 0.0004), which showed little variability among the included dogs. Hair texture or colour were significantly associated in the three scores. The Fonni's dog is confirmed as a well-distinguished breed, despite being selected mainly for its work abilities. The evaluation criteria used during dog expositions can be improved to increase their variability and include elements typical of the breed. The recovery of the Fonni's dog would be possible only with a shared vision between the Italian kennel club and breeders, and the support of regional programs.
Collapse
Affiliation(s)
- Matteo Cortellari
- Department of Agricultural and Environmental Sciences, Milan University, Via Celoria, 2, 20133 Milan, Italy
| | - Arianna Bionda
- Department of Agricultural and Environmental Sciences, Milan University, Via Celoria, 2, 20133 Milan, Italy
- Correspondence:
| | - Raffaella Cocco
- Department of Veterinary Medicine, Sassari University, Via Vienna, 2, 07100 Sassari, Italy
| | - Sara Sechi
- Department of Veterinary Medicine, Sassari University, Via Vienna, 2, 07100 Sassari, Italy
| | - Luigi Liotta
- Department of Veterinary Sciences, Messina University, Viale Palatucci, 13, 98168 Messina, Italy
| | - Paola Crepaldi
- Department of Agricultural and Environmental Sciences, Milan University, Via Celoria, 2, 20133 Milan, Italy
| |
Collapse
|
18
|
The association of polymorphisms in BMP2/MYO1H and skeletal Class II div.1 maxillary and mandibular dimensions. A preliminary ‘report. Saudi J Biol Sci 2022; 29:103405. [PMID: 36039325 PMCID: PMC9418592 DOI: 10.1016/j.sjbs.2022.103405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/01/2022] [Accepted: 07/30/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction The genetic impact directly or indirectly predefines maxillofacial dimensions, potentially leading to an inappropriate relationship of the jaws and subsequently skeletal malocclusion. Previous studies focused mainly on genetic polymorphisms and class III malocclusion. This study was set out to investigate the association between genetic polymorphisms in two genes BMP2 (rs235768) and MYO1H (rs11066446) with Class II division 1 malocclusion, skeletal variation in vertical plane, and maxillary and mandibular jaws length. Subjects and methods Sixty patients classified as Skeletal Class I (n = 30) and Class II division 1 (n = 30) were recruited. DNA was extracted from saliva and analyzed by Sanger sequencing. Lateral cephalometric radiographs were measured for the anterio-posterior relationship of maxillary and mandibular arch using digital tracing. Hardy-Weinberg equilibrium analysis of genotype frequencies was performed using Chi-square test to compare genotype distribution among groups and multiple logistic regression analysis adjusted by gender was also performed. Results The rs235768 polymorphism in BMP2 was associated with hypodivergent face, increased maxillary length, and decreased mandibular length. Meanwhile, the rs11066446 polymorphism in MYO1H was associated with decreased mandibular length. New polymorphism was identified in MYO1H (rs10850090) in association with decreased mandibular length. Conclusion A potential association between polymorpisms in BMP2 rs235768 and MOY1H rs11066446 and rs10850090 and Class II division 1 skeletal malocclusion related phenotypes exists, however, the degree of it has to be further investigated and yet to be discovered.
Collapse
|
19
|
Does Sex, Skeletal Class and Mandibular Asymmetry Affect Tooth Length and Asymmetry in Tooth Length? Symmetry (Basel) 2022. [DOI: 10.3390/sym14051069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Introduction: The aim of our cross-sectional study is to determine whether there is a link between sex, skeletal class and mandibular asymmetry in orthodontic patients, with tooth length and asymmetry in tooth length on contralateral sides of the mandible. Methods: As the source for relevant data to answer this question, 3D cone-beam tomography (CBCT) images of a total of 95 future orthodontic patients were retrospectively selected from private practice records and were analyzed. The CBCT images were part of routine orthodontic diagnosis. Patients were divided into three groups (Class I, Class III with asymmetry and Class III without asymmetry) based on skeletal variables assessed on orthodontic cephalometric images and frontal photos of the face. Three null hypotheses were developed, and a series of statistical tests was performed in order to support or reject them. Results: We have established that there exists a sexual dimorphism in some of the teeth’s lengths in our sample. Furthermore, we failed to find a link between mandibular asymmetry and asymmetry in tooth length. We have also found a link between skeletal class and tooth length differences in some of the analyzed measurements. Conclusions: Computational models used to design orthodontic appliances and to plan orthodontic treatment should be more individualized to consider a patient’s sex and skeletal class.
Collapse
|