1
|
Guo L, Ni Z, Wei G, Cheng W, Huang X, Yue W. Epigenome-wide DNA methylation analysis of whole blood cells derived from patients with GAD and OCD in the Chinese Han population. Transl Psychiatry 2022; 12:465. [PMID: 36344488 PMCID: PMC9640561 DOI: 10.1038/s41398-022-02236-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
Generalized anxiety disorder (GAD) and obsessive-compulsive disorder (OCD) had high comorbidity and affected more than 44 million people around the world leading to a huge burden on health and economy. Here, we conducted an epigenome-wide DNA methylation study employing 93 patients with GAD, 65 patients with OCD, and 302 health controls, to explore epigenetic alterations associated with the onset and differences of GAD and OCD. We identified multiple differentially methylated positions (DMPs) and regions (DMRs): three DMP genes included RIOK3 (cg21515243, p = 8.00 × 10-10), DNASE2 (cg09379601, p = 1.10 × 10-9), and PSMB4 (cg01334186, p = 3.70 × 10-7) and two DMR genes USP6NL (p = 4.50 × 10-4) and CPLX1 (p = 6.95 × 10-4) were associated with the onset of GAD and OCD; three DMPs genes included LDLRAP1 (cg21400344, p = 4.40 × 10-12), ACIN1 (cg23712970, p = 2.98×10-11), and SCRT1 (cg25472897, p = 5.60 × 10-11) and three DMR genes WDR19 (p = 3.39 × 10-3), SYCP1 (p = 6.41 × 10-3), and FAM172A (p = 5.74 × 10-3) were associated with the differences between GAD and OCD. Investigation of epigenetic age and chronological age revealed a different epigenetic development trajectory of GAD and OCD. Conclusively, our findings which yielded robust models may aid in distinguishing patients from healthy controls (AUC = 0.90-0.99) or classifying patients with GAD and OCD (AUC = 0.89-0.99), and may power the precision medicine for them.
Collapse
Affiliation(s)
- Liangkun Guo
- grid.459847.30000 0004 1798 0615Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191 China ,grid.459847.30000 0004 1798 0615National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China ,grid.506261.60000 0001 0706 7839NHC Key Laboratory of Mental Health, & Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Zhaojun Ni
- grid.459847.30000 0004 1798 0615Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191 China ,grid.459847.30000 0004 1798 0615National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191 China ,grid.506261.60000 0001 0706 7839NHC Key Laboratory of Mental Health, & Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences, Beijing, 100191 China
| | - Guiming Wei
- Department of Neurology, Shandong Daizhuang Hospital, 272051 Jining, Shandong China
| | - Weiqiu Cheng
- grid.5510.10000 0004 1936 8921NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Xuebing Huang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China. .,NHC Key Laboratory of Mental Health, & Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences, Beijing, 100191, China.
| | - Weihua Yue
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, 100191, China. .,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China. .,NHC Key Laboratory of Mental Health, & Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences, Beijing, 100191, China. .,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China. .,Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
2
|
Woldańska-Okońska M, Koszela K. Chronic-Exposure Low-Frequency Magnetic Fields (Magnetotherapy and Magnetic Stimulation) Influence Serum Serotonin Concentrations in Patients with Low Back Pain-Clinical Observation Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9743. [PMID: 35955097 PMCID: PMC9368470 DOI: 10.3390/ijerph19159743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
(1) Background: The influence of serotonin on many regulatory mechanisms has not been sufficiently studied. The use of a physical method, assuming the possibility of its action on increasing the concentration of serotonin, may be the direction of therapy limiting the number of antidepressants used. The aim of the research was to study the effects of low-frequency magnetic fields of different characteristics on the circadian profile of serotonin in men with low back pain. (2) Methods: 16 men with back pain syndrome participated in the study. The patients were divided into two groups. In group 1, magnetotherapy (2.9 mT, 40 Hz, square wave, bipolar) was applied at 10.00 a.m. In group 2, the M2P2 magnetic stimulation program of the Viofor JPS device was used. Treatments in each group lasted 3 weeks, 5 days each, with breaks for Saturday and Sunday. The daily serotonin profile was determined the day before the exposure and the day after the last treatment. Blood samples (at night with red light) were collected at 8:00, 12:00, 16:00, 24:00, and 4:00. The patients did not suffer from any chronic or acute disease and were not taking any medications. (3) Results: In group 1, a significant increase in serotonin concentration was observed after 15 treatments at 4:00. In group 2, a significant increase in serotonin concentration was observed at 8:00 after the end of the treatments. In comparison between magnetotherapy and magnetic stimulation, the time points at which differences appeared after the application of serotonin occurred due to the increase in its concentrations after the application of magnetic stimulation. (4) Conclusions: Magnetotherapy and magnetic stimulation, acting in a similar way, increase the concentration of serotonin. Weak magnetic fields work similarly to the stronger ones used in TMS. It is possible to use them in the treatment of mental disorders or other diseases with low serotonin concentrations.
Collapse
Affiliation(s)
| | - Kamil Koszela
- Neuroorthopedics and Neurology Clinic and Polyclinic, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland
| |
Collapse
|
3
|
Gao F, Yang S, Wang J, Zhu G. cAMP-PKA cascade: An outdated topic for depression? Biomed Pharmacother 2022; 150:113030. [PMID: 35486973 DOI: 10.1016/j.biopha.2022.113030] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/02/2022] Open
Abstract
Depression is a common neuropsychiatric disorder characterized by persistent depressed mood and causes serious socioeconomic burden worldwide. Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis, deficiency of monoamine transmitters, neuroinflammation and abnormalities of the gut flora are strongly associated with the onset of depression. The cyclic AMP (cAMP)/protein kinase A (PKA) cascade, a major cross-species cellular signaling pathway, is supposed as important player and regulator of depression onset by controlling synaptic plasticity, cytokinesis, transcriptional regulation and HPA axis. In the central nervous system, the cAMP-PKA cascade can dynamically shape neural circuits by enhancing synaptic plasticity, and affect K+ channels by phosphorylating Kir4.1, thereby regulating neuronal excitation. The reduction of cAMP-PKA cascade affects neuronal excitation as well as synaptic plasticity, ultimately leading to pathological outcome of depression, while activation of cAMP-PKA cascade would provide a rapid antidepressant effect. In this review, we proposed to reconsider the function of cAMP-PKA cascade, especially in the rapid antidepressant effect. Local activation or indirect activation of PKA through adjusting anchor proteins would provide new idea for acute treatment of depression.
Collapse
Affiliation(s)
- Feng Gao
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shaojie Yang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Juan Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
4
|
Pathophysiology of the Serotonin System in the Nervous System and Beyond. Int J Mol Sci 2022; 23:ijms23094712. [PMID: 35563104 PMCID: PMC9101740 DOI: 10.3390/ijms23094712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
Serotonin (5-HT) is an attractive neurotransmitter system, in terms of physiology, physiopathology, and medicines [...].
Collapse
|