1
|
Chivers PT, Basak P, Maroney MJ. One His, two His…the emerging roles of histidine in cellular nickel trafficking. J Inorg Biochem 2024; 259:112668. [PMID: 39053077 DOI: 10.1016/j.jinorgbio.2024.112668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Biological environments present a complex array of metal-binding ligands. Metal-binding proteins have been the overwhelming focus of study because of their important and well-defined biological roles. Consequently, the presence of functional low molecular weight (LMW) metal-ligand complexes has been overlooked in terms of their roles in metallobiochemistry, particularly within cells. Recent studies in microbial systems have illuminated the different roles of L-histidine in nickel uptake, gene expression, and metalloenzyme maturation. In this focused critical review, these roles are surveyed in the context of the coordination chemistry of Ni(II) ions and the amino acid histidine, and the physico-chemical properties of nickel complexes of histidine. These complexes are fundamentally important to cellular metal homeostasis and further work is needed to fully define their contributions.
Collapse
Affiliation(s)
- Peter T Chivers
- Departments of Biosciences and Chemistry, University of Durham, Durham DH1 3LE, UK
| | - Priyanka Basak
- Department of Chemistry, University of Massachusetts, Amherst, MA 01002, United States of America
| | - Michael J Maroney
- Department of Chemistry, University of Massachusetts, Amherst, MA 01002, United States of America.
| |
Collapse
|
2
|
Hecel A, Garstka K, Kozłowski H, Rowińska-Żyrek M. -HH and -HAAAH motifs act as fishing nets for biologically relevant metal ions in metallopeptides. J Inorg Biochem 2024; 252:112456. [PMID: 38154408 DOI: 10.1016/j.jinorgbio.2023.112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
Histidine are one of the most common residues involved in transition metal ion binding in the active sites of metalloenzymes. In order to mimic enzymatic metal binding sites, it is crucial to understand the basic coordination modes of histidine residues, distributed at different positions in the peptide sequence. We show that: (i) the separation of two histidines has a large effect on complex stability - a sequence with adjusting histidine residues forms more stable complexes with Zn(II) than the one in which the residues are separated, while the contrary is observed for Cu(II) complexes, in which amide nitrogens participate in metal binding. No pronounced effect is observed for Ni(II) complexes, where the amides participate in binding at higher pH; (ii) non-coordinating amino acid residues (basic, acidic and aromatic ones) have a significant impact on complex stability; charged and aromatic residues may enhance Zn(II) binding, while the contrary is observed for the amide-binding Cu(II); (iii) cysteine containing sequences are much more effective Zn(II) and Ni(II) binding motifs at pH above 8, while histidine containing ligands are more suitable for effective Zn(II) and Ni(II) binding at lower pH.
Collapse
Affiliation(s)
- Aleksandra Hecel
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland.
| | - Kinga Garstka
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland; Faculty of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland
| | | |
Collapse
|
3
|
Garstka K, Dzyhovskyi V, Wątły J, Stokowa-Sołtys K, Świątek-Kozłowska J, Kozłowski H, Barceló-Oliver M, Bellotti D, Rowińska-Żyrek M. CH vs. HC-Promiscuous Metal Sponges in Antimicrobial Peptides and Metallophores. Molecules 2023; 28:molecules28103985. [PMID: 37241727 DOI: 10.3390/molecules28103985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Histidine and cysteine residues, with their imidazole and thiol moieties that deprotonate at approximately physiological pH values, are primary binding sites for Zn(II), Ni(II) and Fe(II) ions and are thus ubiquitous both in peptidic metallophores and in antimicrobial peptides that may use nutritional immunity as a way to limit pathogenicity during infection. We focus on metal complex solution equilibria of model sequences encompassing Cys-His and His-Cys motifs, showing that the position of histidine and cysteine residues in the sequence has a crucial impact on its coordination properties. CH and HC motifs occur as many as 411 times in the antimicrobial peptide database, while similar CC and HH regions are found 348 and 94 times, respectively. Complex stabilities increase in the series Fe(II) < Ni(II) < Zn(II), with Zn(II) complexes dominating at physiological pH, and Ni(II) ones-above pH 9. The stabilities of Zn(II) complexes with Ac-ACHA-NH2 and Ac-AHCA-NH2 are comparable, and a similar tendency is observed for Fe(II), while in the case of Ni(II), the order of Cys and His does matter-complexes in which the metal is anchored on the third Cys (Ac-AHCA-NH2) are thermodynamically stronger than those where Cys is in position two (Ac-ACHA-NH2) at basic pH, at which point amides start to take part in the binding. Cysteine residues are much better Zn(II)-anchoring sites than histidines; Zn(II) clearly prefers the Cys-Cys type of ligands to Cys-His and His-Cys ones. In the case of His- and Cys-containing peptides, non-binding residues may have an impact on the stability of Ni(II) complexes, most likely protecting the central Ni(II) atom from interacting with solvent molecules.
Collapse
Affiliation(s)
- Kinga Garstka
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Valentyn Dzyhovskyi
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Joanna Wątły
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | | | - Henryk Kozłowski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
- Faculty of Health Sciences, University of Opole, 68 Katowicka St., 45-060 Opole, Poland
| | - Miquel Barceló-Oliver
- Department of Chemistry, University of Balearic Islands, Cra. de Valldemossa, km 7.5., 07122 Palma de Mallorca, Spain
| | - Denise Bellotti
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | | |
Collapse
|
4
|
Ammendola S, Battistoni A. New Insights into the Role of Metals in Host-Pathogen Interactions. Int J Mol Sci 2022; 23:ijms23126483. [PMID: 35742927 PMCID: PMC9224429 DOI: 10.3390/ijms23126483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Almost eighty years have passed since the publication of the studies by Arthur Schade and Leona Caroline, which we can consider as the first investigations that began to disclose the importance of metals in host-pathogen interactions [...].
Collapse
Affiliation(s)
- Serena Ammendola
- Correspondence: (S.A.); (A.B.); Tel.: +39-06-0672594368 (S.A.); +39-06-7259-4372 (A.B.)
| | - Andrea Battistoni
- Correspondence: (S.A.); (A.B.); Tel.: +39-06-0672594368 (S.A.); +39-06-7259-4372 (A.B.)
| |
Collapse
|