1
|
Jenne C, Knorke H, Nierstenhöfer MC, Warneke J, Warneke Z. Derivatization of Undecahalogenated closo-Dodecaborates [B 12X 11NH 3] - (X = F-I): Attaching Isocyanate, Amidinium, and Formamide Functionalities. Inorg Chem 2024; 63:19227-19239. [PMID: 39344083 DOI: 10.1021/acs.inorgchem.4c02855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Halogenated closo-dodecaborates are very robust and versatile weakly coordinating anions for numerous applications. The introduction of additional substituents, e.g., pseudohalides, allows the tuning of their chemical and physical properties. In this report, the synthesis of the isocyanate-substituted closo-dodecaborates [B12X11(NCO)]2- (X = H, F-I) was investigated. In an attempt to synthesize the undecahalogenated derivatives, a selective and halogen-dependent reaction yielding boron clusters carrying the functional groups amidinium (-NHCHNMe2) and formamide (-NHC(O)H) was discovered. The halogenated anions were fully characterized by vibrational and NMR spectroscopy, mass spectrometry, and X-ray diffraction. Salts of the formamide-substituted anion [B12X11(NHC(O)H)]2- are surprisingly thermally stable in the condensed phase. In contrast, collision-induced dissociation in the gas phase reveals that the isolated dianion [B12X11(NHC(O)H)]2- in the gas phase preferentially loses water, while the protonated form, which was generated from decomposition of the tetraalkylammonium counterion [B12X11(NHC(O)H)H]-, tends to lose carbon monoxide. Possible reaction mechanisms are discussed.
Collapse
Affiliation(s)
- Carsten Jenne
- Fakultät für Mathematik und Naturwissenschaften, Anorganische Chemie, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Harald Knorke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103 Leipzig, Germany
| | - Marc C Nierstenhöfer
- Fakultät für Mathematik und Naturwissenschaften, Anorganische Chemie, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Jonas Warneke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103 Leipzig, Germany
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany
| | - Ziyan Warneke
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103 Leipzig, Germany
| |
Collapse
|
2
|
Matveev EY, Dontsova OS, Avdeeva VV, Kubasov AS, Zhdanov AP, Nikiforova SE, Goeva LV, Zhizhin KY, Malinina EA, Kuznetsov NT. Synthesis and Structures of Lead(II) Complexes with Substituted Derivatives of the Closo-Decaborate Anion with a Pendant N 3 Group. Molecules 2023; 28:8073. [PMID: 38138563 PMCID: PMC10746007 DOI: 10.3390/molecules28248073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
In this work, we studied lead(II) and cobalt(II) complexation of derivatives [2-B10H9O(CH2)2O(CH2)2N3]2- and [2-B10H9O(CH2)5N3]2- of the closo-decaborate anion containing pendant azido groups in the presence of 1,10-phenanthroline and 2,2'-bipyridyl. Mononuclear [PbL2{An}] and binuclear [Pb2L4(NO3)2{An}] lead complexes (where {An} is the N3-substituted boron cluster) were isolated and studied by IR spectroscopy and elemental analysis. The mononuclear lead(II) complex [Pb(phen)2[B10H9O(CH2)2O(CH2)2N3] and the binuclear lead(II) complex [Pb2(phen)4(NO3)2[B10H9O(CH2)5)N3] were determined by single-crystal X-ray diffraction. In complex [Pb2(phen)4(NO3)2[B10H9O(CH2)5)N3], the boron cluster is coordinated by the metal atom only via the 3c2e MHB bonds. In complex [Pb(phen)2[B10H9O(CH2)2O(CH2)2N3], the coordination environment of the metal includes BH groups of the boron cluster and the oxygen atom of the exo-polyhedral substituent. When the reaction was performed in a CH3CN/water mixture, the binuclear lead(II) complex [(Pb(bipy)NO3)(Pb(bipy)2NO3)(B10H9O(CH2)2O(CH2)2N3)]·CH3CN·H2O was isolated, where the boron cluster acts as a bridging ligand between lead atoms coordinated by the boron cage via the O atoms of the substituent and/or the BH groups. In the course of cobalt(II) complexation, the starting compound (Ph4P)2[B10H9O(CH2)5N3] was isolated and its structure was also determined by X-ray diffraction. Although a number of lead(II) complexes with coordinated N3 are known from the literature, no complexes with the boron cluster coordinated by the pendant N3 group involved in the metal coordination have been isolated.
Collapse
Affiliation(s)
- Evgenii Yu. Matveev
- Institute of Fine Chemical Technologies Named after M. V. Lomonosov, MIREA—Russian Technological University, Vernadskogo pr. 86, Moscow 119571, Russia; (E.Y.M.); (O.S.D.); (K.Y.Z.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Olga S. Dontsova
- Institute of Fine Chemical Technologies Named after M. V. Lomonosov, MIREA—Russian Technological University, Vernadskogo pr. 86, Moscow 119571, Russia; (E.Y.M.); (O.S.D.); (K.Y.Z.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Varvara V. Avdeeva
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Alexey S. Kubasov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Andrey P. Zhdanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Svetlana E. Nikiforova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Lyudmila V. Goeva
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Konstantin Yu. Zhizhin
- Institute of Fine Chemical Technologies Named after M. V. Lomonosov, MIREA—Russian Technological University, Vernadskogo pr. 86, Moscow 119571, Russia; (E.Y.M.); (O.S.D.); (K.Y.Z.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Elena A. Malinina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| | - Nikolay T. Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119991, Russia; (A.S.K.); (A.P.Z.); (S.E.N.); (L.V.G.); (E.A.M.); (N.T.K.)
| |
Collapse
|
3
|
Sivaev IB. Decaborane: From Alfred Stock and Rocket Fuel Projects to Nowadays. Molecules 2023; 28:6287. [PMID: 37687117 PMCID: PMC10488552 DOI: 10.3390/molecules28176287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The review covers more than a century of decaborane chemistry from the first synthesis by Alfred Stock to the present day. The main attention is paid to the reactions of the substitution of hydrogen atoms by various atoms and groups with the formation of exo-polyhedral boron-halogen, boron-oxygen, boron-sulfur, boron-nitrogen, boron-phosphorus, and boron-carbon bonds. Particular attention is paid to the chemistry of conjucto-borane anti-[B18H22], whose structure is formed by two decaborane moieties with a common edge, the chemistry of which has been intensively developed in the last decade.
Collapse
Affiliation(s)
- Igor B Sivaev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119334 Moscow, Russia
| |
Collapse
|
4
|
Klyukin IN, Kolbunova AV, Novikov AS, Nelyubin AV, Zhdanov AP, Kubasov AS, Selivanov NA, Bykov AY, Zhizhin KY, Kuznetsov NT. Synthesis of Disubstituted Carboxonium Derivatives of Closo-Decaborate Anion [2,6-B 10H 8O 2CC 6H 5] -: Theoretical and Experimental Study. Molecules 2023; 28:1757. [PMID: 36838745 PMCID: PMC9966448 DOI: 10.3390/molecules28041757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
A comprehensive study focused on the preparation of disubstituted carboxonium derivatives of closo-decaborate anion [2,6-B10H8O2CC6H5]- was carried out. The proposed synthesis of the target product was based on the interaction between the anion [B10H11]- and benzoic acid C6H5COOH. It was shown that the formation of this product proceeds stepwise through the formation of a mono-substituted product [B10H9OC(OH)C6H5]-. In addition, an alternative one-step approach for obtaining the target derivative is postulated. The structure of tetrabutylammonium salts of carboxonium derivative ((C4H9)4N)[2,6-B10H8O2CC6H5] was established with the help of X-ray structure analysis. The reaction pathway for the formation of [2,6-B10H8O2CC6H5]- was investigated with the help of density functional theory (DFT) calculations. This process has an electrophile induced nucleophilic substitution (EINS) mechanism, and intermediate anionic species play a key role. Such intermediates have a structure in which one boron atom coordinates two hydrogen atoms. The regioselectivity for the process of formation for the 2,6-isomer was also proved by theoretical calculations. Generally, in the experimental part, the simple and available approach for producing disubstituted carboxonium derivative was introduced, and the mechanism of this process was investigated with the help of theoretical calculations. The proposed approach can be applicable for the preparation of a wide range of disubstituted derivatives of closo-borate anions.
Collapse
Affiliation(s)
- Ilya N. Klyukin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Anastasia V. Kolbunova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Alexander S. Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab. 7–9, 199034 Saint Petersburg, Russia
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| | - Alexey V. Nelyubin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Andrey P. Zhdanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Alexey S. Kubasov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Nikita A. Selivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Alexander Yu. Bykov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Konstantin Yu. Zhizhin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| | - Nikolay T. Kuznetsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 117907 Moscow, Russia
| |
Collapse
|
5
|
Matveev EY, Levitskaya VY, Novikov SS, Nichugovskii AI, Sokolov IE, Lukashevich SV, Kubasov AS, Zhizin KY, Kuznetsov NT. Synthesis and Study of Derivatives of the [B10H10]2– Anion with Primary Amines. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622601532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
New Aspects of the Synthesis of closo-Dodecaborate Nitrilium Derivatives [B12H11NCR]− (R = n-C3H7, i-C3H7, 4-C6H4CH3, 1-C10H7): Experimental and Theoretical Studies. INORGANICS 2022. [DOI: 10.3390/inorganics10110196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The preparation of novel nitrilium derivatives of closo-dodecaborate anion [B12H11NCR]−, R = n-C3H7, i-C3H7, 4-C6H4CH3, 1-C10H7 is described. Target compounds were obtained in good yields (up to 73%). The synthesis of target borylated nitrilium derivatives was characterised by the simplicity of the chemical apparatus and the absence of the necessity for the purification of desired compounds. The crystal structures of previously obtained [B12H11NCCH3]− and novel [B12H11NCC3H7]− were established with the help of X-ray structure analysis. DFT-analysis of several nitrilium derivatives [B12H11NCR]−, R = CH3, C3H7, 4-CH3C6H4 was carried out. The main peculiarities of the C≡N bond of the exo-polyhedral substituent were revealed in terms of bond lengths, bond orders and atomic charges. The LUMO orbitals of the systems considered were examined for understanding of the electrophilic nature of the nitrilium derivatives of the closo-dodecaborate anion.
Collapse
|
7
|
Nelyubin AV, Selivanov NA, Bykov AY, Klyukin IN, Kubasov AS, Zhdanov AP, Zhizhin KY, Kuznetsov NT. New Method for Synthesis of N-Borylated Amino Acids Based on closo-Decaborate and closo-Dodecaborate Anions. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622601106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Nelyubin AV, Sokolov MS, Selivanov NA, Bykov AY, Klyukin IN, Zhdanov AP, Zhizhin KY, Kuznetsov NT. Nucleophilic Addition of Polyfunctional Amines to Acetonitrile Derivatives of closo-Borate Anions [BnHn – 1NCCH3]– (n = 10, 12). RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s003602362260109x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Klyukin IN, Kolbunova AV, Selivanov NA, Bykov AY, Kubasov AS, Zhdanov AP, Zhizhin KY, Kuznetsov NT. Study of Protonation of Ethyloxy Derivative of closo-Decaborate anion [B10H9OC2H5]2–. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s003602362260085x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Stepanova M, Dobrodumov A, Averianov I, Gofman I, Nashchekina J, Guryanov I, Klyukin I, Zhdanov A, Korzhikova-Vlakh E, Zhizhin K. Design, Fabrication and Characterization of Biodegradable Composites Containing Closo-Borates as Potential Materials for Boron Neutron Capture Therapy. Polymers (Basel) 2022; 14:polym14183864. [PMID: 36146012 PMCID: PMC9506383 DOI: 10.3390/polym14183864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/04/2022] Open
Abstract
Boron neutron capture therapy (BNCT) has been recognized as a very promising approach for cancer treatment. In the case of osteosarcoma, boron-containing scaffolds can be a powerful tool to combine boron delivery to the tumor cells and the repair of postoperative bone defects. Here we describe the fabrication and characterization of novel biodegradable polymer composites as films and 3D-printed matrices based on aliphatic polyesters containing closo-borates (CB) for BNCT. Different approaches to the fabrication of composites have been applied, and the mechanical properties of these composites, kinetics of their degradation, and the release of closo-borate have been studied. The most complex scaffold was a 3D-printed poly(ε-caprolactone) matrix filled with CB-containing alginate/gelatin hydrogel to enhance biocompatibility. The results obtained allowed us to confirm the high potential of the developed composite materials for application in BNCT and bone tissue regeneration.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
- Correspondence: (M.S.); (I.G.)
| | - Anatoliy Dobrodumov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Ilia Averianov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Iosif Gofman
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Juliya Nashchekina
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Ivan Guryanov
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg 198504, Russia
- Correspondence: (M.S.); (I.G.)
| | - Ilya Klyukin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Andrey Zhdanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg 198504, Russia
| | - Konstantin Zhizhin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
11
|
Protonation of Borylated Carboxonium Derivative [2,6-B10H8O2CCH3]−: Theoretical and Experimental Investigation. Int J Mol Sci 2022; 23:ijms23084190. [PMID: 35457007 PMCID: PMC9025682 DOI: 10.3390/ijms23084190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 01/03/2023] Open
Abstract
The process of protonation of [2,6-B10H8O2CCH3]− was investigated both theoretically and experimentally. The most suitable conditions for protonation of the derivative [2,6-B10H8O2CCH3]− were found. The process of protonation was carried out in the presence of an excess of trifluoromethanesulfonic acid CF3SO3H at room temperature in dichloromethane solution. The structure of the resulting complex [2,6-B10H8O2CCH3*Hfac]0 was established using NMR data and the results of DFT calculations. An additional proton atom Hfac was found to be localized on one of the facets that was opposite the boron atom in a substituted position, and which bonded mainly with one apical boron atom. The main descriptors of the B-Hfac bond were established theoretically using QTAIM and NBO approaches. In addition, the mechanism of [2,6-B10H8O2CCH3]− protonation was investigated.
Collapse
|
12
|
Non-Covalent Interactions in Organic, Organometallic, and Inorganic Supramolecular Systems Relevant for Medicine, Materials Science, and Catalysis. CRYSTALS 2022. [DOI: 10.3390/cryst12020246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The structure, fundamental properties, and reactivity of chemical systems at various hierarchical levels of organization of matter is the paradigm of chemistry. A qualitative and quantitative description of various intermolecular and intramolecular non-covalent interactions in chemical systems is the main tool for supramolecular design and the driving force of smart prediction of kinetic and thermodynamic parameters of chemical reactions. This perspective is dedicated to highlighting the recent progress of our research group in the investigation of various non-covalent contacts in organic, organometallic, and inorganic chemical systems relevant for medicine, materials science, and catalysis. This research is interdisciplinary in nature and lies at the intersection of computer modeling with such natural science disciplines as chemistry, physics, crystallography, biology, and medicine, as well as directly related to materials science and nanotechnology.
Collapse
|