1
|
Jeong B, Lee JH, Lee JA, Kim SJ, Lee J, So I, Jun JY, Hong C. Lubiprostone Improves Distal Segment-Specific Colonic Contractions through TRPC4 Activation Stimulated by EP3 Prostanoid Receptor. Pharmaceuticals (Basel) 2024; 17:1327. [PMID: 39458968 PMCID: PMC11509986 DOI: 10.3390/ph17101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Prokinetic agents are effective in increasing gastrointestinal (GI) contractility and alleviating constipation, often caused by slow intestinal motility. Lubiprostone (LUB), known for activating CLC-2 chloride channels, increases the chloride ion concentration in the GI tract, supporting water retention and stool movement. Despite its therapeutic efficacy, the exact mechanisms underlying its pharmacological action are poorly understood. Here, we investigated whether LUB activates the canonical transient receptor potential cation channel type 4 (TRPC4) through stimulation with E-type prostaglandin receptor (EP) type 3. METHODS Using isotonic tension recordings on mouse colon strips, we examined LUB-induced contractility in both proximal and distal colon segments. Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to determine mRNA levels of EP1-4 receptor subtypes in distal colonic muscular strips and isolated myocytes. The effects of a TRPC4 blocker and EP3 antagonist on LUB-stimulated contractions were also evaluated. RESULTS LUB showed significant contraction in the distal segment compared to the proximal segment. EP3 receptor mRNA levels were highly expressed in the distal colon tissue, which correlated with the observed enhanced contraction. Furthermore, LUB-induced spontaneous contractions in distal colon muscles were reduced by a TRPC4 blocker or EP3 antagonist, indicating that LUB-stimulated EP3 receptor activation may lead to TRPC4 activation and increased intracellular calcium in colonic smooth muscle. CONCLUSIONS These findings suggest that LUB improves mass movement through indirect activation of the TRPC4 channel in the distal colon. The segment-specific action of prokinetic agents like LUB provides compelling evidence for a personalized approach to symptom management, supporting the defecation reflex.
Collapse
Affiliation(s)
- Byeongseok Jeong
- Department of Physiology, Chosun University College of Medicine, Gwangju 61452, Republic of Korea; (B.J.); (J.-A.L.); (J.L.); (J.Y.J.)
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Jun Hyung Lee
- Department of Internal Medicine, Chosun University College of Medicine, Gwangju 61452, Republic of Korea; (J.H.L.); (S.J.K.)
| | - Jin-A Lee
- Department of Physiology, Chosun University College of Medicine, Gwangju 61452, Republic of Korea; (B.J.); (J.-A.L.); (J.L.); (J.Y.J.)
| | - Seong Jung Kim
- Department of Internal Medicine, Chosun University College of Medicine, Gwangju 61452, Republic of Korea; (J.H.L.); (S.J.K.)
| | - Junhyung Lee
- Department of Physiology, Chosun University College of Medicine, Gwangju 61452, Republic of Korea; (B.J.); (J.-A.L.); (J.L.); (J.Y.J.)
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Jae Yeoul Jun
- Department of Physiology, Chosun University College of Medicine, Gwangju 61452, Republic of Korea; (B.J.); (J.-A.L.); (J.L.); (J.Y.J.)
| | - Chansik Hong
- Department of Physiology, Chosun University College of Medicine, Gwangju 61452, Republic of Korea; (B.J.); (J.-A.L.); (J.L.); (J.Y.J.)
| |
Collapse
|
2
|
Chiba Y, Yamane Y, Sato T, Suto W, Hanazaki M, Sakai H. Extracellular acidification attenuates bronchial contraction via an autocrine activation of EP 2 receptor: Its diminishment in murine experimental asthma. Respir Physiol Neurobiol 2024; 324:104251. [PMID: 38492830 DOI: 10.1016/j.resp.2024.104251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
PURPOSE Extracellular acidification is a major component of tissue inflammation, including airway inflammation in asthmatics. However, its physiological/pathophysiological significance in bronchial function is not fully understood. Currently, the functional role of extracellular acidification on bronchial contraction was explored. METHODS Left main bronchi were isolated from male BALB/c mice. Epithelium-removed tissues were exposed to acidic pH under submaximal contraction induced by 10-5 M acetylcholine in the presence or absence of a COX inhibitor indomethacin (10-6 M). Effects of AH6809 (10-6 M, an EP2 receptor antagonist), BW A868C (10-7 M, a DP receptor antagonist) and CAY10441 (3×10-6 M, an IP receptor antagonist) on the acidification-induced change in tension were determined. The release of prostaglandin E2 (PGE2) from epithelium-denuded tissues in response to acidic pH was assessed using an ELISA. RESULTS In the bronchi stimulated with acetylcholine, change in the extracellular pH from 7.4 to 6.8 caused a transient augmentation of contraction followed by a sustained relaxing response. The latter inhibitory response was abolished by indomethacin and AH6809 but not by BW A868C or CAY10441. Both indomethacin and AH6809 significantly increased potency and efficacy of acetylcholine at pH 6.8. Stimulation with low pH caused an increase in PGE2 release from epithelium-denuded bronchi. Interestingly, the acidic pH-induced bronchial relaxation was significantly reduced in a murine asthma model that had a bronchial hyperresponsiveness to acetylcholine. CONCLUSION Taken together, extracellular acidification could inhibit the bronchial contraction via autocrine activation of EP2 receptors. The diminished acidic pH-mediated inhibition of bronchial tone may contribute to excessive bronchoconstriction in inflamed airways such as asthma.
Collapse
Affiliation(s)
| | - Yamato Yamane
- Laboratory of Molecular Biology and Physiology, Japan
| | - Tsubasa Sato
- Laboratory of Molecular Biology and Physiology, Japan
| | - Wataru Suto
- Laboratory of Molecular Biology and Physiology, Japan
| | - Motohiko Hanazaki
- Department of Anesthesiology and Intensive Care Medicine, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Hiroyasu Sakai
- Laboratory of Biomolecular Pharmacology, Hoshi University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
3
|
Wang S, Du X, Yan G, Yang L, Sun H, Zhang X, Kong L, Han Y, Han D, Tang S, Wang X. Huangqi Guizhi Wuwu Decoction Improves Inflammatory Factor Levels in Chemotherapy-induced Peripheral Neuropathy by Regulating the Arachidonic Acid Metabolic Pathway. Curr Pharm Des 2024; 30:2701-2717. [PMID: 39092641 DOI: 10.2174/0113816128308622240709102830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Chemotherapy-induced Peripheral Neuropathy (CIPN) is a common complication that arises from the use of anticancer drugs. Huangqi Guizhi Wuwu Decoction (HGWWD) is an effective classic prescription for treating CIPN; however, the mechanism of the activity is not entirely understood. OBJECTIVE This study aimed to investigate the remedial effects and mechanisms of HGWWD on CIPN. METHODS Changes in behavioral, biochemical, histopathological, and biomarker indices were used to evaluate the efficacy of HGWWD treatment. Ultra-high-performance liquid chromatography/mass spectrometry combined with the pattern recognition method was used to screen biomarkers and metabolic pathways related to CIPN. The results of pathway analyses were verified by protein blotting experiments. RESULTS A total of 29 potential biomarkers were identified and 13 metabolic pathways were found to be involved in CIPN. In addition HGWWD reversed the levels of 19 biomarkers. Prostaglandin H2 and 17α,21-dihydroxypregnenolone were targeted as core biomarkers. CONCLUSION This study provides scientific evidence to support the finding that HGWWD mainly inhibits the inflammatory response during CIPN by regulating arachidonic acid metabolism.
Collapse
Affiliation(s)
- Shanshan Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaohui Du
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guangli Yan
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou Medical University, Guangzhou, China
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiwu Zhang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ling Kong
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Han
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Di Han
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Songyuan Tang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classical Formula and Modern Chinese Medicine, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, National Chinmedomics Research Center, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Liu M, Li X, Wang J, Ji Y, Gu J, Wei Y, Peng L, Tian C, Lv P, Wang P, Liu X, Li W. Identification and validation of Rab11a in Rat orofacial inflammatory pain model induced by CFA. Neurochem Int 2023:105550. [PMID: 37268020 DOI: 10.1016/j.neuint.2023.105550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/29/2023] [Accepted: 05/14/2023] [Indexed: 06/04/2023]
Abstract
Orofacial pain (OFP) is a clinically very common and the most troubling condition; however, there is few effective way to relieve OFP. Rab11a, a small molecule guanosine triphosphate enzyme, is one of the Rab member family playing a vital role in intracellular endocytosis and the pain process. Therefore, we investigated the hub genes of rat OFP model induced by Complete Freund's Adjuvant (CFA) via re-analyzing microarray data (GSE111160). We found that Rab11a acted as a key hub gene in the process of OFP. During the validation of Rab11a, the OFP model was established by peripheral injection of CFA, which decreased the head withdrawal threshold (HWT) and head withdrawal lantency (HWL). Rab11a was observed in NeuN of Sp5C instead of GFAP/IBA-1, and double-IF of Rab11a and Fos positive cells were increased on the 7th day after CFA modeling statistically. Rab11a protein expression in TG and Sp5C of CFA group was also significantly increased. Interestingly, injection of Rab11a-targeted short hairpin RNA (Rab11a-shRNA) into Sp5C could reverse the decrease in HWT and HWL and reduce the expression level of Rab11a. Electrophysiological recording further demonstrated that the activity of Sp5C neuron was improved in CFA group, while Rab11a-shRNA considerably decreased the enhancement of Sp5C neuronal activity. Finally, we detected the expression level of p-PI3K, p-AKT, and p-mTOR in Sp5C of rats after injecting the Rab11a-shRNA virus. To our surprise, CFA upregulated the phosphorylation of PI3K, AKT and mTOR in Sp5C, and Rab11a-shRNA downregulated these molecules' expression. Our data suggest that CFA activates the PI3K/AKT signaling pathway through up-regulating Rab11a expression, which can induce OFP hyperalgesia development furtherly. Targeting Rab11a may be a novel treatment strategy for OFP.
Collapse
Affiliation(s)
- Miaomiao Liu
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xin Li
- Department of Stomatology, The 960th Hospital of People's Liberation Army, Jinan, Shandong, China
| | - Jian Wang
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuanyuan Ji
- Department of Anatomy, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Junxiang Gu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yi Wei
- Department of Anatomy, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Liwei Peng
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chao Tian
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Peiyuan Lv
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Peng Wang
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xin Liu
- Department of Stomatology, The 960th Hospital of People's Liberation Army, Jinan, Shandong, China.
| | - Weixin Li
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Sanders AE, Weatherspoon ED, Ehrmann BM, Soma PS, Shaikh SR, Preisser JS, Ohrbach R, Fillingim RB, Slade GD. Ratio of Omega-6/Omega-3 Polyunsaturated Fatty Acids Associated With Somatic and Depressive Symptoms in People With Painful Temporomandibular Disorder and Irritable Bowel Syndrome. THE JOURNAL OF PAIN 2022; 23:1737-1748. [PMID: 35477107 PMCID: PMC9561958 DOI: 10.1016/j.jpain.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 04/27/2023]
Abstract
Somatic symptom disturbance is among the strongest predictors of painful temporomandibular disorder (TMD). Related psychological constructs, such as anxiety and depression, respond therapeutically to omega-3 polyunsaturated fatty acids (PUFAs) in clinical trials. This cross-sectional study investigated associations between the omega-6/omega-3 PUFA ratio and somatic symptom disturbance and depressive symptoms in a community-based sample of 501 adults and determined whether these associations differed between adults with and without TMD or irritable bowel syndrome (IBS). Liquid chromatography tandem mass spectrometry quantified PUFAs in circulating erythrocytes. Somatic symptoms and depression were quantified using Symptom Checklist-90-Revised subscales. Presence or absence of TMD and IBS, respectively, were determined by clinical examination and Rome III screening questions. The standardized beta coefficient for the omega-6/omega-3 long-chain PUFA ratio was 0.26 (95% confidence limits (CL): 0.08, 0.43) in a multivariable linear regression model in which somatic symptom disturbance was the dependent variable. When modelling depressive symptoms as the dependent variable, the standardized beta coefficient was 0.17 (95% CL:0.01, 0.34). Both associations were stronger among TMD cases and IBS cases than among non-cases. Future randomized control trials that lower the omega-6/omega-3 PUFA ratio could consider somatic or depressive symptoms as a therapeutic target for TMD or IBS pain. PERSPECTIVE: In people with TMD or IBS, a high n-6/n-3 PUFA ratio was positively associated with somatic symptom disturbance and depressive symptoms. Both measures of psychological distress were elevated in people with painful TMD and IBS. Future randomized clinical trials will determine whether lowering the n-6/n-3 ratio is therapeutic for pain.
Collapse
Affiliation(s)
- Anne E Sanders
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina, Chapel Hill, North Carolina.
| | - E Diane Weatherspoon
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Brandie M Ehrmann
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Paul S Soma
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Saame R Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - John S Preisser
- Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina
| | - Richard Ohrbach
- Department of Oral Diagnostic Sciences, University at Buffalo, Buffalo, New York
| | - Roger B Fillingim
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, Florida; Pain Research and Intervention Center of Excellence, Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, Florida
| | - Gary D Slade
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
6
|
Anaeigoudari A. Antidepressant and anti-nociceptive effects of Nigella sativa and its main constituent, thymoquinone: A literature review. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.363875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|