1
|
Larrea-Sebal A, Jebari-Benslaiman S, Galicia-Garcia U, Jose-Urteaga AS, Uribe KB, Benito-Vicente A, Martín C. Predictive Modeling and Structure Analysis of Genetic Variants in Familial Hypercholesterolemia: Implications for Diagnosis and Protein Interaction Studies. Curr Atheroscler Rep 2023; 25:839-859. [PMID: 37847331 PMCID: PMC10618353 DOI: 10.1007/s11883-023-01154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
PURPOSE OF REVIEW Familial hypercholesterolemia (FH) is a hereditary condition characterized by elevated levels of low-density lipoprotein cholesterol (LDL-C), which increases the risk of cardiovascular disease if left untreated. This review aims to discuss the role of bioinformatics tools in evaluating the pathogenicity of missense variants associated with FH. Specifically, it highlights the use of predictive models based on protein sequence, structure, evolutionary conservation, and other relevant features in identifying genetic variants within LDLR, APOB, and PCSK9 genes that contribute to FH. RECENT FINDINGS In recent years, various bioinformatics tools have emerged as valuable resources for analyzing missense variants in FH-related genes. Tools such as REVEL, Varity, and CADD use diverse computational approaches to predict the impact of genetic variants on protein function. These tools consider factors such as sequence conservation, structural alterations, and receptor binding to aid in interpreting the pathogenicity of identified missense variants. While these predictive models offer valuable insights, the accuracy of predictions can vary, especially for proteins with unique characteristics that might not be well represented in the databases used for training. This review emphasizes the significance of utilizing bioinformatics tools for assessing the pathogenicity of FH-associated missense variants. Despite their contributions, a definitive diagnosis of a genetic variant necessitates functional validation through in vitro characterization or cascade screening. This step ensures the precise identification of FH-related variants, leading to more accurate diagnoses. Integrating genetic data with reliable bioinformatics predictions and functional validation can enhance our understanding of the genetic basis of FH, enabling improved diagnosis, risk stratification, and personalized treatment for affected individuals. The comprehensive approach outlined in this review promises to advance the management of this inherited disorder, potentially leading to better health outcomes for those affected by FH.
Collapse
Affiliation(s)
- Asier Larrea-Sebal
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940, Leioa, Spain
- Fundación Biofisika Bizkaia, 48940, Leioa, Spain
| | - Shifa Jebari-Benslaiman
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940, Leioa, Spain
| | - Unai Galicia-Garcia
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940, Leioa, Spain
| | - Ane San Jose-Urteaga
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
| | - Kepa B Uribe
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
| | - Asier Benito-Vicente
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940, Leioa, Spain
| | - César Martín
- Department of Biochemistry and Molecular Biology, Universidad del País Vasco UPV/EHU, 48080, Bilbao, Spain.
- Department of Molecular Biophysics, Biofisika Institute, University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC), 48940, Leioa, Spain.
| |
Collapse
|
2
|
Zhang R, Wang Y, Peng Y, Zhao J, Zhang Z. Advanced progress of the relationship between PCSK9 monoclonal antibodies and hyperglycemic adverse events. Front Cardiovasc Med 2023; 10:1117143. [PMID: 37435056 PMCID: PMC10330718 DOI: 10.3389/fcvm.2023.1117143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
Purpose of Review Long-term use of statins had been confirmed to cause an increase in hyperglycemic adverse events (HAEs), whose mechanism has been well understood. Proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies (PCSK9-mAbs), a kind of new lipid-lowering drug, can effectively reduce plasma low-density lipoprotein cholesterol levels in patients with CHD and have been widely used. However, animal experiments, Mendelian randomization studies, clinical researches and Meta-analyses which focused on the relationship between PCSK9-mAbs and HAEs had reached different conclusions, which has attracted great attention from clinicians. Recent Findings The newest FOURIER-OLE randomized controlled trial followed PCSK9-mAbs users for over 8 years, whose results suggested that long-term use of PCSK9-mAbs did not increase the incidence of HAEs. Newest Meta-analyses also indicated that there was no relationship between PCSK9-mAbs and NOD. Meanwhile, genetic polymorphisms and variants related to PCSK9 might have effects on HAEs. Conclusion According to the results of current studies, there is no significant relationship between PCSK9-mAbs and HAEs. However, longer-term follow-up studies are still needed to confirm it. Although PCSK9 genetic polymorphisms and variants may affect the possible occurrence of HAEs, there is no need to perform relevant genetic testing before applying PCSK9-mAbs.
Collapse
Affiliation(s)
- Ruixing Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongxiang Wang
- Department of Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yu Peng
- Department of Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jing Zhao
- Department of Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zheng Zhang
- Department of Heart Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Poznyak AV, Sukhorukov VN, Eremin II, Nadelyaeva II, Gutyrchik NA, Orekhov AN. Proprotein Convertase Subtilisin/Kexin 9 as a Modifier of Lipid Metabolism in Atherosclerosis. Biomedicines 2023; 11:biomedicines11020503. [PMID: 36831039 PMCID: PMC9953442 DOI: 10.3390/biomedicines11020503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Despite being the most common treatment strategy in the management of atherosclerosis and subsequent cardiovascular disease, classical statin therapy has certain disadvantages, including numerous side effects. In addition, a regimen with daily administration of the drug is hard to comply with. Thus, there is a need for modern and more efficient therapeutic strategies in CVD treatment. There is extensive evidence indicating that PCSK9 promotes atherogenesis through a variety of mechanisms. Thus, new treatment methods can be developed that prevent or alleviate atherosclerotic cardiovascular disease by targeting PCSK9. Comprehensive understanding of its atherogenic properties is a necessary precondition for the establishment of new therapeutic strategies. In this review, we will summarize the available data on the role of PCSK9 in the development and progression of atherosclerosis. In the last section, we will consider existing PCSK9 inhibitors.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| | - Vasily N. Sukhorukov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Ilya I. Eremin
- Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia
| | - Irina I. Nadelyaeva
- Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia
| | - Nikita A. Gutyrchik
- Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia
| | - Alexander N. Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| |
Collapse
|
4
|
Functional Characterization of p.(Arg160Gln) PCSK9 Variant Accidentally Found in a Hypercholesterolemic Subject. Int J Mol Sci 2023; 24:ijms24043330. [PMID: 36834740 PMCID: PMC9959173 DOI: 10.3390/ijms24043330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Familial hypercholesterolaemia (FH) is an autosomal dominant dyslipidaemia, characterised by elevated LDL cholesterol (LDL-C) levels in the blood. Three main genes are involved in FH diagnosis: LDL receptor (LDLr), Apolipoprotein B (APOB) and Protein convertase subtilisin/kexin type 9 (PCSK9) with genetic mutations that led to reduced plasma LDL-C clearance. To date, several PCSK9 gain-of-function (GOF) variants causing FH have been described based on their increased ability to degrade LDLr. On the other hand, mutations that reduce the activity of PCSK9 on LDLr degradation have been described as loss-of-function (LOF) variants. It is therefore important to functionally characterise PCSK9 variants in order to support the genetic diagnosis of FH. The aim of this work is to functionally characterise the p.(Arg160Gln) PCSK9 variant found in a subject suspected to have FH. Different techniques have been combined to determine efficiency of the autocatalytic cleavage, protein expression, effect of the variant on LDLr activity and affinity of the PCSK9 variant for the LDLr. Expression and processing of the p.(Arg160Gln) variant had a result similar to that of WT PCSK9. The effect of p.(Arg160Gln) PCSK9 on LDLr activity is lower than WT PCSK9, with higher values of LDL internalisation (13%) and p.(Arg160Gln) PCSK9 affinity for the LDLr is lower than WT, EC50 8.6 ± 0.8 and 25.9 ± 0.7, respectively. The p.(Arg160Gln) PCSK9 variant is a LOF PCSK9 whose loss of activity is caused by a displacement of the PCSK9 P' helix, which reduces the stability of the LDLr-PCSK9 complex.
Collapse
|
5
|
Los B, Ferreira GM, Borges JB, Kronenberger T, Oliveira VFD, Dagli-Hernandez C, Bortolin RH, Gonçalves RM, Faludi AA, Mori AA, Barbosa TKA, Freitas RCCD, Jannes CE, Pereira ADC, Bastos GM, Poso A, Hirata RDC, Hirata MH. Effects of PCSK9 missense variants on molecular conformation and biological activity in transfected HEK293FT cells. Gene 2023; 851:146979. [DOI: 10.1016/j.gene.2022.146979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
6
|
Benito-Vicente A, Uribe KB, Larrea-Sebal A, Palacios L, Cenarro A, Calle X, Galicia-Garcia U, Jebari-Benslaiman S, Sánchez-Hernández RM, Stef M, Lambert G, Civeira F, Martín C. Leu22_Leu23 Duplication at the Signal Peptide of PCSK9 Promotes Intracellular Degradation of LDLr and Autosomal Dominant Hypercholesterolemia. Arterioscler Thromb Vasc Biol 2022; 42:e203-e216. [PMID: 35510551 DOI: 10.1161/atvbaha.122.315499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND PCSK9 (Proprotein convertase subtilisin/kexin type 9) regulates LDL-C (low-density lipoprotein cholesterol) metabolism by targeting LDLr (LDL receptor) for lysosomal degradation. PCSK9 gain-of-function variants cause autosomal dominant hypercholesterolemia by reducing LDLr levels, the D374Y variant being the most severe, while loss-of-function variants are associated with low LDL-C levels. Gain-of-function and loss-of-function activities have also been attributed to variants occurring in the PCSK9 signal peptide. Among them, L11 is a very rare PCSK9 variant that seems to increase LDL-C values in a moderate way causing mild hypercholesterolemia. METHODS Using molecular biology and biophysics methodologies, activities of L8 and L11 variants, both located in the leucine repetition stretch of the signal peptide, have been extensively characterized in vitro. RESULTS L8 variant is not associated with increased LDLr activity, whereas L11 activity is increased by ≈20% compared with wt PCSK9. The results suggest that the L11 variant reduces LDLr levels intracellularly by a process resulting from impaired cleavage of the signal peptide. This would lead to less efficient LDLr transport to the cell membrane and promote LDLr intracellular degradation. CONCLUSIONS Deletion of a leucine in the signal peptide in L8 variant does not affect PCSK9 activity, whereas the leucine duplication in the L11 variant enhances LDLr intracellular degradation. These findings highlight the importance of deep in vitro characterization of PCSK9 genetic variants to determine pathogenicity and improve clinical diagnosis and therapy of inherited familial hypercholesterolemia disease.
Collapse
Affiliation(s)
- Asier Benito-Vicente
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain (A.B.-V., A.L.-S., U.G.-G., S.J.-B., C.M.).,Department of Biochemistry and Molecular Biology, UPV/EHU, University of the Basque Country, Bilbao, Spain (A.B.-V., S.J.-B., C.M.)
| | - Kepa B Uribe
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain (K.B.U.)
| | - Asier Larrea-Sebal
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain (A.B.-V., A.L.-S., U.G.-G., S.J.-B., C.M.).,Fundación Biofísica Bizkaia, Leioa, Spain (A.L.-S., U.G.-G.)
| | - Lourdes Palacios
- Progenika Biopharma, a Grifols Company, Derio, Spain (L.P., M.S.)
| | - Ana Cenarro
- Lipid Unit, Hospital Universitario Miguel Servet, IIS Aragon, CIBERCV, Universidad de Zaragoza, Spain (A.C., F.C.)
| | - Xabier Calle
- Institute of Biological Phychiatry, Mental Health Services, University Hospital, Copenhagen, Denmark (X.C.)
| | - Unai Galicia-Garcia
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain (A.B.-V., A.L.-S., U.G.-G., S.J.-B., C.M.).,Fundación Biofísica Bizkaia, Leioa, Spain (A.L.-S., U.G.-G.)
| | - Shifa Jebari-Benslaiman
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain (A.B.-V., A.L.-S., U.G.-G., S.J.-B., C.M.).,Department of Biochemistry and Molecular Biology, UPV/EHU, University of the Basque Country, Bilbao, Spain (A.B.-V., S.J.-B., C.M.)
| | - Rosa M Sánchez-Hernández
- Endocrinology Department, Complejo Hospitalario Universitario Insular Materno Infantil de Gran Canaria and Instituto Universitario de Investigación Biomédica y Sanitaria (IUIBS) de la Universidad de Las Palmas de Gran Canaria, Spain (R.M.S.-H.)
| | - Marianne Stef
- Progenika Biopharma, a Grifols Company, Derio, Spain (L.P., M.S.)
| | - Gilles Lambert
- Inserm, Laboratoire UMR1188 DéTROI, Sainte Clotilde, France (G.L.).,Université de La Réunion, Faculté de Médecine, Saint Denis de La Réunion, France (G.L.)
| | - Fernando Civeira
- Lipid Unit, Hospital Universitario Miguel Servet, IIS Aragon, CIBERCV, Universidad de Zaragoza, Spain (A.C., F.C.)
| | - Cesar Martín
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain (A.B.-V., A.L.-S., U.G.-G., S.J.-B., C.M.).,Department of Biochemistry and Molecular Biology, UPV/EHU, University of the Basque Country, Bilbao, Spain (A.B.-V., S.J.-B., C.M.)
| |
Collapse
|
7
|
Xiao X, Luo Y, Peng D. Updated Understanding of the Crosstalk Between Glucose/Insulin and Cholesterol Metabolism. Front Cardiovasc Med 2022; 9:879355. [PMID: 35571202 PMCID: PMC9098828 DOI: 10.3389/fcvm.2022.879355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
Glucose and cholesterol engage in almost all human physiological activities. As the primary energy substance, glucose can be assimilated and converted into diverse essential substances, including cholesterol. Cholesterol is mainly derived from de novo biosynthesis and the intestinal absorption of diets. It is evidenced that glucose/insulin promotes cholesterol biosynthesis and uptake, which have been targeted by several drugs for lipid-lowering, e.g., bempedoic acid, statins, ezetimibe, and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. Inversely, these lipid-lowering drugs may also interfere with glucose metabolism. This review would briefly summarize the mechanisms of glucose/insulin-stimulated cholesterol biosynthesis and uptake, and discuss the effect and mechanisms of lipid-lowering drugs and genetic mutations on glucose homeostasis, aiming to help better understand the intricate relationship between glucose and cholesterol metabolism.
Collapse
|
8
|
Cardiovascular Diseases—A Focus on Atherosclerosis, Its Prophylaxis, Complications and Recent Advancements in Therapies. Int J Mol Sci 2022; 23:ijms23094695. [PMID: 35563086 PMCID: PMC9103939 DOI: 10.3390/ijms23094695] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
|
9
|
Maligłówka M, Kosowski M, Hachuła M, Cyrnek M, Bułdak Ł, Basiak M, Bołdys A, Machnik G, Bułdak RJ, Okopień B. Insight into the Evolving Role of PCSK9. Metabolites 2022; 12:metabo12030256. [PMID: 35323699 PMCID: PMC8951079 DOI: 10.3390/metabo12030256] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is the last discovered member of the family of proprotein convertases (PCs), mainly synthetized in hepatic cells. This serine protease plays a pivotal role in the reduction of the number of low-density lipoprotein receptors (LDLRs) on the surface of hepatocytes, which leads to an increase in the level of cholesterol in the blood. This mechanism and the fact that gain of function (GOF) mutations in PCSK9 are responsible for causing familial hypercholesterolemia whereas loss-of-function (LOF) mutations are associated with hypocholesterolemia, prompted the invention of drugs that block PCSK9 action. The high efficiency of PCSK9 inhibitors (e.g., alirocumab, evolocumab) in decreasing cardiovascular risk, pleiotropic effects of other lipid-lowering drugs (e.g., statins) and the multifunctional character of other proprotein convertases, were the cause for proceeding studies on functions of PCSK9 beyond cholesterol metabolism. In this article, we summarize the current knowledge on the roles that PCSK9 plays in different tissues and perspectives for its clinical use.
Collapse
Affiliation(s)
- Mateusz Maligłówka
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
- Correspondence:
| | - Michał Kosowski
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| | - Marcin Hachuła
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| | - Marcin Cyrnek
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| | - Marcin Basiak
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| | - Aleksandra Bołdys
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| | - Grzegorz Machnik
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| | - Rafał Jakub Bułdak
- Institute of Medical Sciences, University of Opole, 45-040 Opole, Poland;
| | - Bogusław Okopień
- Department of Internal Medicine and Clinical Pharmacology, School of Medicine in Katowice, Medical University of Silesia in Katowice, 40-007 Katowice, Poland; (M.K.); (M.H.); (M.C.); (Ł.B.); (M.B.); (A.B.); (G.M.); (B.O.)
| |
Collapse
|