1
|
Zhang J, Jiang X, Pang B, Li D, Kang L, Zhou T, Wang B, Zheng L, Zhou CM, Zhang L. Association between tryptophan concentrations and the risk of developing cardiovascular diseases: a systematic review and meta-analysis. Nutr Metab (Lond) 2024; 21:82. [PMID: 39407297 PMCID: PMC11476920 DOI: 10.1186/s12986-024-00857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Metabolic regulation of various amino acids have been proven to be effective in preventing cardiovascular disease (CVD). The impact of tryptophan, an essential amino acid, on the risk of developing CVD has not been fully elucidated. AIMS The aim of this meta-analysis was to systematically review evidence of the effects of tryptophan on CVD risk. METHODS The PubMed, Embase, Web of Science, Cochrane Library, and China National Knowledge Infrastructure (CNKI) databases were searched to collect relevant trials from inception to August 2024. The means and hazard ratios (HRs) were extracted and pooled. Subgroup analysis was performed to identify pooled effect estimates, and sensitivity analysis was conducted to assess the robustness of the pooled estimates. RESULTS Data were collected from 34,370 people under follow-up for CVD events in 13 studies, including cohort studies and case-control studies. They were categorized into three groups on the basis of sample type and indicators: the plasma tryptophan level group, the plasma tryptophan CVD hazard group, and the urinary tryptophan CVD hazard group. The CVD included in this study were coronary artery disease, heart failure, and peripheral artery disease. Twelve studies on plasma tryptophan were meta-analyzed. The plasma tryptophan levels in CVD patients were generally lower than those in individuals without CVD (SMD = -8.57, 95%CI (-15.77, -1.37), P = 0.02). Decreased circulating tryptophan levels are associated with cardiovascular disease risk (HR = 0.85, 95%CI (0.78, 0.92), P < 0.00001). CONCLUSIONS Decreased circulating tryptophan levels are associated with an increased risk of CVD events. Intervention in circulating tryptophan levels may be indicated to help prevent CVD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of General Surgery, Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xia Jiang
- Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bo Pang
- Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dongyun Li
- Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Longfei Kang
- Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tengda Zhou
- Department of General Surgery, Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Boyu Wang
- Department of General Surgery, Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lihua Zheng
- Department of General Surgery, Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chuan-Min Zhou
- Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Lei Zhang
- Department of General Surgery, Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
2
|
Rossini S, Ambrosino S, Volpi C, Belladonna ML, Pallotta MT, Panfili E, Suvieri C, Macchiarulo A, Mondanelli G, Orabona C. Epacadostat stabilizes the apo-form of IDO1 and signals a pro-tumorigenic pathway in human ovarian cancer cells. Front Immunol 2024; 15:1346686. [PMID: 38333210 PMCID: PMC10850306 DOI: 10.3389/fimmu.2024.1346686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
The tryptophan-degrading enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is a plastic immune checkpoint molecule that potently orchestrates immune responses within the tumor microenvironment (TME). As a heme-containing protein, IDO1 catalyzes the conversion of the essential amino acid tryptophan into immunoactive metabolites, called kynurenines. By depleting tryptophan and enriching the TME with kynurenines, IDO1 catalytic activity shapes an immunosuppressive TME. Accordingly, the inducible or constitutive IDO1 expression in cancer correlates with a negative prognosis for patients, representing one of the critical tumor-escape mechanisms. However, clinically trialed IDO1 catalytic inhibitors disappointed the expected anti-tumor efficacy. Interestingly, the non-enzymatic apo-form of IDO1 is still active as a transducing protein, capable of promoting an immunoregulatory phenotype in dendritic cells (DCs) as well as a pro-tumorigenic behavior in murine melanoma. Moreover, the IDO1 catalytic inhibitor epacadostat can induce a tolerogenic phenotype in plasmacytoid DCs, overcoming the catalytic inhibition of IDO1. Based on this recent evidence, IDO1 plasticity was investigated in the human ovarian cancer cell line, SKOV-3, that constitutively expresses IDO1 in a dynamic balance between the holo- and apo-protein, and thus potentially endowed with a dual function (i.e., enzymatic and non-enzymatic). Besides inhibiting the catalytic activity, epacadostat persistently stabilizes the apo-form of IDO1 protein, favoring its tyrosine-phosphorylation and promoting its association with the phosphatase SHP-2. In SKOV-3 cells, both these early molecular events activate a signaling pathway transduced by IDO1 apo-protein, which is independent of its catalytic activity and contributes to the tumorigenic phenotype of SKOV-3 cells. Overall, our findings unveiled a new mechanism of action of epacadostat on IDO1 target, repositioning the catalytic inhibitor as a stabilizer of the apo-form of IDO1, still capable of transducing a pro-tumorigenic pathway in SKOV-3 tumor. This mechanism could contribute to clarify the lack of effectiveness of epacadostat in clinical trials and shed light on innovative immunotherapeutic strategies to tackle IDO1 target.
Collapse
Affiliation(s)
- Sofia Rossini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Sara Ambrosino
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudia Volpi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | | | - Eleonora Panfili
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Chiara Suvieri
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Giada Mondanelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Ciriana Orabona
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
3
|
Lu T, Wang X, Cui X, Li J, Xu J, Xu P, Wan J. Physiological and metabolomic analyses reveal that Fe 3O 4 nanoparticles ameliorate cadmium and arsenic toxicity in Panax notoginseng. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122578. [PMID: 37726032 DOI: 10.1016/j.envpol.2023.122578] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/04/2023] [Accepted: 09/16/2023] [Indexed: 09/21/2023]
Abstract
Heavy metal(loid)-contaminated available arable land seriously affects crop development and growth. Engineered nanomaterials have great potential in mitigating toxic metal(loid) stress in plants. However, there are few details of nanoparticles (NPs) involved in Panax notoginseng response to cadmium (Cd) and arsenic (As). Herein, integrating physiological and metabolomic analyses, we investigated the effects of Fe3O4 NPs on plant growth and Cd/As responses in P. notoginseng. Cd/As treatment caused severe growth inhibition. However, foliar application of Fe3O4 NPs increased beneficial elements in the roots and/or leaves, decreased Cd/As content by 10.38% and 20.41% in the roots, reduced membrane damage and regulated antioxidant enzyme activity, thereby alleviating Cd/As-induced growth inhibition, as indicated by increased shoot fresh weight (FW), the rootlet length and root FW by 40.14%, 15.74%, and 46.70% under Cd stress and promoted the shoot FW by 27.00% under As toxicity. Metabolomic analysis showed that 227 and 295 differentially accumulated metabolites (DAMs) were identified, and their accumulation patterns were classified into 8 and 6 clusters in the roots and leaves, respectively. Fe3O4 NPs altered metabolites significantly involved in key pathways, including amino sugar and nucleotide sugar metabolism, flavonoid biosynthesis and phenylalanine metabolism, thus mediating the trade-off between plant growth and defense under stress. Interestingly, Fe3O4 NPs recovered more Cd/As-induced DAMs to normal levels, further supporting that Fe3O4 NPs positively affected seedling growth under metal(loid)s stress. In addition, Fe3O4 NPs altered terpenoids when the seedlings were subjected to Cd/As stress, thus affecting their potential medicinal value. This study provides insights into using nanoparticles to improve potential active ingredients of medicinal plants in metal(loid)-contaminated areas.
Collapse
Affiliation(s)
- Tianquan Lu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoning Wang
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, 572025, China; Key Laboratory for Crop Breeding of Hainan Province, Haikou, 571100, China
| | - Xianliang Cui
- College of Biology and Chemistry, Pu'er University, Pu'er, 665000, China
| | - Jifang Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China
| | - Jinpeng Wan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China.
| |
Collapse
|
4
|
Guthrie OW, Yang L. Oral intake of carboxy alkyl ester improves attention: A randomized double-blind cross-over placebo-controlled study. Hum Psychopharmacol 2023; 38:e2885. [PMID: 37915240 DOI: 10.1002/hup.2885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE To test the null hypothesis that oral intake of the dietary supplement carboxy alkyl ester (CAE) would have no effect on attention as revealed by mean rapid visual information processing (RVIP) scores. METHODS In a randomized double-blind cross-over placebo-controlled trial, healthy participants (age 19-66 years) of both sexes were randomly assigned to consume 700 mg of CAE or 700 mg of placebo. They received baseline attention testing via the RVIP task. Then they consumed CAE or placebo followed by RVIP testing. Participants were then given a washout period where they did not consume CAE or placebo. Afterward, individuals who initially consumed CAE were given the placebo and those who initially consumed the placebo were given CAE. Finally, all participants were tested again via RVIP. RESULTS A priori statistical computation revealed that 30-day oral intake of CAE improved mean RVIP test scores (t = 2.4, p < .05) relative to that at baseline, which resulted in a rejection of the null hypothesis. CONCLUSIONS Daily oral intake of the CAE dietary supplement may boost attention and further research is now needed to confirm this observation.
Collapse
Affiliation(s)
- O'neil W Guthrie
- Cell & Molecular Pathology Laboratory, Communication Sciences and Disorders, Northern Arizona University, Flagstaff, Arizona, USA
| | - Li Yang
- Cell & Molecular Pathology Laboratory, Communication Sciences and Disorders, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
5
|
Sun N, Zhang Y, Dong J, Liu G, Liu Z, Wang J, Qiao Z, Zhang J, Duan K, Nian X, Ma Z, Yang X. Metabolomics profiling reveals differences in proliferation between tumorigenic and non-tumorigenic Madin-Darby canine kidney (MDCK) cells. PeerJ 2023; 11:e16077. [PMID: 37744241 PMCID: PMC10517658 DOI: 10.7717/peerj.16077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/20/2023] [Indexed: 09/26/2023] Open
Abstract
Background Madin-Darby canine kidney (MDCK) cells are a cellular matrix in the production of influenza vaccines. The proliferation rate of MDCK cells is one of the critical factors that determine the vaccine production cycle. It is yet to be determined if there is a correlation between cell proliferation and alterations in metabolic levels. This study aimed to explore the metabolic differences between MDCK cells with varying proliferative capabilities through the use of both untargeted and targeted metabolomics. Methods To investigate the metabolic discrepancies between adherent cell groups (MDCK-M60 and MDCK-CL23) and suspension cell groups (MDCK-XF04 and MDCK-XF06), untargeted and targeted metabolomics were used. Utilizing RT-qPCR analysis, the mRNA expressions of key metabolites enzymes were identified. Results An untargeted metabolomics study demonstrated the presence of 81 metabolites between MDCK-M60 and MDCK-CL23 cells, which were mainly affected by six pathways. An analysis of MDCK-XF04 and MDCK-XF06 cells revealed a total of 113 potential metabolites, the majority of which were impacted by ten pathways. Targeted metabolomics revealed a decrease in the levels of choline, tryptophan, and tyrosine in MDCK-CL23 cells, which was in accordance with the results of untargeted metabolomics. Additionally, MDCK-XF06 cells experienced a decrease in 5'-methylthioadenosine and tryptophan, while S-adenosylhomocysteine, kynurenine, 11Z-eicosenoic acid, 3-phosphoglycerate, glucose 6-phosphate, and phosphoenolpyruvic acid concentrations were increased. The mRNA levels of MAT1A, MAT2B, IDO1, and IDO2 in the two cell groups were all increased, suggesting that S-adenosylmethionine and tryptophan may have a significant role in cell metabolism. Conclusions This research examines the effect of metabolite fluctuations on cell proliferation, thus offering a potential way to improve the rate of MDCK cell growth.
Collapse
Affiliation(s)
- Na Sun
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, China
| | - Yuchuan Zhang
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jian Dong
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Geng Liu
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Zhenbin Liu
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, China
| | - Jiamin Wang
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, China
- Gansu Provincial Bioengineering Materials Engineering Research Center, Lanzhou, China
| | - Zilin Qiao
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, China
- Gansu Provincial Bioengineering Materials Engineering Research Center, Lanzhou, China
| | - Jiayou Zhang
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
| | - Kai Duan
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
| | - Xuanxuan Nian
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, China
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
| | - Zhongren Ma
- Gansu Technology Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Lanzhou, China
- Key Laboratory of Biotechnology and Bioengineering of National Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, China
- China National Biotech Group Company Limited, Beijing, China
| |
Collapse
|
6
|
Yi S, Dai D, Wu H, Chai S, Liu S, Meng Q, Zhou Z. Dietary Concentrate-to-Forage Ratio Affects Rumen Bacterial Community Composition and Metabolome of Yaks. Front Nutr 2022; 9:927206. [PMID: 35911107 PMCID: PMC9329686 DOI: 10.3389/fnut.2022.927206] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/13/2022] [Indexed: 01/02/2023] Open
Abstract
Changes in dietary composition affect the rumen microbiota in ruminants. However, information on the effects of dietary concentrate-to-forage ratio changes on yak rumen bacteria and metabolites is limited. This study characterized the effect of three different dietary concentrate-to-forage ratios (50:50, C50 group; 65:35, C65 group; 80:20, C80 group) on yak rumen fluid microbiota and metabolites using 16S rRNA gene sequencing and liquid chromatography-mass spectrometry (LC-MS) analyses. Rumen fermentation parameters and the abundance of rumen bacteria were affected by changes in the dietary concentrate-to-forage ratio, and there was a strong correlation between them. At the genus level, higher relative abundances of norank_f__F082, NK4A214_group, Lachnospiraceae_NK3A20_group, Acetitomaculum, and norank_f__norank_o__Clostridia_UCG-014 were observed with a high dietary concentrate-to-forage ratio (P < 0.05). Combined metabolomic and enrichment analyses showed that changes in the dietary concentrate-to-forage ratio significantly affected rumen metabolites related to amino acid metabolism, protein digestion and absorption, carbohydrate metabolism, lipid metabolism, and purine metabolism. Compared with the C50 group, 3-methylindole, pantothenic acid, D-pantothenic acid, and 20-hydroxy-leukotriene E4 were downregulated in the C65 group, while spermine and ribose 1-phosphate were upregulated. Compared to the C50 group, Xanthurenic acid, tyramine, ascorbic acid, D-glucuronic acid, 6-keto-prostaglandin F1a, lipoxin B4, and deoxyadenosine monophosphate were upregulated in the C80 group, while 3-methylindole and 20-hydroxy-leukotriene E4 were downregulated. All metabolites (Xanthurenic acid, L-Valine, N-Acetyl-L-glutamate 5-semialdehyde, N-Acetyl-L-glutamic acid, Tyramine, 6-Keto-prostaglandin F1a, Lipoxin B4, Xanthosine, Thymine, Deoxyinosine, and Uric acid) were upregulated in the C80 group compared with the C65 group. Correlation analysis of microorganisms and metabolites provided new insights into the function of rumen bacteria, as well as a theoretical basis for formulating more scientifically appropriate feeding strategies for yak.
Collapse
Affiliation(s)
- Simeng Yi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongwen Dai
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Hao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shatuo Chai
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Shujie Liu
- Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Qingxiang Meng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenming Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zhenming Zhou,
| |
Collapse
|