1
|
Qu P, Li L, Jin Q, Liu D, Qiao Y, Zhang Y, Sun Q, Ran S, Li Z, Liu T, Peng L. Histone methylation modification and diabetic kidney disease: Potential molecular mechanisms and therapeutic approaches (Review). Int J Mol Med 2024; 54:104. [PMID: 39301658 DOI: 10.3892/ijmm.2024.5428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease and end‑stage renal disease, and is characterized by persistent proteinuria and decreased glomerular filtration rate. Despite extensive efforts, the increasing incidence highlights the urgent need for more effective treatments. Histone methylation is a crucial epigenetic modification, and its alteration can destabilize chromatin structure, thereby regulating the transcriptional activity of specific genes. Histone methylation serves a substantial role in the onset and progression of various diseases. In patients with DKD, changes in histone methylation are pivotal in mediating the interactions between genetic and environmental factors. Targeting these modifications shows promise in ameliorating renal histological manifestations, tissue fibrosis and proteinuria, and represents a novel therapeutic frontier with the potential to halt DKD progression. The present review focuses on the alterations in histone methylation during the development of DKD, systematically summarizes its impact on various renal parenchymal cells and underscores the potential of targeted histone methylation modifications in improving DKD outcomes.
Collapse
Affiliation(s)
- Peng Qu
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Lanfang Li
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100029, P.R. China
| | - Donghai Liu
- China‑Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, P.R. China
| | - Yuan Qiao
- China‑Japan Friendship Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100029, P.R. China
| | - Yijia Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Qiuyue Sun
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, P.R. China
| | - Shuman Ran
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Zecheng Li
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100029, P.R. China
| | - Liang Peng
- Institute of Clinical Medical Sciences, China‑Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
2
|
Rhode H, Tautkus B, Weigel F, Schitke J, Metzing O, Boeckhaus J, Kiess W, Gross O, Dost A, John-Kroegel U. Preclinical Detection of Early Glomerular Injury in Children with Kidney Diseases-Independently of Usual Markers of Kidney Impairment and Inflammation. Int J Mol Sci 2024; 25:9320. [PMID: 39273271 PMCID: PMC11395411 DOI: 10.3390/ijms25179320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Glomerular kidney diseases typically begin insidiously and can progress to end stage kidney failure. Early onset of therapy can slow down disease progression. Early diagnosis is required to ensure such timely therapy. The goal of our study was to evaluate protein biomarkers (BMs) for common nephropathies that have been described for children with Alport syndrome. Nineteen candidate BMs were determined by commercial ELISA in children with congenital anomalies of the kidneys and urogenital tract, inflammatory kidney injury, or diabetes mellitus. It is particularly essential to search for kidney disease BMs in children because they are a crucial target group that likely exhibits early disease stages and in which misleading diseases unrelated to the kidney are rare. Only minor differences in blood between affected individuals and controls were found. However, in urine, several biomarker candidates alone or in combination seemed to be promising indicators of renal injury in early disease stages. The BMs of highest sensitivity and specificity were collagen type XIII, hyaluronan-binding protein 2, and complement C4-binding protein. These proteins are unrelated to inflammation markers or to risk factors for and signs of renal failure. In conclusion, our study evaluated several strong candidates for screening for early stages of kidney diseases and can help to establish early nephroprotective regimens.
Collapse
Grants
- German Federal Ministry of Education and Research (01KG1104), German Research Foundation (GR1852/6-1), Thuringian Ministry for Education, Science, and Culture, and the EFRE-fund (2013 FE 9075), and XLifeSciences (X-Kidneys, DD 0290-20). German Federal Ministry of Education and Research (01KG1104), German Research Foundation (GR1852/6-1), Thuringian Ministry for Education, Science, and Culture, and the EFRE-fund (2013 FE 9075), and XLifeSciences (X-Kidneys, DD 0290-20).
Collapse
Affiliation(s)
- Heidrun Rhode
- Jena University Hospital, Institute of Biochemistry I, Nonnenplan 2-4, 07743 Jena, Germany
| | - Baerbel Tautkus
- Jena University Hospital, Institute of Biochemistry I, Nonnenplan 2-4, 07743 Jena, Germany
| | - Friederike Weigel
- Jena University Hospital, Department of Pediatrics and Adolescent Medicine, Am Klinikum 1, 07747 Jena, Germany
| | - Julia Schitke
- Jena University Hospital, Department of Pediatrics and Adolescent Medicine, Am Klinikum 1, 07747 Jena, Germany
| | - Oliver Metzing
- Jena University Hospital, Department of Pediatrics and Adolescent Medicine, Am Klinikum 1, 07747 Jena, Germany
| | - Jan Boeckhaus
- Clinics for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Wieland Kiess
- Hospital for Children and Adolescents, University of Leipzig, Liebigstr. 20a, 04103 Leipzig, Germany
| | - Oliver Gross
- Clinics for Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Axel Dost
- Jena University Hospital, Department of Pediatrics and Adolescent Medicine, Am Klinikum 1, 07747 Jena, Germany
| | - Ulrike John-Kroegel
- Jena University Hospital, Department of Pediatrics and Adolescent Medicine, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
3
|
Wang N, Zhang C. Oxidative Stress: A Culprit in the Progression of Diabetic Kidney Disease. Antioxidants (Basel) 2024; 13:455. [PMID: 38671903 PMCID: PMC11047699 DOI: 10.3390/antiox13040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic kidney disease (DKD) is the principal culprit behind chronic kidney disease (CKD), ultimately developing end-stage renal disease (ESRD) and necessitating costly dialysis or kidney transplantation. The limited therapeutic efficiency among individuals with DKD is a result of our finite understanding of its pathogenesis. DKD is the result of complex interactions between various factors. Oxidative stress is a fundamental factor that can establish a link between hyperglycemia and the vascular complications frequently encountered in diabetes, particularly DKD. It is crucial to recognize the essential and integral role of oxidative stress in the development of diabetic vascular complications, particularly DKD. Hyperglycemia is the primary culprit that can trigger an upsurge in the production of reactive oxygen species (ROS), ultimately sparking oxidative stress. The main endogenous sources of ROS include mitochondrial ROS production, NADPH oxidases (Nox), uncoupled endothelial nitric oxide synthase (eNOS), xanthine oxidase (XO), cytochrome P450 (CYP450), and lipoxygenase. Under persistent high glucose levels, immune cells, the complement system, advanced glycation end products (AGEs), protein kinase C (PKC), polyol pathway, and the hexosamine pathway are activated. Consequently, the oxidant-antioxidant balance within the body is disrupted, which triggers a series of reactions in various downstream pathways, including phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), transforming growth factor beta/p38-mitogen-activated protein kinase (TGF-β/p38-MAPK), nuclear factor kappa B (NF-κB), adenosine monophosphate-activated protein kinase (AMPK), and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling. The disease might persist even if strict glucose control is achieved, which can be attributed to epigenetic modifications. The treatment of DKD remains an unresolved issue. Therefore, reducing ROS is an intriguing therapeutic target. The clinical trials have shown that bardoxolone methyl, a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, blood glucose-lowering drugs, such as sodium-glucose cotransporter 2 inhibitors, and glucagon-like peptide-1 receptor agonists can effectively slow down the progression of DKD by reducing oxidative stress. Other antioxidants, including vitamins, lipoic acid, Nox inhibitors, epigenetic regulators, and complement inhibitors, present a promising therapeutic option for the treatment of DKD. In this review, we conduct a thorough assessment of both preclinical studies and current findings from clinical studies that focus on targeted interventions aimed at manipulating these pathways. We aim to provide a comprehensive overview of the current state of research in this area and identify key areas for future exploration.
Collapse
Affiliation(s)
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
4
|
Chao CT, Kuo FC, Lin SH. Epigenetically regulated inflammation in vascular senescence and renal progression of chronic kidney disease. Semin Cell Dev Biol 2024; 154:305-315. [PMID: 36241561 DOI: 10.1016/j.semcdb.2022.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Chronic kidney disease (CKD) and its complications, including vascular senescence and progressive renal fibrosis, are associated with inflammation. Vascular senescence, in particular, has emerged as an instrumental mediator of vascular inflammation that potentially worsens renal function. Epigenetically regulated inflammation involving histone modification, DNA methylation, actions of microRNAs and other non-coding RNAs, and their reciprocal reactions during vascular senescence and inflammaging are underappreciated. Their synergistic effects can contribute to CKD progression. Vascular senotherapeutics or pharmacological anti-senescent therapies based on epigenetic machineries can therefore be plausible options for ameliorating vascular aging and even halting the worsening of renal fibrosis. These include histone deacetylase modulators, histone methyltransferase modulators, other histone modification effectors, DNA methyltransferase inhibitors, telomerase reverse transcriptase enhancers, microRNA mimic delivery, and small molecules with microRNA-regulating potentials. Some of these molecules have already been tested and have shown anecdotal evidence for treating uremic vasculopathy and renal fibrosis, supporting the feasibility of this approach.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Nephrology division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Nephrology division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Feng-Chih Kuo
- Division of Endocrinology, Department of Internal Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- Nephrology division, Department of Internal Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
5
|
Schindler M, Siegerist F, Lange T, Simm S, Bach SM, Klawitter M, Gehrig J, Gul S, Endlich N. A Novel High-Content Screening Assay Identified Belinostat as Protective in a FSGS-Like Zebrafish Model. J Am Soc Nephrol 2023; 34:1977-1990. [PMID: 37752628 PMCID: PMC10703078 DOI: 10.1681/asn.0000000000000235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND FSGS affects the complex three-dimensional morphology of podocytes, resulting in loss of filtration barrier function and the development of sclerotic lesions. Therapies to treat FSGS are limited, and podocyte-specific drugs are unavailable. To address the need for treatments to delay or stop FSGS progression, researchers are exploring the repurposing of drugs that have been approved by the US Food and Drug Administration (FDA) for other purposes. METHODS To identify drugs with potential to treat FSGS, we used a specific zebrafish screening strain to combine a high-content screening (HCS) approach with an in vivo model. This zebrafish screening strain expresses nitroreductase and the red fluorescent protein mCherry exclusively in podocytes (providing an indicator for podocyte depletion), as well as a circulating 78 kDa vitamin D-binding enhanced green fluorescent protein fusion protein (as a readout for proteinuria). To produce FSGS-like lesions in the zebrafish, we added 80 µ M metronidazole into the fish water. We used a specific screening microscope in conjunction with advanced image analysis methods to screen a library of 138 drugs and compounds (including some FDA-approved drugs) for podocyte-protective effects. Promising candidates were validated to be suitable for translational studies. RESULTS After establishing this novel in vivo HCS assay, we identified seven drugs or compounds that were protective in our FSGS-like model. Validation experiments confirmed that the FDA-approved drug belinostat was protective against larval FSGS. Similar pan-histone deacetylase inhibitors also showed potential to reproduce this effect. CONCLUSIONS Using an FSGS-like zebrafish model, we developed a novel in vivo HCS assay that identified belinostat and related pan-histone deacetylase inhibitors as potential candidates for treating FSGS.
Collapse
Affiliation(s)
- Maximilian Schindler
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Florian Siegerist
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Tim Lange
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Simm
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
| | - Sophia-Marie Bach
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Marianne Klawitter
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | | | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Sinha SK, Nicholas SB. Pathomechanisms of Diabetic Kidney Disease. J Clin Med 2023; 12:7349. [PMID: 38068400 PMCID: PMC10707303 DOI: 10.3390/jcm12237349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 03/15/2024] Open
Abstract
The worldwide occurrence of diabetic kidney disease (DKD) is swiftly rising, primarily attributed to the growing population of individuals affected by type 2 diabetes. This surge has been transformed into a substantial global concern, placing additional strain on healthcare systems already grappling with significant demands. The pathogenesis of DKD is intricate, originating with hyperglycemia, which triggers various mechanisms and pathways: metabolic, hemodynamic, inflammatory, and fibrotic which ultimately lead to renal damage. Within each pathway, several mediators contribute to the development of renal structural and functional changes. Some of these mediators, such as inflammatory cytokines, reactive oxygen species, and transforming growth factor β are shared among the different pathways, leading to significant overlap and interaction between them. While current treatment options for DKD have shown advancement over previous strategies, their effectiveness remains somewhat constrained as patients still experience residual risk of disease progression. Therefore, a comprehensive grasp of the molecular mechanisms underlying the onset and progression of DKD is imperative for the continued creation of novel and groundbreaking therapies for this condition. In this review, we discuss the current achievements in fundamental research, with a particular emphasis on individual factors and recent developments in DKD treatment.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- College of Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
7
|
Kourtidou C, Tziomalos K. The Role of Histone Modifications in the Pathogenesis of Diabetic Kidney Disease. Int J Mol Sci 2023; 24:ijms24066007. [PMID: 36983082 PMCID: PMC10051814 DOI: 10.3390/ijms24066007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease. The pathogenesis of DKD is multifactorial, with several molecular pathways implicated. Recent data suggest that histone modification plays an important role in the development and progression of DKD. Histone modification appears to induce oxidative stress, inflammation and fibrosis in the diabetic kidney. In the present review, we summarize the current knowledge on the association between histone modification and DKD.
Collapse
Affiliation(s)
- Christodoula Kourtidou
- First Propedeutic Department of Internal Medicine, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Konstantinos Tziomalos
- First Propedeutic Department of Internal Medicine, AHEPA Hospital, Medical School, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
8
|
Higashi Y. Roles of Oxidative Stress and Inflammation in Vascular Endothelial Dysfunction-Related Disease. Antioxidants (Basel) 2022; 11:antiox11101958. [PMID: 36290681 PMCID: PMC9598825 DOI: 10.3390/antiox11101958] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress and chronic inflammation play an important role in the pathogenesis of atherosclerosis. Atherosclerosis develops as the first step of vascular endothelial dysfunction induced by complex molecular mechanisms. Vascular endothelial dysfunction leads to oxidative stress and inflammation of vessel walls, which in turn enhances vascular endothelial dysfunction. Vascular endothelial dysfunction and vascular wall oxidative stress and chronic inflammation make a vicious cycle that leads to the development of atherosclerosis. Simultaneously capturing and accurately evaluating the association of vascular endothelial function with oxidative stress and inflammation would be useful for elucidating the pathophysiology of atherosclerosis, determining treatment efficacy, and predicting future cardiovascular complications. Intervention in both areas is expected to inhibit the progression of atherosclerosis and prevent cardiovascular complications.
Collapse
Affiliation(s)
- Yukihito Higashi
- Department of Regenerative Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 743-8551, Japan; ; Tel.: +81-82-257-5831
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima 734-8553, Japan
| |
Collapse
|
9
|
Ahmed YM, Orfali R, Abdelwahab NS, Hassan HM, Rateb ME, AboulMagd AM. Partial Synthetic PPARƳ Derivative Ameliorates Aorta Injury in Experimental Diabetic Rats Mediated by Activation of miR-126-5p Pi3k/AKT/PDK 1/mTOR Expression. Pharmaceuticals (Basel) 2022; 15:1175. [PMID: 36297290 PMCID: PMC9607084 DOI: 10.3390/ph15101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/17/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2D) is a world wild health care issue marked by insulin resistance, a risk factor for the metabolic disorder that exaggerates endothelial dysfunction, increasing the risk of cardiovascular complications. Peroxisome proliferator-activated receptor PPAR) agonists have therapeutically mitigated hyperlipidemia and hyperglycemia in T2D patients. Therefore, we aimed to experimentally investigate the efficacy of newly designed synthetic PPARα/Ƴ partial agonists on a High-Fat Diet (HFD)/streptozotocin (STZ)-induced T2D. Female Wistar rats (200 ± 25 g body weight) were divided into four groups. The experimental groups were fed the HFD for three consecutive weeks before STZ injection (45 mg/kg/i.p) to induce T2D. Standard reference PPARƳ agonist pioglitazone and the partial synthetic PPARƳ (PIO; 20 mg/kg/BW, orally) were administered orally for 2 weeks after 72 h of STZ injection. The aorta tissue was isolated for biological ELISA, qRT-PCR, and Western blotting investigations for vascular inflammatory endothelial mediators endothelin-1 (ET-1), intracellular adhesion molecule 1 (ICAM-1), E-selectin, and anti-inflammatory vasoactive intestinal polypeptide (VIP), as well as microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR, endothelial Nitric Oxide Synthase (eNOS) immunohistochemical staining all are coupled with and histopathological examination. Our results revealed that HFD/STZ-induced T2D increased fasting blood glucose, ET-1, ICAM-1, E-selectin, and VIP levels, while decreasing the expression of both microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR phosphorylation. In contrast, the partial synthetic PPARƳ derivative evidenced a vascular alteration significantly more than reference PIO via decreasing (ET-1), ICAM-1, E-selectin, and VIP, along with increased expression of microRNA126-5p and p-AKT/p-Pi3k/p-PDK-1/p-mTOR. In conclusion, the partial synthetic PPARƳ derivative significantly affected HFD/STZ-induced T2D with vascular complications in the rat aorta.
Collapse
Affiliation(s)
- Yasmin M. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nada S. Abdelwahab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Hossam M. Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mostafa E. Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Asmaa M. AboulMagd
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt
| |
Collapse
|
10
|
Luu BE, Mossa AH, Cammisotto PG, Uri Saragovi H, Campeau L. Modulation of diabetic kidney disease markers by an antagonist of p75 NTR in streptozotocin-treated mice. Gene 2022; 838:146729. [PMID: 35835402 DOI: 10.1016/j.gene.2022.146729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/12/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022]
Abstract
Two therapeutic agents targeting p75NTR pathways have been recently developed to alleviate retinopathy and bladder dysfunction in diabetes mellitus (DM), namely the small molecule p75NTR antagonist THX-B and a monoclonal antibody (mAb) that neutralizes the receptor ligand proNGF. We herein explore these two components in the context of diabetic kidney disease (DKD). Streptozotocin-injected mice were treated for 4 weeks with THX-B or anti-proNGF mAb. Kidneys were taken for quantification of microRNAs and mRNAs by RT-qPCR and for detection of proteins by immunohistochemistry, immunoblotting and ELISA. Blood was sampled to measure plasma levels of urea, creatinine, and albumin. DM led to increases in plasma concentrations of urea and creatinine and decreases in plasma albumin. Receptor p75NTR was expressed in kidneys and its expression was decreased by DM. All these changes were reversed by THX-B treatment while the effect of mAb was less pronounced. MicroRNAs tightly linked to DKD (miR-21-5p, miR-214-3p and miR-342-3p) were highly expressed in diabetic kidneys compared to healthy ones. Also, miR-146a, a marker of kidney inflammation, and mRNA levels of Fn-1 and Nphs, two markers of fibrosis and inflammation, were elevated in DM. Treatments with THX-B or mAb partially or completely reduced the expression of the aforementioned microRNAs and mRNAs. P75NTR antagonism and proNGF mAb might constitute new therapeutic tools to treat or slow down the progression of kidney disease in DM, along with other diabetic related complications. The translational potential of these strategies is currently being investigated.
Collapse
Affiliation(s)
- Bryan E Luu
- Lady Davis Institute, McGill University, Montreal, Quebec, Canada
| | - Abubakr H Mossa
- Lady Davis Institute, McGill University, Montreal, Quebec, Canada
| | | | - H Uri Saragovi
- Lady Davis Institute, McGill University, Montreal, Quebec, Canada; Pharmacology and Therapeutics, McGill University, Canada; Ophthalmology and Vision Sciences. McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Lysanne Campeau
- Lady Davis Institute, McGill University, Montreal, Quebec, Canada; Division of Urology, Department of Surgery, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|