1
|
Shen N, Han L, Liu Z, Deng X, Zhu S, Liu C, Tang D, Li Y. The Microtubule End Binding Protein Mal3 Is Essential for the Dynamic Assembly of Microtubules during Magnaporthe oryzae Growth and Pathogenesis. Int J Mol Sci 2024; 25:2672. [PMID: 38473921 DOI: 10.3390/ijms25052672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Cytoskeletal microtubules (MTs) play crucial roles in many aspects of life processes in eukaryotic organisms. They dynamically assemble physiologically important MT arrays under different cell conditions. Currently, aspects of MT assembly underlying the development and pathogenesis of the model plant pathogenic fungus Magnaporthe oryzae (M. oryzae) are unclear. In this study, we characterized the MT plus end binding protein MoMal3 in M. oryzae. We found that knockout of MoMal3 results in defects in hyphal polar growth, appressorium-mediated host penetration and nucleus division. Using high-resolution live-cell imaging, we further found that the MoMal3 mutant assembled a rigid MT in parallel with the MT during hyphal polar growth, the cage-like network in the appressorium and the stick-like spindle in nuclear division. These aberrant MT organization patterns in the MoMal3 mutant impaired actin-based cell growth and host infection. Taken together, these findings showed that M. oryzae relies on MoMal3 to assemble elaborate MT arrays for growth and infection. The results also revealed the assembly mode of MTs in M. oryzae, indicating that MTs are pivotal for M. oryzae growth and host infection and may be new targets for devastating fungus control.
Collapse
Affiliation(s)
- Ningning Shen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Libo Han
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zixuan Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianya Deng
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuai Zhu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengyu Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanbao Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Li YB, Shen N, Deng X, Liu Z, Zhu S, Liu C, Tang D, Han LB. Fimbrin associated with Pmk1 to regulate the actin assembly during Magnaporthe oryzae hyphal growth and infection. STRESS BIOLOGY 2024; 4:5. [PMID: 38252344 PMCID: PMC10803693 DOI: 10.1007/s44154-023-00147-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024]
Abstract
The dynamic assembly of the actin cytoskeleton is vital for Magnaporthe oryzae development and host infection. The actin-related protein MoFim1 is a key factor for organizing the M. oryzae actin cytoskeleton. Currently, how MoFim1 is regulated in M. oryzae to precisely rearrange the actin cytoskeleton is unclear. In this study, we found that MoFim1 associates with the M. oryzae mitogen-activated protein (MAP) kinase Pmk1 to regulate actin assembly. MoFim1 directly interacted with Pmk1, and the phosphorylation level of MoFim1 was decreased in Δpmk1, which led to a change in the subcellular distribution of MoFim1 in the hyphae of Δpmk1. Moreover, the actin cytoskeleton was aberrantly organized at the hyphal tip in the Δpmk1, which was similar to what was observed in the Δmofim1 during hyphal growth. Furthermore, phosphorylation analysis revealed that Pmk1 could phosphorylate MoFim1 at serine 94. Loss of phosphorylation of MoFim1 at serine 94 decreased actin bundling activity. Additionally, the expression of the site mutant of MoFim1 S94D (in which serine 94 was replaced with aspartate to mimic phosphorylation) in Δpmk1 could reverse the defects in actin organization and hyphal growth in Δpmk1. It also partially rescues the formation of appressorium failure in Δpmk1. Taken together, these findings suggest a regulatory mechanism in which Pmk1 phosphorylates MoFim1 to regulate the assembly of the actin cytoskeleton during hyphal development and pathogenesis.
Collapse
Affiliation(s)
- Yuan-Bao Li
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ningning Shen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xianya Deng
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zixuan Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shuai Zhu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chengyu Liu
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| | - Li-Bo Han
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Lambou K, Tag A, Lassagne A, Collemare J, Clergeot PH, Barbisan C, Perret P, Tharreau D, Millazo J, Chartier E, De Vries RP, Hirsch J, Morel JB, Beffa R, Kroj T, Thomas T, Lebrun MH. The bZIP transcription factor BIP1 of the rice blast fungus is essential for infection and regulates a specific set of appressorium genes. PLoS Pathog 2024; 20:e1011945. [PMID: 38252628 PMCID: PMC10833574 DOI: 10.1371/journal.ppat.1011945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/01/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The rice blast fungus Magnaporthe oryzae differentiates specialized cells called appressoria that are required for fungal penetration into host leaves. In this study, we identified the novel basic leucine zipper (bZIP) transcription factor BIP1 (B-ZIP Involved in Pathogenesis-1) that is essential for pathogenicity. BIP1 is required for the infection of plant leaves, even if they are wounded, but not for appressorium-mediated penetration of artificial cellophane membranes. This phenotype suggests that BIP1 is not implicated in the differentiation of the penetration peg but is necessary for the initial establishment of the fungus within plant cells. BIP1 expression was restricted to the appressorium by both transcriptional and post-transcriptional control. Genome-wide transcriptome analysis showed that 40 genes were down regulated in a BIP1 deletion mutant. Most of these genes were specifically expressed in the appressorium. They encode proteins with pathogenesis-related functions such as enzymes involved in secondary metabolism including those encoded by the ACE1 gene cluster, small secreted proteins such as SLP2, BAS2, BAS3, and AVR-Pi9 effectors, as well as plant cuticle and cell wall degrading enzymes. Interestingly, this BIP1 network is different from other known infection-related regulatory networks, highlighting the complexity of gene expression control during plant-fungal interactions. Promoters of BIP1-regulated genes shared a GCN4/bZIP-binding DNA motif (TGACTC) binding in vitro to BIP1. Mutation of this motif in the promoter of MGG_08381.7 from the ACE1 gene cluster abolished its appressorium-specific expression, showing that BIP1 behaves as a transcriptional activator. In summary, our findings demonstrate that BIP1 is critical for the expression of early invasion-related genes in appressoria. These genes are likely needed for biotrophic invasion of the first infected host cell, but not for the penetration process itself. Through these mechanisms, the blast fungus strategically anticipates the host plant environment and responses during appressorium-mediated penetration.
Collapse
Affiliation(s)
- Karine Lambou
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Andrew Tag
- Department of Biology, Texas A&M University. College Station, Texas, United States of America
| | - Alexandre Lassagne
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Jérôme Collemare
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Pierre-Henri Clergeot
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- ASP Bourgogne Franche-Comté, Dijon, France
| | | | - Philippe Perret
- Biochemistry Department, Bayer Crop Science SAS, Lyon, France
- Bayer S.A.S. Crop Science Division Global Toxicology- Sophia Antipolis Cedex, France
| | - Didier Tharreau
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- Plant Health Institute of Montpellier (PHIM), CIRAD, Montpellier, France
| | - Joelle Millazo
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- Plant Health Institute of Montpellier (PHIM), CIRAD, Montpellier, France
| | - Elia Chartier
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Ronald P. De Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Judith Hirsch
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- Pathologie Végétale, INRAE, Montfavet, France
| | - Jean-Benoit Morel
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Roland Beffa
- Biochemistry Department, Bayer Crop Science SAS, Lyon, France
| | - Thomas Kroj
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Terry Thomas
- Department of Biology, Texas A&M University. College Station, Texas, United States of America
| | - Marc-Henri Lebrun
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- Université Paris-Saclay, INRAE, UR 1290 BIOGER, Palaiseau, France
| |
Collapse
|
4
|
Zhang G, Li R, Wu X, Li M. Natural Product Aloesin Significantly Inhibits Spore Germination and Appressorium Formation in Magnaporthe oryzae. Microorganisms 2023; 11:2395. [PMID: 37894053 PMCID: PMC10609347 DOI: 10.3390/microorganisms11102395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
This study aims to determine the effects of the natural product aloesin against Magnaporthe oryzae. The results exposed that aloesin had a high inhibitory effect on appressorium formation (the EC50 value was 175.26 μg/mL). Microscopic examination revealed that 92.30 ± 4.26% of M. oryzae spores could be broken down by 625.00 μg/mL of aloesin, and the formation rate of appressoria was 4.74 ± 1.00% after 12 h. M. oryzae mycelial growth was weaker than that on the control. The enzyme activity analysis results indicated that aloesin inhibited the activities of polyketolase (PKS), laccase (LAC), and chain-shortening catalytic enzyme (Aayg1), which are key enzymes in melanin synthesis. The inhibition rate by aloesin of PKS, LAC, and Aayg1 activity was 32.51%, 33.04%, and 43.38%, respectively. The proteomic analysis showed that actin expression was downregulated at 175.62 μg/mL of aloesin, which could reduce actin bundle formation and prevent the polar growth of hyphae in M. oryzae. This is the first report showing that aloesin effectively inhibits conidia morphology and appressorium formation in M. oryzae.
Collapse
Affiliation(s)
- Guohui Zhang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China; (G.Z.); (X.W.)
- College of Life and Health Science, Kaili University, Kaili 556000, China
| | - Rongyu Li
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China; (G.Z.); (X.W.)
| | - Xiaomao Wu
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China; (G.Z.); (X.W.)
| | - Ming Li
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China; (G.Z.); (X.W.)
| |
Collapse
|
5
|
Eisermann I, Garduño‐Rosales M, Talbot NJ. The emerging role of septins in fungal pathogenesis. Cytoskeleton (Hoboken) 2023; 80:242-253. [PMID: 37265147 PMCID: PMC10952683 DOI: 10.1002/cm.21765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Fungal pathogens undergo specific morphogenetic transitions in order to breach the outer surfaces of plants and invade the underlying host tissue. The ability to change cell shape and switch between non-polarised and polarised growth habits is therefore critical to the lifestyle of plant pathogens. Infection-related development involves remodelling of the cytoskeleton, plasma membrane and cell wall at specific points during fungal pathogenesis. Septin GTPases are components of the cytoskeleton that play pivotal roles in actin remodelling, micron-scale plasma membrane curvature sensing and cell polarity. Septin assemblages, such as rings, collars and gauzes, are known to have important roles in cell shape changes and are implicated in formation of specialised infection structures to enter plant cells. Here, we review and compare the reported functions of septins of plant pathogenic fungi, with a special focus on invasive growth. Finally, we discuss septins as potential targets for broad-spectrum antifungal plant protection strategies.
Collapse
Affiliation(s)
- Iris Eisermann
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | | |
Collapse
|