1
|
Hubert DL, Arnold KR, Greenspan ZG, Pupo A, Robinson RD, Chavarin VV, Barter TB, Djukovic D, Raftery D, Vue Z, Hinton A, McReynolds MR, Harrison BR, Phillips MA. Selection for early reproduction leads to accelerated aging and extensive metabolic remodeling in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601037. [PMID: 39005259 PMCID: PMC11244849 DOI: 10.1101/2024.06.28.601037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Experimental evolution studies that feature selection on life-history characters are a proven approach for studying the evolution of aging and variation in rates of senescence. Recently, the incorporation of genomic and transcriptomic approaches into this framework has led to the identification of hundreds of genes associated with different aging patterns. However, our understanding of the specific molecular mechanisms underlying these aging patterns remains limited. Here, we incorporated extensive metabolomic profiling into this framework to generate mechanistic insights into aging patterns in Drosophila melanogaster. Specifically, we characterized metabolomic change over adult lifespan in populations of D. melanogaster where selection for early reproduction has led to an accelerated aging phenotype relative to their controls. Using these data we: i) evaluated evolutionary repeatability across the metabolome; ii) assessed the value of the metabolome as a predictor of "biological age" in this system; and iii) identified specific metabolites associated with accelerated aging. Generally, our findings suggest that selection for early reproduction resulted in highly repeatable alterations to the metabolome and the metabolome itself is a reliable predictor of "biological age". Specifically, we find clusters of metabolites that are associated with the different rates of senescence observed between our accelerated aging population and their controls, adding new insights into the metabolites that may be driving the accelerated aging phenotype.
Collapse
Affiliation(s)
| | - Kenneth R. Arnold
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| | - Zachary G. Greenspan
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| | - Anastasia Pupo
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| | - Ryan D. Robinson
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| | - Valeria V. Chavarin
- Department of Ecology and Evolutionary Biology, University of California, Irvine
| | | | - Danijel Djukovic
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences Pennsylvania State University, University Park, PA 16802
| | | | | |
Collapse
|
2
|
Shao B, Killion M, Oliver A, Vang C, Zeleke F, Neikirk K, Vue Z, Garza-Lopez E, Shao JQ, Mungai M, Lam J, Williams Q, Altamura CT, Whiteside A, Kabugi K, McKenzie J, Ezedimma M, Le H, Koh A, Scudese E, Vang L, Marshall AG, Crabtree A, Tanghal JI, Stephens D, Koh HJ, Jenkins BC, Murray SA, Cooper AT, Williams C, Damo SM, McReynolds MR, Gaddy JA, Wanjalla CN, Beasley HK, Hinton A. Ablation of Sam50 is associated with fragmentation and alterations in metabolism in murine and human myotubes. J Cell Physiol 2024; 239:e31293. [PMID: 38770789 PMCID: PMC11324413 DOI: 10.1002/jcp.31293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
The sorting and assembly machinery (SAM) Complex is responsible for assembling β-barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block-face-scanning electron microscopy and computer-assisted 3D renderings were employed to compare mitochondrial structure and networking in Sam50-deficient myotubes from mice and humans with wild-type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography-Mass Spectrometry-based metabolomics to explore differential changes in WT and Sam50-deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation in Sam50-deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß-Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism in Sam50-deficient myotubes. Furthermore, impairment of oxidative capacity was observed upon Sam50 ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact of Sam50-deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.
Collapse
Affiliation(s)
- Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Mason Killion
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Chia Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Faben Zeleke
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jian-Qiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, Iowa, USA
| | - Margaret Mungai
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jacob Lam
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Qiana Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Christopher T Altamura
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jessica McKenzie
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Maria Ezedimma
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Brenita C Jenkins
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthonya T Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Clintoria Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- US Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee, USA
| | - Celestine N Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Vue Z, Garza‐Lopez E, Neikirk K, Katti P, Vang L, Beasley H, Shao J, Marshall AG, Crabtree A, Murphy AC, Jenkins BC, Prasad P, Evans C, Taylor B, Mungai M, Killion M, Stephens D, Christensen TA, Lam J, Rodriguez B, Phillips MA, Daneshgar N, Koh H, Koh A, Davis J, Devine N, Saleem M, Scudese E, Arnold KR, Vanessa Chavarin V, Daniel Robinson R, Chakraborty M, Gaddy JA, Sweetwyne MT, Wilson G, Zaganjor E, Kezos J, Dondi C, Reddy AK, Glancy B, Kirabo A, Quintana AM, Dai D, Ocorr K, Murray SA, Damo SM, Exil V, Riggs B, Mobley BC, Gomez JA, McReynolds MR, Hinton A. 3D reconstruction of murine mitochondria reveals changes in structure during aging linked to the MICOS complex. Aging Cell 2023; 22:e14009. [PMID: 37960952 PMCID: PMC10726809 DOI: 10.1111/acel.14009] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 11/15/2023] Open
Abstract
During aging, muscle gradually undergoes sarcopenia, the loss of function associated with loss of mass, strength, endurance, and oxidative capacity. However, the 3D structural alterations of mitochondria associated with aging in skeletal muscle and cardiac tissues are not well described. Although mitochondrial aging is associated with decreased mitochondrial capacity, the genes responsible for the morphological changes in mitochondria during aging are poorly characterized. We measured changes in mitochondrial morphology in aged murine gastrocnemius, soleus, and cardiac tissues using serial block-face scanning electron microscopy and 3D reconstructions. We also used reverse transcriptase-quantitative PCR, transmission electron microscopy quantification, Seahorse analysis, and metabolomics and lipidomics to measure changes in mitochondrial morphology and function after loss of mitochondria contact site and cristae organizing system (MICOS) complex genes, Chchd3, Chchd6, and Mitofilin. We identified significant changes in mitochondrial size in aged murine gastrocnemius, soleus, and cardiac tissues. We found that both age-related loss of the MICOS complex and knockouts of MICOS genes in mice altered mitochondrial morphology. Given the critical role of mitochondria in maintaining cellular metabolism, we characterized the metabolomes and lipidomes of young and aged mouse tissues, which showed profound alterations consistent with changes in membrane integrity, supporting our observations of age-related changes in muscle tissues. We found a relationship between changes in the MICOS complex and aging. Thus, it is important to understand the mechanisms that underlie the tissue-dependent 3D mitochondrial phenotypic changes that occur in aging and the evolutionary conservation of these mechanisms between Drosophila and mammals.
Collapse
Affiliation(s)
- Zer Vue
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | | | - Kit Neikirk
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of HealthMarylandBethesdaUSA
| | - Larry Vang
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Heather Beasley
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Jianqiang Shao
- Central Microscopy Research FacilityUniversity of IowaIowaIowa CityUSA
| | - Andrea G. Marshall
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Amber Crabtree
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Alexandria C. Murphy
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life SciencesPennsylvania State UniversityPennsylvaniaState CollegeUSA
| | - Brenita C. Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life SciencesPennsylvania State UniversityPennsylvaniaState CollegeUSA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life SciencesPennsylvania State UniversityPennsylvaniaState CollegeUSA
| | - Chantell Evans
- Department of Cell BiologyDuke University School of MedicineNorth CarolinaDurhamUSA
| | - Brittany Taylor
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaFloridaGainesvilleUSA
| | - Margaret Mungai
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Mason Killion
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Dominique Stephens
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | | | - Jacob Lam
- Department of Internal MedicineUniversity of IowaIowaIowa CityUSA
| | | | - Mark A. Phillips
- Department of Integrative BiologyOregon State UniversityOregonCorvallisUSA
| | - Nastaran Daneshgar
- Department of Integrative BiologyOregon State UniversityOregonCorvallisUSA
| | - Ho‐Jin Koh
- Department of Biological SciencesTennessee State UniversityTennesseeNashvilleUSA
| | - Alice Koh
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
- Department of MedicineVanderbilt University Medical CenterTennesseeNashvilleUSA
| | - Jamaine Davis
- Department of Biochemistry, Cancer Biology, Neuroscience, and PharmacologyMeharry Medical CollegeTennesseeNashvilleUSA
| | - Nina Devine
- Department of Integrative BiologyOregon State UniversityOregonCorvallisUSA
| | - Mohammad Saleem
- Department of MedicineVanderbilt University Medical CenterTennesseeNashvilleUSA
| | - Estevão Scudese
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO)Rio de JaneiroBrazil
- Sport Sciences and Exercise Laboratory (LaCEE)Catholic University of Petrópolis (UCP)PetrópolisState of Rio de JaneiroBrazil
| | - Kenneth Ryan Arnold
- Department of Ecology and Evolutionary BiologyUniversity of California at IrvineCaliforniaIrvineUSA
| | - Valeria Vanessa Chavarin
- Department of Ecology and Evolutionary BiologyUniversity of California at IrvineCaliforniaIrvineUSA
| | - Ryan Daniel Robinson
- Department of Ecology and Evolutionary BiologyUniversity of California at IrvineCaliforniaIrvineUSA
| | | | - Jennifer A. Gaddy
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
- Department of MedicineVanderbilt University Medical CenterTennesseeNashvilleUSA
- Department of Medicine Health and SocietyVanderbilt UniversityTennesseeNashvilleUSA
- Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterTennesseeNashvilleUSA
- Department of Veterans AffairsTennessee Valley Healthcare SystemsTennesseeNashvilleUSA
| | - Mariya T. Sweetwyne
- Department of Laboratory Medicine and PathologyUniversity of WashingtonWashingtonSeattleUSA
| | - Genesis Wilson
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - Elma Zaganjor
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| | - James Kezos
- Sanford Burnham Prebys Medical Discovery InstituteCaliforniaLa JollaUSA
| | - Cristiana Dondi
- Sanford Burnham Prebys Medical Discovery InstituteCaliforniaLa JollaUSA
| | | | - Brian Glancy
- National Heart, Lung and Blood Institute, National Institutes of HealthMarylandBethesdaUSA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of HealthMarylandBethesdaUSA
| | - Annet Kirabo
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
- Department of MedicineVanderbilt University Medical CenterTennesseeNashvilleUSA
| | - Anita M. Quintana
- Department of Biological Sciences, Border Biomedical Research CenterUniversity of Texas at El PasoTexasEl PasoUSA
| | - Dao‐Fu Dai
- Department of PathologyUniversity of Johns Hopkins School of MedicineMarylandBaltimoreUSA
| | - Karen Ocorr
- Sanford Burnham Prebys Medical Discovery InstituteCaliforniaLa JollaUSA
| | - Sandra A. Murray
- Department of Cell Biology, School of MedicineUniversity of PittsburghPennsylvaniaPittsburghUSA
| | - Steven M. Damo
- Department of Life and Physical SciencesFisk UniversityTennesseeNashvilleUSA
- Center for Structural BiologyVanderbilt UniversityTennesseeNashvilleUSA
| | - Vernat Exil
- Department of Pediatrics, Carver College of MedicineUniversity of IowaIowaIowa CityUSA
- Department of Pediatrics, Division of CardiologySt. Louis University School of MedicineMissouriSt. LouisUSA
| | - Blake Riggs
- Department of BiologySan Francisco State UniversityCaliforniaSan FranciscoUSA
| | - Bret C. Mobley
- Department of PathologyVanderbilt University Medical CenterTennesseeNashvilleUSA
| | - Jose A. Gomez
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
- Department of MedicineVanderbilt University Medical CenterTennesseeNashvilleUSA
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life SciencesPennsylvania State UniversityPennsylvaniaState CollegeUSA
| | - Antentor Hinton
- Department of Molecular Physiology and BiophysicsVanderbilt UniversityTennesseeNashvilleUSA
| |
Collapse
|
4
|
Shao B, Killion M, Oliver A, Vang C, Zeleke F, Neikirk K, Vue Z, Garza-Lopez E, Shao JQ, Mungai M, Lam J, Williams Q, Altamura CT, Whiteside A, Kabugi K, McKenzie J, Koh A, Scudese E, Vang L, Marshall AG, Crabtree A, Tanghal JI, Stephens D, Koh HJ, Jenkins BC, Murray SA, Cooper AT, Williams C, Damo SM, McReynolds MR, Gaddy JA, Wanjalla CN, Beasley HK, Hinton A. Ablation of Sam50 is associated with fragmentation and alterations in metabolism in murine and human myotubes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.20.541602. [PMID: 37292887 PMCID: PMC10245823 DOI: 10.1101/2023.05.20.541602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The Sorting and Assembly Machinery (SAM) Complex is responsible for assembling β-barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system (MICOS) complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block-face-scanning electron microscopy (SBF-SEM) and computer-assisted 3D renderings were employed to compare mitochondrial structure and networking in Sam50-deficient myotubes from mice and humans with wild-type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography-Mass Spectrometry-based metabolomics to explore differential changes in WT and Sam50-deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation in Sam50-deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß-Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism in Sam50-deficient myotubes. Furthermore, impairment of oxidative capacity was observed upon Sam50 ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact of Sam50-deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.
Collapse
Affiliation(s)
- Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Mason Killion
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chia Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Faben Zeleke
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jian-Qiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Margaret Mungai
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jacob Lam
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Qiana Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Christopher T Altamura
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Kinuthia Kabugi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jessica McKenzie
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209
| | - Brenita C Jenkins
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Anthonya T Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Clintoria Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37208, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Tennessee Valley Healthcare Systems, U.S. Department of Veterans Affairs, Nashville, TN, 37212, USA
| | - Celestine N Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
5
|
Aging and memory are altered by genetically manipulating lactate dehydrogenase in the neurons or glia of flies. Aging (Albany NY) 2023; 15:947-981. [PMID: 36849157 PMCID: PMC10008500 DOI: 10.18632/aging.204565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023]
Abstract
The astrocyte-neuron lactate shuttle hypothesis posits that glial-generated lactate is transported to neurons to fuel metabolic processes required for long-term memory. Although studies in vertebrates have revealed that lactate shuttling is important for cognitive function, it is uncertain if this form of metabolic coupling is conserved in invertebrates or is influenced by age. Lactate dehydrogenase (Ldh) is a rate limiting enzyme that interconverts lactate and pyruvate. Here we genetically manipulated expression of Drosophila melanogaster lactate dehydrogenase (dLdh) in neurons or glia to assess the impact of altered lactate metabolism on invertebrate aging and long-term courtship memory at different ages. We also assessed survival, negative geotaxis, brain neutral lipids (the core component of lipid droplets) and brain metabolites. Both upregulation and downregulation of dLdh in neurons resulted in decreased survival and memory impairment with age. Glial downregulation of dLdh expression caused age-related memory impairment without altering survival, while upregulated glial dLdh expression lowered survival without disrupting memory. Both neuronal and glial dLdh upregulation increased neutral lipid accumulation. We provide evidence that altered lactate metabolism with age affects the tricarboxylic acid (TCA) cycle, 2-hydroxyglutarate (2HG), and neutral lipid accumulation. Collectively, our findings indicate that the direct alteration of lactate metabolism in either glia or neurons affects memory and survival but only in an age-dependent manner.
Collapse
|
6
|
Mitochondrial Bioenergetics in Different Pathophysiological Conditions 2.0. Int J Mol Sci 2022; 23:ijms23105552. [PMID: 35628362 PMCID: PMC9144610 DOI: 10.3390/ijms23105552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/14/2022] [Indexed: 12/04/2022] Open
|