1
|
Cavazza A, Hendel A, Bak RO, Rio P, Güell M, Lainšček D, Arechavala-Gomeza V, Peng L, Hapil FZ, Harvey J, Ortega FG, Gonzalez-Martinez C, Lederer CW, Mikkelsen K, Gasiunas G, Kalter N, Gonçalves MA, Petersen J, Garanto A, Montoliu L, Maresca M, Seemann SE, Gorodkin J, Mazini L, Sanchez R, Rodriguez-Madoz JR, Maldonado-Pérez N, Laura T, Schmueck-Henneresse M, Maccalli C, Grünewald J, Carmona G, Kachamakova-Trojanowska N, Miccio A, Martin F, Turchiano G, Cathomen T, Luo Y, Tsai SQ, Benabdellah K. Progress and harmonization of gene editing to treat human diseases: Proceeding of COST Action CA21113 GenE-HumDi. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102066. [PMID: 38034032 PMCID: PMC10685310 DOI: 10.1016/j.omtn.2023.102066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The European Cooperation in Science and Technology (COST) is an intergovernmental organization dedicated to funding and coordinating scientific and technological research in Europe, fostering collaboration among researchers and institutions across countries. Recently, COST Action funded the "Genome Editing to treat Human Diseases" (GenE-HumDi) network, uniting various stakeholders such as pharmaceutical companies, academic institutions, regulatory agencies, biotech firms, and patient advocacy groups. GenE-HumDi's primary objective is to expedite the application of genome editing for therapeutic purposes in treating human diseases. To achieve this goal, GenE-HumDi is organized in several working groups, each focusing on specific aspects. These groups aim to enhance genome editing technologies, assess delivery systems, address safety concerns, promote clinical translation, and develop regulatory guidelines. The network seeks to establish standard procedures and guidelines for these areas to standardize scientific practices and facilitate knowledge sharing. Furthermore, GenE-HumDi aims to communicate its findings to the public in accessible yet rigorous language, emphasizing genome editing's potential to revolutionize the treatment of many human diseases. The inaugural GenE-HumDi meeting, held in Granada, Spain, in March 2023, featured presentations from experts in the field, discussing recent breakthroughs in delivery methods, safety measures, clinical translation, and regulatory aspects related to gene editing.
Collapse
Affiliation(s)
- Alessia Cavazza
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Ayal Hendel
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Rasmus O. Bak
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Paula Rio
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), 28040 Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Marc Güell
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Integra Therapeutics S.L., Barcelona, Spain
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Virginia Arechavala-Gomeza
- Nucleic Acid Therapeutics for Rare Disorders (NAT-RD), Biobizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ling Peng
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
| | - Fatma Zehra Hapil
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Joshua Harvey
- Institute of Ophthalmology, University College London, London, UK
| | - Francisco G. Ortega
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Avenida de la Ilustración 114, 18016 Granada, Spain
- IBS Granada, Institute of Biomedical Research, Avenida de Madrid 15, 18012 Granada, Spain
| | - Coral Gonzalez-Martinez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Avenida de la Ilustración 114, 18016 Granada, Spain
- IBS Granada, Institute of Biomedical Research, Avenida de Madrid 15, 18012 Granada, Spain
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kasper Mikkelsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Nechama Kalter
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Manuel A.F.V. Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Julie Petersen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Alejandro Garanto
- Department of Pediatrics and Department of Human Genetics, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lluis Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Marcello Maresca
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Stefan E. Seemann
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Gorodkin
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Loubna Mazini
- Laboratory of Genetic Engineering, Technologic, Medical and Academic Park (TMAP), Marrakech, Morocco
| | - Rosario Sanchez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry Applied to Biomedicine and the Environment," Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Universidad de Granada, Granada, Spain
| | - Juan R. Rodriguez-Madoz
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Madrid, Spain
| | | | - Torella Laura
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA) Universidad de Navarra, 31008 Pamplona, Spain
| | - Michael Schmueck-Henneresse
- Berlin Institute for Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
| | - Cristina Maccalli
- Laboratory of Immune Biological Therapy, Research Branch, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Julian Grünewald
- Department of Medicine, Cardiology, Angiology, Pneumology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, TranslaTUM, MIBE, Munich, Germany
- Center for Organoid Systems, Munich, Germany
| | - Gloria Carmona
- Red Andaluza de diseño y traslación de Terapias Avanzadas-RAdytTA, Fundación Pública Andaluza Progreso y Salud-FPS, Sevilla, España
| | | | - Annarita Miccio
- Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, Université de Paris Cité, INSERM UMR 1163, 75015 Paris, France
| | - Francisco Martin
- Bioquímica y Biología Molecular III e Immunology Department, Facultad de Medicina, Universidad de Granada and Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Av. de la Ilustración 114, 18016 Granada, Spain
| | - Giandomenico Turchiano
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
- Medical Faculty, University of Freiburg, 79106 Freiburg, Germany
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Shengdar Q. Tsai
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Karim Benabdellah
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Av. de la Ilustración 114, 18016 Granada, Spain
| | - on behalf of the COST Action CA21113
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, WC1N 1EH London, UK
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), 28040 Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Integra Therapeutics S.L., Barcelona, Spain
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Nucleic Acid Therapeutics for Rare Disorders (NAT-RD), Biobizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, 13288 Marseille, France
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Institute of Ophthalmology, University College London, London, UK
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Avenida de la Ilustración 114, 18016 Granada, Spain
- IBS Granada, Institute of Biomedical Research, Avenida de Madrid 15, 18012 Granada, Spain
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- CasZyme, 10224 Vilnius, Lithuania
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
- Department of Pediatrics and Department of Human Genetics, Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Genetic Engineering, Technologic, Medical and Academic Park (TMAP), Marrakech, Morocco
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
- Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry Applied to Biomedicine and the Environment," Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Universidad de Granada, Granada, Spain
- Cancer Center Clinica Universidad de Navarra (CCUN), Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cancer (CIBERONC), Madrid, Spain
- DNA & RNA Medicine Division, Center for Applied Medical Research (CIMA) Universidad de Navarra, 31008 Pamplona, Spain
- Berlin Institute for Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117 Berlin, Germany
- Laboratory of Immune Biological Therapy, Research Branch, Sidra Medicine, PO Box 26999, Doha, Qatar
- Department of Medicine, Cardiology, Angiology, Pneumology, Klinikum rechts der Isar, Technical University of Munich, TUM School of Medicine and Health, TranslaTUM, MIBE, Munich, Germany
- Center for Organoid Systems, Munich, Germany
- Red Andaluza de diseño y traslación de Terapias Avanzadas-RAdytTA, Fundación Pública Andaluza Progreso y Salud-FPS, Sevilla, España
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Imagine Institute, Laboratory of Chromatin and Gene Regulation During Development, Université de Paris Cité, INSERM UMR 1163, 75015 Paris, France
- Bioquímica y Biología Molecular III e Immunology Department, Facultad de Medicina, Universidad de Granada and Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Av. de la Ilustración 114, 18016 Granada, Spain
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany
- Medical Faculty, University of Freiburg, 79106 Freiburg, Germany
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Genomic Medicine, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research (GENYO), PTS, Av. de la Ilustración 114, 18016 Granada, Spain
| |
Collapse
|
2
|
Papaioannou NY, Patsali P, Naiisseh B, Papasavva PL, Koniali L, Kurita R, Nakamura Y, Christou S, Sitarou M, Mussolino C, Cathomen T, Kleanthous M, Lederer CW. High-efficiency editing in hematopoietic stem cells and the HUDEP-2 cell line based on in vitro mRNA synthesis. Front Genome Ed 2023; 5:1141618. [PMID: 36969374 PMCID: PMC10030607 DOI: 10.3389/fgeed.2023.1141618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction: Genome editing tools, such as CRISPR/Cas, TALE nucleases and, more recently, double-strand-break-independent editors, have been successfully used for gene therapy and reverse genetics. Among various challenges in the field, tolerable and efficient delivery of editors to target cells and sites, as well as independence from commercially available tools for flexibility and fast adoption of new editing technology are the most pressing. For many hematopoietic research applications, primary CD34+ cells and the human umbilical cord-derived progenitor erythroid 2 (HUDEP-2) cell line are highly informative substrates and readily accessible for in vitro manipulation. Moreover, ex vivo editing of CD34+ cells has immediate therapeutic relevance. Both cell types are sensitive to standard transfection procedures and reagents, such as lipofection with plasmid DNA, calling for more suitable methodology in order to achieve high efficiency and tolerability of editing with editors of choice. These challenges can be addressed by RNA delivery, either as a mixture of guide RNA and mRNA for CRISRP/Cas-based systems or as a mixture of mRNAs for TALENs. Compared to ribonucleoproteins or proteins, RNA as vector creates flexibility by removing dependence on commercial availability or laborious in-house preparations of novel editor proteins. Compared to DNA, RNA is less toxic and by obviating nuclear transcription and export of mRNA offers faster kinetics and higher editing efficiencies. Methods: Here, we detail an in vitro transcription protocol based on plasmid DNA templates with the addition of Anti-Reverse Cap Analog (ARCA) using T7 RNA polymerase, and poly (A) tailing using poly (A) polymerase, combined with nucleofection of HUDEP-2 and patient-derived CD34+ cells. Our protocol for RNA-based delivery employs widely available reagents and equipment and can easily be adopted for universal in vitro delivery of genome editing tools. Results and Discussion: Drawing on a common use case, we employ the protocol to target a β-globin mutation and to reactivate γ-globin expression as two potential therapies for β-hemoglobinopathies, followed by erythroid differentiation and functional analyses. Our protocol allows high editing efficiencies and unimpaired cell viability and differentiation, with scalability, suitability for functional assessment of editing outcomes and high flexibility in the application to different editors.
Collapse
Affiliation(s)
- Nikoletta Y. Papaioannou
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Petros Patsali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Basma Naiisseh
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Panayiota L. Papasavva
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Lola Koniali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Ryo Kurita
- Research and Development Department, Central Blood Institute, Blood Service Headquarters Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Soteroula Christou
- Thalassaemia Centre, State Health Services Organisation of Cyprus, Nicosia, Cyprus
| | - Maria Sitarou
- Thalassaemia Centre, State Health Services Organisation of Cyprus, Larnaca, Cyprus
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Carsten W. Lederer
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|