1
|
Sarkar S, Chittela RK, Chakraborty G. Fluorometric and colorimetric dual sensor for the quantification of cancer biomarker in complex biological fluid via dissociation of host assisted dye aggregate assembly. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 331:125799. [PMID: 39892362 DOI: 10.1016/j.saa.2025.125799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/22/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Present study explores the utilization of a host assisted aggregate assembly of a DNA intercalater cationic dye, ethidium bromide (EtBr) with polyanionic macrocyclic host, sulfated cyclodextrin (SCD) as colorimetric and fluorometric dual mode sensor for a cancer biomarker, spermine (Sp). The cationic dye, EtBr at the vicinity of the multi-negative SCD portal experiences strong electrostatic attraction, favoring their aggregation in an end to end fashion. Consequently the solution changes its color from orange to brick red with substantial reduction in the fluorescence intensity. Interestingly, in the presence of multi-cationic Sp, the dye aggregates are dissociated which restores the original color and fluorescence intensity of the dye solution. Such changes in the optical features been calibrated with the added Sp concentration to detect and quantify Sp with an astonishingly low detection limit of 0.28 μM in water, 0.59 μM in a 1 % human serum matrix and 5.9 µM in 10 % urine matrix. Furthermore, the ability of the system to undergo visible colour change enhances its reliability as a dual sensor, functioning as a fluorometric as well as a colorimetric tool for spermine detection with enhanced sensitivity, selectivity and rapid response.
Collapse
Affiliation(s)
- Soumyadeep Sarkar
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085 India; On Summer Internship from Indian Institute of Science Education and Research, Campus Road, Mohanpur 741246 Kolkata, India
| | - Rajani Kant Chittela
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai 400085 India; Homi Bhabha National Institute, Mumbai 400094 India
| | - Goutam Chakraborty
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085 India; Homi Bhabha National Institute, Mumbai 400094 India.
| |
Collapse
|
2
|
Guo J, Wang Y, Shi C, Zhang D, Zhang Q, Wang L, Gong Z. Mitochondrial calcium uniporter complex: Unveiling the interplay between its regulators and calcium homeostasis. Cell Signal 2024; 121:111284. [PMID: 38964444 DOI: 10.1016/j.cellsig.2024.111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The mitochondrial calcium uniporter complex (MCUc), serving as the specific channel for calcium influx into the mitochondrial matrix, is integral to calcium homeostasis and cellular integrity. Given its importance, ongoing research spans various disease models to understand the properties of the MCUc in pathophysiological contexts, but reported a different conclusion. Therefore, this review delves into the profound connection between MCUc-mediated calcium transients and cellular signaling pathways, mitochondrial dynamics, metabolism, and cell death. Additionally, we shed light on the recent advancements concerning the structural intricacies and auxiliary components of the MCUc in both resting and activated states. Furthermore, emphasis is placed on novel extrinsic and intrinsic regulators of the MCUc and their therapeutic implications across a spectrum of diseases. Meanwhile, we employed molecular docking simulations and identified candidate traditional Chinese medicine components with potential binding sites to the MCUc, potentially offering insights for further research on MCUc modulation.
Collapse
Affiliation(s)
- Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingqi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Wulczyn KE, Shafi T, Anderson A, Rincon-Choles H, Clish CB, Denburg M, Feldman HI, He J, Hsu CY, Kelly T, Kimmel PL, Mehta R, Nelson RG, Ramachandran V, Ricardo A, Shah VO, Srivastava A, Xie D, Rhee EP, Kalim S. Metabolites Associated With Uremic Symptoms in Patients With CKD: Findings From the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis 2024; 84:49-61.e1. [PMID: 38266973 PMCID: PMC11193655 DOI: 10.1053/j.ajkd.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 01/26/2024]
Abstract
RATIONALE & OBJECTIVE The toxins that contribute to uremic symptoms in patients with chronic kidney disease (CKD) are unknown. We sought to apply complementary statistical modeling approaches to data from untargeted plasma metabolomic profiling to identify solutes associated with uremic symptoms in patients with CKD. STUDY DESIGN Cross-sectional. SETTING & PARTICIPANTS 1,761 Chronic Renal Insufficiency Cohort (CRIC) participants with CKD not treated with dialysis. PREDICTORS Measurement of 448 known plasma metabolites. OUTCOMES The uremic symptoms of fatigue, anorexia, pruritus, nausea, paresthesia, and pain were assessed by single items on the Kidney Disease Quality of Life-36 instrument. ANALYTICAL APPROACH Multivariable adjusted linear regression, least absolute shrinkage and selection operator linear regression, and random forest models were used to identify metabolites associated with symptom severity. After adjustment for multiple comparisons, metabolites selected in at least 2 of the 3 modeling approaches were deemed "overall significant." RESULTS Participant mean estimated glomerular filtration rate was 43mL/min/1.73m2, with 44% self-identifying as female and 41% as non-Hispanic Black. The prevalence of uremic symptoms ranged from 22% to 55%. We identified 17 metabolites for which a higher level was associated with greater severity of at least one uremic symptom and 9 metabolites inversely associated with uremic symptom severity. Many of these metabolites exhibited at least a moderate correlation with estimated glomerular filtration rate (Pearson's r≥0.5), and some were also associated with the risk of developing kidney failure or death in multivariable adjusted Cox regression models. LIMITATIONS Lack of a second independent cohort for external validation of our findings. CONCLUSIONS Metabolomic profiling was used to identify multiple solutes associated with uremic symptoms in adults with CKD, but future validation and mechanistic studies are needed. PLAIN-LANGUAGE SUMMARY Individuals living with chronic kidney disease (CKD) often experience symptoms related to CKD, traditionally called uremic symptoms. It is likely that CKD results in alterations in the levels of numerous circulating substances that, in turn, cause uremic symptoms; however, the identity of these solutes is not known. In this study, we used metabolomic profiling in patients with CKD to gain insights into the pathophysiology of uremic symptoms. We identified 26 metabolites whose levels were significantly associated with at least one of the symptoms of fatigue, anorexia, itchiness, nausea, paresthesia, and pain. The results of this study lay the groundwork for future research into the biological causes of symptoms in patients with CKD.
Collapse
Affiliation(s)
- Kendra E Wulczyn
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts.
| | - Tariq Shafi
- Division of Nephrology, Department of Medicine, Houston Methodist Hospital, Houston, Texas
| | - Amanda Anderson
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Hernan Rincon-Choles
- Department of Nephrology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Michelle Denburg
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Pediatric Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Harold I Feldman
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Chi-Yuan Hsu
- Division of Nephrology, University of California, San Francisco, School of Medicine, San Francisco, California; Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Tanika Kelly
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Paul L Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Rupal Mehta
- Division of Nephrology, Northwestern University, Chicago, Illinois
| | - Robert G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
| | - Vasan Ramachandran
- Department of Epidemiology and Sections of Preventive Medicine and Epidemiology and Cardiology, Department of Medicine, Boston University School of Public Health, Boston, Massachusetts
| | - Ana Ricardo
- Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Vallabh O Shah
- Department of Internal Medicine and Biochemistry, School of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Anand Srivastava
- Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Division of Nephrology and Hypertension, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Dawei Xie
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eugene P Rhee
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts; Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Sahir Kalim
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
4
|
Sornambigai M, Roselin Pavithra AS, Hansda S, Senthil Kumar S. Fabrication of an all-in-one self-enhanced solid-state electrochemiluminescence sensing platform for the selective detection of spermine. Analyst 2024; 149:3555-3563. [PMID: 38780058 DOI: 10.1039/d4an00357h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The fabrication of an all-in-one solid-state ECL sensing platform is beneficial not only for expediting the miniaturization of sensing devices, but also, more importantly, for enabling point-of-care applications. In the present work, a self-enhanced solid-state ECL sensing platform is fabricated using newly synthesised silica polyethylene nanoparticles (SiO2-PEI NPs) which generate a co-reactant in situ and easily self-assemble with Ru(bpy)32+ and shows selective and sensitive detection of spermine at physiological pH (7.4). Spermine induces the maximum ECL emission intensity compared to other biogenic amines due to the presence of two secondary amines. A possible ECL reaction mechanism has been proposed based on CV and ECL experiments, DFT calculations, and in situ ECL spectrum analysis. The developed solid-state sensor showed a linear increase in ECL intensity with increasing spermine concentration in the range of 10 nM to 100 nM with an LOD of 12.2 nM. Compared to other biogenic amines in previous works, chemically synthesised SiO2-PEI NPs used in the present study act as an effective label- and enzyme-free sensor, and the new method is observed to be simple and cost-effective, to overcome various limitations of solution-phase ECL and to avoid the usage of any noble metals.
Collapse
Affiliation(s)
- Mathavan Sornambigai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 20100, Uttar Pradesh, India
- CSIR-Central Electrochemical Research Institute (CSIR-CECRI) campus, Karaikudi-630003, Tamil Nadu, India.
- Electrodics and Electrocatalysis Division, CSIR-CECRI, Karaikudi-630003, Tamil Nadu, India
| | | | - Shekhar Hansda
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 20100, Uttar Pradesh, India
- Corrosion and Material Protection Division, CSIR-CECRI, Karaikudi-630003, Tamil Nadu, India
| | - Shanmugam Senthil Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 20100, Uttar Pradesh, India
- CSIR-Central Electrochemical Research Institute (CSIR-CECRI) campus, Karaikudi-630003, Tamil Nadu, India.
- Electrodics and Electrocatalysis Division, CSIR-CECRI, Karaikudi-630003, Tamil Nadu, India
| |
Collapse
|
5
|
Zyla J, Marczyk M, Prazuch W, Sitkiewicz M, Durawa A, Jelitto M, Dziadziuszko K, Jelonek K, Kurczyk A, Szurowska E, Rzyman W, Widłak P, Polanska J. Combining Low-Dose Computer-Tomography-Based Radiomics and Serum Metabolomics for Diagnosis of Malignant Nodules in Participants of Lung Cancer Screening Studies. Biomolecules 2023; 14:44. [PMID: 38254644 PMCID: PMC10813699 DOI: 10.3390/biom14010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Radiomics is an emerging approach to support the diagnosis of pulmonary nodules detected via low-dose computed tomography lung cancer screening. Serum metabolome is a promising source of auxiliary biomarkers that could help enhance the precision of lung cancer diagnosis in CT-based screening. Thus, we aimed to verify whether the combination of these two techniques, which provides local/morphological and systemic/molecular features of disease at the same time, increases the performance of lung cancer classification models. The collected cohort consists of 1086 patients with radiomic and 246 patients with serum metabolomic evaluations. Different machine learning techniques, i.e., random forest and logistic regression were applied for each omics. Next, model predictions were combined with various integration methods to create a final model. The best single omics models were characterized by an AUC of 83% in radiomics and 60% in serum metabolomics. The model integration only slightly increased the performance of the combined model (AUC equal to 85%), which was not statistically significant. We concluded that radiomics itself has a good ability to discriminate lung cancer from benign lesions. However, additional research is needed to test whether its combination with other molecular assessments would further improve the diagnosis of screening-detected lung nodules.
Collapse
Affiliation(s)
- Joanna Zyla
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (J.Z.); (W.P.); (J.P.)
| | - Michal Marczyk
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (J.Z.); (W.P.); (J.P.)
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Wojciech Prazuch
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (J.Z.); (W.P.); (J.P.)
| | - Magdalena Sitkiewicz
- Department of Thoracic Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.S.); (A.D.); (W.R.)
| | - Agata Durawa
- Department of Thoracic Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.S.); (A.D.); (W.R.)
| | - Malgorzata Jelitto
- 2nd Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.J.); (K.D.); (E.S.); (P.W.)
| | - Katarzyna Dziadziuszko
- 2nd Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.J.); (K.D.); (E.S.); (P.W.)
| | - Karol Jelonek
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-100 Gliwice, Poland;
| | - Agata Kurczyk
- Department of Biostatistics and Bioinformatics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-100 Gliwice, Poland;
| | - Edyta Szurowska
- 2nd Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.J.); (K.D.); (E.S.); (P.W.)
| | - Witold Rzyman
- Department of Thoracic Surgery, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.S.); (A.D.); (W.R.)
| | - Piotr Widłak
- 2nd Department of Radiology, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.J.); (K.D.); (E.S.); (P.W.)
| | - Joanna Polanska
- Department of Data Science and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland; (J.Z.); (W.P.); (J.P.)
| |
Collapse
|
6
|
Ten-Doménech I, Cascant-Vilaplana MM, Navarro-Esteve V, Felderer B, Moreno-Giménez A, Rienda I, Gormaz M, Moreno-Torres M, Pérez-Guaita D, Quintás G, Kuligowski J. Metabolomic Diversity of Human Milk Cells over the Course of Lactation-A Preliminary Study. Nutrients 2023; 15:nu15051100. [PMID: 36904100 PMCID: PMC10005050 DOI: 10.3390/nu15051100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Human milk (HM) is a complex biofluid containing a wide cell variety including epithelial cells and leukocytes. However, the cellular compositions and their phenotypic properties over the course of lactation are poorly understood. The aim of this preliminary study was to characterize the cellular metabolome of HM over the course of lactation. Cells were isolated via centrifugation and the cellular fraction was characterized via cytomorphology and immunocytochemical staining. Cell metabolites were extracted and analyzed using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-QqTOF-MS) in the positive and negative electrospray ionization modes. Immunocytochemical analysis revealed a high variability of the number of detected cells with relative median abundances of 98% of glandular epithelial cells, 1% of leukocytes, and 1% of keratinocytes. Significant correlations between the milk postnatal age with percentage of epithelial cells and leukocytes, and with total cell count were observed. Results from the Hierarchical Cluster Analysis of immunocytochemical profiles were very similar to those observed in the analysis of the metabolomic profiles. In addition, metabolic pathway analysis showed alterations in seven metabolic pathways correlating with postnatal age. This work paves the way for future investigations on changes in the metabolomic fraction of the cellular compartment of HM.
Collapse
Affiliation(s)
- Isabel Ten-Doménech
- Neonatal Research Group, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Mari Merce Cascant-Vilaplana
- Neonatal Research Group, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Víctor Navarro-Esteve
- Neonatal Research Group, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Spain
| | - Birgit Felderer
- Neonatal Research Group, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain
- Master Program Biotechnical Processes, Austrian Biotech University of Applied Sciences, Konrad Lorenz-Strasse 10, 3430 Tulln, Austria
| | - Alba Moreno-Giménez
- Neonatal Research Group, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Iván Rienda
- Servicio de Anatomía Patológica, University & Polytechnic Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - María Gormaz
- Neonatal Research Group, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain
- Division of Neonatology, University & Polytechnic Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Marta Moreno-Torres
- Unidad de Hepatología Experimental y Trasplante Hepático, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain
- Department of Biochemistry and Molecular Biology, University of Valencia, C/Blasco Ibáñez 15, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - David Pérez-Guaita
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Spain
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Center, Carrer de la Innovació, 2, 08225 Terrassa, Spain
| | - Julia Kuligowski
- Neonatal Research Group, Health Research Institute Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain
- Correspondence: ; Tel.: +34-96-1246661
| |
Collapse
|
7
|
Li Y, Hu Z, Chen X, Zhu B, Liu T, Yang J. Nutritional Composition and Antioxidant Activity of Gonostegia hirta: An Underexploited, Potentially Edible, Wild Plant. PLANTS (BASEL, SWITZERLAND) 2023; 12:875. [PMID: 36840225 PMCID: PMC9967410 DOI: 10.3390/plants12040875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Wild, edible plants have received increasing attention as an important complement to cultivate vegetables, as they represent an easily accessible source of nutrients, mineral elements, and antioxidants. In this study, the tender stems and leaves of Gonostegia hirta, an edible species for which only scarce data are available in the literature, are thoroughly evaluated for their nutritional profile, chemical characterization, and antioxidant activity. Being considered as an underexploited, potentially edible plant, the nutritional composition of Gonostegia hirta was identified, and several beneficial compounds were highlighted: sugars, potassium, calcium, organic acids, fatty acids, phenolics, and flavonoids. A total of 418 compounds were identified by metabolomic analysis, including phenolic acids, flavonoids, amino acids, lipids, organic acids, terpenoids, alkaloids, nucleotides, tannins, lignans, and coumarin. The plant sample was found to have good antioxidant capacities, presented by DPPH, FRAP, ABTS+, hydroxyl radical scavenging capacity, and its resistance to the superoxide anion radical test. In general, Gonostegia hirta has a good nutritional and phytochemical composition. The health benefits of Gonostegia hirta as a vegetable and herbal medicine is important for both a modern diet and use in medication.
Collapse
Affiliation(s)
- Yaochen Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Zheng Hu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaoqi Chen
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Biao Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Tingfu Liu
- Lishui Academy of Agricultural Sciences, Lishui 323000, China
| | - Jing Yang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
8
|
Quantitative Metabolomics to Explore the Role of Plasma Polyamines in Colorectal Cancer. Int J Mol Sci 2022; 24:ijms24010101. [PMID: 36613539 PMCID: PMC9820724 DOI: 10.3390/ijms24010101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the major public health and socio-economic problems, which management demands the development of non-invasive screening tests. Assessment of circulating polyamines could be a valuable tool, although analytical problems still preclude its clinical practice. We exploited ultra-high-resolution liquid chromatography and mass spectrometry, as a highly sensitive and innovative method, to profile eleven polyamines, including spermine and spermidine with their acetylated forms. These data together with an evaluation of the inflammatory indexes might represent suitable biomarkers for the identification of CRC patients. The statistical models revealed good discrimination in distinguishing CRC patients from healthy subjects. The plasma assessment of ornithine and acetylspermine, as well as lymphocyte/platelet ratio, revealed helpful information on the progression of CRC. The combined profiles of circulating polyamines and inflammatory indexes, together with the application of an innovative technology, could represent a valuable tool for discriminating patients from different clinical groups.
Collapse
|
9
|
Molecular and metabolic alterations of 2,3-dihydroquinazolin-4(1H)-one derivatives in prostate cancer cell lines. Sci Rep 2022; 12:21599. [PMID: 36517571 PMCID: PMC9751122 DOI: 10.1038/s41598-022-26148-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PC) is the second most common tumor in males worldwide. The lack of effective medication and the development of multidrug resistance towards current chemotherapeutic agents urge the need to discover novel compounds and therapeutic targets for PC. Herein, seven synthesized 2,3-dihydroquinazolin-4(1H)-one analogues were evaluated for their anticancer activity against PC3 and DU145 cancer cell lines using MTT, scratch-wound healing, adhesion and invasion assays. Besides, a liquid chromatography mass spectrometry (LC-MS)-based metabolomics approach was followed to identify the biochemical pathways altered in DU145 cancer cells upon exposure to dihydroquinazolin derivatives. The seven compounds showed sufficient cytotoxicity and significantly suppressed DU145 and PC3 migration after 48 and 72 h. C2 and C5 had the most potent effect with IC50 < 15 µM and significantly inhibited PC cell adhesion and invasion. Metabolomics revealed that C5 disturbed the level of metabolites involved in essential processes for cancer cell proliferation, progression and growth including energy production, redox homeostasis, amino acids and polyamine metabolisms and choline phospholipid metabolism. The data presented herein highlighted the importance of these compounds as potential anticancer agents particularly C5, and pointed to the promising role of metabolomics as a new analytical approach to investigate the antiproliferative activity of synthesized compounds and identify new therapeutic targets.
Collapse
|
10
|
Elevation of spermine remodels immunosuppressive microenvironment through driving the modification of PD-L1 in hepatocellular carcinoma. Cell Commun Signal 2022; 20:175. [DOI: 10.1186/s12964-022-00981-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Spermine is frequently elevated in tumor tissues and body fluids of cancer patients and is critical for cancer cell proliferation, migration and invasion. However, the immune functions of spermine in hepatocellular carcinoma progression remains unknown. In the present study, we aimed to elucidate immunosuppressive role of spermine in hepatocellular carcinoma and to explore the underlying mechanism.
Methods
Whole-blood spermine concentration was measured using HPLC. Human primary HCC tissues were collected to examine the expression of CaSR, p-Akt, β-catenin, STT3A, PD-L1, and CD8. Mouse model of tumorigenesis and lung metastasis were established to evaluate the effects of spermine on hepatocellular carcinoma. Western blotting, immunofluorescence, real time PCR, digital Ca2+ imaging, and chromatin immunoprecipitation assay were used to investigate the underlying mechanisms by which spermine regulates PD-L1 expression and glycosylation in hepatocellular carcinoma cells.
Results
Blood spermine concentration in the HCC patient group was significantly higher than that in the normal population group. Spermine could facilitate tumor progression through inducing PD-L1 expression and decreasing the CD8+ T cell infiltration in HCC. Mechanistically, spermine activates calcium-sensing receptor (CaSR) to trigger Ca2+ entry and thereby promote Akt-dependent β-catenin stabilization and nuclear translocation. Nuclear β-catenin induced by spermine then activates transcriptional expression of PD-L1 and N-glycosyltransferase STT3A, while STT3A in turn increases the stability of PD-L1 through inducing PD-L1 protein N-glycosylation in HCC cells.
Conclusions
This study reveals the crucial function of spermine in establishing immune privilege by increasing the expression and N-glycosylation of PD-L1, providing a potential strategy for the treatment of hepatocellular carcinoma.
Collapse
|
11
|
Plasma Polyamines Decrease in Patients with Obstructive Cholecystitis. LIVERS 2022. [DOI: 10.3390/livers2030019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Polyamines (PAs), endogenous metabolites with a wide range of biological activities, are synthesized at a high rate in liver supporting hepatocyte proliferation and survival. The liver appears as an important regulator of plasma PAs; however, the perspective to exploit plasma PA measurements as indicators for liver function was not explored. This study aimed to evaluate the value of the plasma levels of PAs as a biomarker of pathological changes in the liver in patients with obstructive cholecystitis. The levels of polyamines and their acetylated forms were measured using HPLC/UV in the plasma of patients with obstructive cholecystitis and in healthy subjects. PA turnover was assessed by the ratio between an acetylated form of PA and PA. An effect of diet preference of cheese or meat, the major exogenous sources of PAs, smoking, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in anamnesis was also evaluated in healthy subjects. We found that the plasma levels of spermine and acetylated spermidine decreased in patients with obstructive cholecystitis without a concurring increase in the total plasma bilirubin and amylase levels. The turnover of spermine and spermidine was also changed, suggesting a decrease in the rate of PA degradation in the liver. In healthy subjects, the PA levels tended to mirror chronic smoking and recent SARS-CoV-2 infection but were not relevant to diet factors. A number of observations indicated the role of physical exercise in the regulation of the plasma pool of PA. The decrease in plasma PA levels and index of PA turnover in the cholestasis syndrome indicate the liver’s metabolic function reduction. A conceivable effect of lung-related conditions on plasma PA, while indicating low specificity, nonetheless, speaks favorably about the high sensitivity of plasma PA measurement as an early diagnostic test in the clinic.
Collapse
|
12
|
Wu HF, Kailasa SK. Recent advances in nanomaterials-based optical sensors for detection of various biomarkers (inorganic species, organic and biomolecules). LUMINESCENCE 2022. [PMID: 35929140 DOI: 10.1002/bio.4353] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/07/2022]
Abstract
This review briefly emphasizes the different detection approaches (electrochemical sensors, chemiluminescence, surface-enhanced Raman scattering), functional nanostructure materials (quantum dots, metal nanoparticles, metal nanoclusters, magnetic nanomaterials, metal oxide nanoparticles, polymer-based nanomaterials, and carbonaceous nanomaterials) and detection mechanisms. Further, this review emphasis on the integration of functional nanomaterials with optical spectroscopic techniques for the identification of various biomarkers (nucleic acids, glucose, uric acid, oxytocin, dopamine, ascorbic acid, bilirubin, spermine, serotonin, thiocyanate, Pb2+ , Cu2+ , Hg2+ , F- , peptides, and cancer biomarkers (mucin 1, prostate specific antigen, carcinoembryonic antigen, CA15-3, human epidermal growth factor receptor 2, C-reactive protein, and interleukin-6). Analytical characteristics of nanomaterials-based optical sensors are summarized in Tables, providing the insights of nanomaterials-based optical sensors for biomarkers detection. Finally, the opportunities and challenges of nanomaterials-based optical analytical approaches for the detection of various biomarkers (inorganic, organic, biomolecules, peptides and proteins) are discussed.
Collapse
Affiliation(s)
- Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
- International PhD Program for Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
13
|
Isaac-Lam MF, DeMichael KM. Calorie restriction and breast cancer treatment: a mini-review. J Mol Med (Berl) 2022; 100:1095-1109. [PMID: 35760911 DOI: 10.1007/s00109-022-02226-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 12/11/2022]
Abstract
Calorie restriction (CR), referred to as a reduction in dietary calorie intake without malnutrition, has been demonstrated to be a safe way to extend longevity of yeast, worms, and laboratory animals, and to decrease the risk factors in age-related diseases including cancer in humans. Pre-clinical studies in animal models demonstrated that CR may enhance the efficacy of chemotherapy, radiation therapy, and immunotherapy during breast cancer treatment. Reduced calorie intake ameliorates risk factors and delays the onset of cancer by altering metabolism and fostering health-enhancing characteristics including increased autophagy and insulin sensitivity, and decreased blood glucose levels, inflammation, angiogenesis, and growth factor signaling. CR is not a common protocol implemented by medical practitioners to the general public due to the lack of substantial clinical studies. Future research and clinical trials are urgently needed to understand fully the biochemical basis of CR or CR mimetics to support its benefits. Here, we present a mini-review of research studies integrating CR as an adjuvant to chemotherapy, radiation therapy, or immunotherapy during breast cancer treatment.
Collapse
Affiliation(s)
- Meden F Isaac-Lam
- Department of Chemistry and Physics, Purdue University Northwest, Westville, IN, 46391, USA.
| | - Kelly M DeMichael
- Department of Chemistry and Physics, Purdue University Northwest, Westville, IN, 46391, USA
| |
Collapse
|
14
|
Tse RTH, Ding X, Wong CYP, Cheng CKL, Chiu PKF, Ng CF. The Association between Spermidine/Spermine N 1-Acetyltransferase (SSAT) and Human Malignancies. Int J Mol Sci 2022; 23:ijms23115926. [PMID: 35682610 PMCID: PMC9179984 DOI: 10.3390/ijms23115926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
Spermidine/spermine N1-acetyltransferase (SSAT) functions as a critical enzyme in maintaining the homeostasis of polyamines, including spermine, spermidine, and putrescine, in mammalian cells. SSAT is a catalytic enzyme that indirectly regulates cellular physiologies and pathways through interaction with endogenous and exogenous polyamines. Normally, SSAT exhibits only at a low cellular level, but upon tumorigenesis, the expression, protein level, and activities of SSAT are altered. The alterations induce cellular damages, including oxidative stress, cell cycle arrest, DNA dynamics, and proliferation by influencing cellular mechanisms and signaling pathways. The expression of SSAT has been reported in various studies to be altered in different cancers, and it has been correlated with tumor development and progression. Tumor grades and stages are associated with the expression levels of SSAT. SSAT can be utilized as a target for substrate binding, and excreted metabolites may be used as a novel cancer biomarker. There is also potential for SSAT to be developed as a therapeutic target. Polyamine analogs could increase SSAT expression and increase the cytotoxicity of chemotherapy to tumor cells. Drugs targeting polyamines and SSAT expression have the potential to be developed into new cancer treatments in the future.
Collapse
Affiliation(s)
- Ryan Tsz-Hei Tse
- S. H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China; (R.T.-H.T.); (C.Y.-P.W.); (C.K.-L.C.)
| | - Xiaofan Ding
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China;
| | - Christine Yim-Ping Wong
- S. H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China; (R.T.-H.T.); (C.Y.-P.W.); (C.K.-L.C.)
| | - Carol Ka-Lo Cheng
- S. H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China; (R.T.-H.T.); (C.Y.-P.W.); (C.K.-L.C.)
| | - Peter Ka-Fung Chiu
- S. H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China; (R.T.-H.T.); (C.Y.-P.W.); (C.K.-L.C.)
- Correspondence: (P.K.-F.C.); (C.-F.N.); Tel.: +852-3505-2625 (P.K.-F.C. & C.-F.N.)
| | - Chi-Fai Ng
- S. H. Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China; (R.T.-H.T.); (C.Y.-P.W.); (C.K.-L.C.)
- Correspondence: (P.K.-F.C.); (C.-F.N.); Tel.: +852-3505-2625 (P.K.-F.C. & C.-F.N.)
| |
Collapse
|
15
|
Panneerselvam K, Ishikawa S, Krishnan R, Sugimoto M. Salivary Metabolomics for Oral Cancer Detection: A Narrative Review. Metabolites 2022; 12:metabo12050436. [PMID: 35629940 PMCID: PMC9144467 DOI: 10.3390/metabo12050436] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022] Open
Abstract
The development of low- or non-invasive screening tests for cancer is crucial for early detection. Saliva is an ideal biofluid containing informative components for monitoring oral and systemic diseases. Metabolomics has frequently been used to identify and quantify numerous metabolites in saliva samples, serving as novel biomarkers associated with various conditions, including cancers. This review summarizes the recent applications of salivary metabolomics in biomarker discovery in oral cancers. We discussed the prevalence, epidemiologic characteristics, and risk factors of oral cancers, as well as the currently available screening programs, in India and Japan. These data imply that the development of biomarkers by itself is inadequate in cancer detection. The use of current diagnostic methods and new technologies is necessary for efficient salivary metabolomics analysis. We also discuss the gap between biomarker discovery and nationwide screening for the early detection of oral cancer and its prevention.
Collapse
Affiliation(s)
- Karthika Panneerselvam
- Department of Oral Pathology and Microbiology, Karpaga Vinayaga Institute of Dental Sciences, GST Road, Chinna Kolambakkam, Palayanoor PO, Madurantagam Taluk, Kancheepuram 603308, Tamil Nadu, India;
| | - Shigeo Ishikawa
- Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan;
| | - Rajkumar Krishnan
- Department of Oral Pathology, SRM Dental College, Bharathi Salai, Ramapuram, Chennai 600089, Tamil Nadu, India;
| | - Masahiro Sugimoto
- Institute of Medical Research, Tokyo Medical University, Tokyo 160-0022, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata 997-0811, Japan
- Correspondence: ; Tel.: +81-235-29-0528
| |
Collapse
|