1
|
Pinchuk ND, Piecuch A, Charczuk N, Sobierajska P, Targonska S, Bezkrovnyi O, Ogórek R, Wang Y, Wiglusz RJ. Effect of silver ion and silicate group on the antibacterial and antifungal properties of nanosized hydroxyapatite. Sci Rep 2024; 14:29339. [PMID: 39592678 PMCID: PMC11599721 DOI: 10.1038/s41598-024-80303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Hydroxyapatite is one of the most widely used materials in biomedical applications in reparative and regenerative medicine. Doping of nanosized hydroxyapatite improves its bioactive properties, and thus, the synthesis of different types of nanohydroxyapatite with antimicrobial activity is a perspective route of modern materials science. In this study, undoped hydroxyapatite (HAp), hydroxyapatite doped with silver (HAp with 0.1, 0.5 and 1 mol% Ag+ ions), and silicate-substituted hydroxyapatite doped with silver (Si-HAp with 0.1, 0.5 and 1 mol% Ag+ ions) nanoparticles (NPs) were synthesized by microwave-assisted hydrothermal technique and sintered at 450 °C. The structural properties and composition of obtained hydroxyapatite NPs were investigated using X-ray powder diffraction (XRPD), Fourier-transformed infrared spectroscopy (FT-IR), and Energy-dispersive X-ray spectroscopy (EDS). The morphology of synthesized nanosized powders was detected using the high-resolution transmission electron microscopy (HRTEM) technique. The results of XRPD for all synthesized nanosized powders confirmed the presence of hydroxyapatite crystal structure. The FT-IR spectra confirmed the presence of functional groups characteristic of the hydroxyapatite structure. The EDS analysis of obtained materials has shown the presence of Ca, P, O, Si, and Ag elements. Significant differences in size and morphology of the obtained particles were found using HRTEM. The particles have an elongated, rod-like shape with subtle differences. Moreover, HAp doped with 1 mol% Ag+ ions and Si-HAp doped with 1 mol% Ag+ ions nanosized powders showed antibacterial activity in comparison to pure hydroxyapatite both against gram-positive and gram-negative bacterial strains (Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus epidermidis, Staphylococcus aureus, Enterococcus faecalis). These two types of hydroxyapatite NPs also demonstrated antifungal activity against reference strains of Candida albicans, Candida kruzei, and Candida tropicalis, with stronger activity observed for Si-HAp doped with silver.
Collapse
Affiliation(s)
- Nataliia D Pinchuk
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
- Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine, Pritsaka, 3, Kyiv, 03142, Ukraine
| | - Agata Piecuch
- Department of Mycology and Genetics, University of Wroclaw, Przybyszewskiego 63/77, Wroclaw, 51-148, Poland
| | - Natalia Charczuk
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
| | - Paulina Sobierajska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland.
| | - Sara Targonska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, Uppsala, 75007, Sweden
| | - Oleksii Bezkrovnyi
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland
| | - Rafał Ogórek
- Department of Mycology and Genetics, University of Wroclaw, Przybyszewskiego 63/77, Wroclaw, 51-148, Poland
| | - Yadong Wang
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY, 14853-1801, USA
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, Wrocław, 50-422, Poland.
- Meinig School of Biomedical Engineering, College of Engineering, Cornell University, Ithaca, NY, 14853-1801, USA.
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, Gliwice, 44-100, Poland.
| |
Collapse
|
2
|
Mikziński P, Kraus K, Widelski J, Paluch E. Modern Microbiological Methods to Detect Biofilm Formation in Orthopedy and Suggestions for Antibiotic Therapy, with Particular Emphasis on Prosthetic Joint Infection (PJI). Microorganisms 2024; 12:1198. [PMID: 38930580 PMCID: PMC11205407 DOI: 10.3390/microorganisms12061198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Biofilm formation is a serious problem that relatively often causes complications in orthopedic surgery. Biofilm-forming pathogens invade implanted foreign bodies and surrounding tissues. Such a condition, if not limited at the appropriate time, often requires reoperation. This can be partially prevented by selecting an appropriate prosthesis material that prevents the development of biofilm. There are many modern techniques available to detect the formed biofilm. By applying them we can identify and visualize biofilm-forming microorganisms. The most common etiological factors associated with biofilms in orthopedics are: Staphylococcus aureus, coagulase-negative Staphylococci (CoNS), and Enterococcus spp., whereas Gram-negative bacilli and Candida spp. also deserve attention. It seems crucial, for therapeutic success, to eradicate the microorganisms able to form biofilm after the implantation of endoprostheses. Planning the effective targeted antimicrobial treatment of postoperative infections requires accurate identification of the microorganism responsible for the complications of the procedure. The modern microbiological testing techniques described in this article show the diagnostic options that can be followed to enable the implementation of effective treatment.
Collapse
Affiliation(s)
- Paweł Mikziński
- Faculty of Medicine, Wroclaw Medical University, Wyb. Pasteura 1, 50-376 Wroclaw, Poland; (P.M.); (K.K.)
| | - Karolina Kraus
- Faculty of Medicine, Wroclaw Medical University, Wyb. Pasteura 1, 50-376 Wroclaw, Poland; (P.M.); (K.K.)
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Lublin Medical University, 20-093 Lublin, Poland;
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Tytusa Chalubinskiego 4, 50-376 Wroclaw, Poland
| |
Collapse
|
3
|
Paluch E, Bortkiewicz O, Widelski J, Duda-Madej A, Gleńsk M, Nawrot U, Lamch Ł, Długowska D, Sobieszczańska B, Wilk KA. A Combination of β-Aescin and Newly Synthesized Alkylamidobetaines as Modern Components Eradicating the Biofilms of Multidrug-Resistant Clinical Strains of Candida glabrata. Int J Mol Sci 2024; 25:2541. [PMID: 38473787 DOI: 10.3390/ijms25052541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The current trend in microbiological research aimed at limiting the development of biofilms of multidrug-resistant microorganisms is increasingly towards the search for possible synergistic effects between various compounds. This work presents a combination of a naturally occurring compound, β-aescin, newly synthesized alkylamidobetaines (AABs) with a general structure-CnTMDAB, and antifungal drugs. The research we conducted consists of several stages. The first stage concerns determining biological activity (antifungal) against selected multidrug-resistant strains of Candida glabrata (C. glabrata) with the highest ability to form biofilms. The second stage of this study determined the activity of β-aescin combinations with antifungal compounds and alkylamidobetaines. In the next stage of this study, the ability to eradicate a biofilm on the polystyrene surface of the combination of β-aescin with alkylamidobetaines was examined. It has been shown that the combination of β-aescin and alkylamidobetaine can firmly remove biofilms and reduce their viability. The last stage of this research was to determine the safety regarding the cytotoxicity of both β-aescin and alkylamidobetaines. Previous studies on the fibroblast cell line have shown that C9 alkylamidobetaine can be safely used as a component of anti-biofilm compounds. This research increases the level of knowledge about the practical possibilities of using anti-biofilm compounds in combined therapies against C. glabrata.
Collapse
Affiliation(s)
- Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland
| | - Olga Bortkiewicz
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Lublin Medical University, 20-093 Lublin, Poland
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland
| | - Michał Gleńsk
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Urszula Nawrot
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Łukasz Lamch
- Department of Engineering and Technology of Chemical Processes, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Daria Długowska
- Department of Engineering and Technology of Chemical Processes, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Beata Sobieszczańska
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland
| | - Kazimiera A Wilk
- Department of Engineering and Technology of Chemical Processes, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| |
Collapse
|
4
|
Pinchuk N, Paściak A, Paściak G, Sobierajska P, Chmielowiec J, Bezkrovnyi O, Kraszkiewicz P, Wiglusz RJ. Photothermal Conversion Efficiency of Silver and Gold Incorporated Nanosized Apatites for Biomedical Applications. ACS OMEGA 2023; 8:41302-41309. [PMID: 37970002 PMCID: PMC10633896 DOI: 10.1021/acsomega.3c04809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023]
Abstract
The aim of this research was to investigate the photothermal ability of nanocrystalline hydroxyapatite (nHAp) incorporated with silver and gold. It was studied by using a recently developed technique evaluating the photothermal conversion efficiency. The heating performance of aqueous dispersions was examined under 445 and 532 nm excitation. The largest increase in temperature was found for the 2% Ag-nHAp and reached above 2 °C per mg/mL of sample (445 nm) under 90 mW laser continuous irradiation and an external light-to-heat conversion efficiency of 0.11 L/g cm. The obtained results have shown a new functionality of nanosized apatites that has not been considered before. The studied materials have also been characterized by XRPD, TEM, BET, and UV-Vis techniques. Finally, in this work, a new idea for their application was proposed: photothermal therapy.
Collapse
Affiliation(s)
- Nataliia
D. Pinchuk
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw 50-422, Poland
- Frantsevich
Institute for Problems of Materials Science of NAS of Ukraine, Kyiv 03142, Ukraine
| | - Agnieszka Paściak
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw 50-422, Poland
- Wroclaw
University of Science and Technology, The Faculty of Fundamental Problems
of Technology, 50-370 Wroclaw, Poland
| | - Grzegorz Paściak
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw 50-422, Poland
| | - Paulina Sobierajska
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw 50-422, Poland
| | - Jacek Chmielowiec
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw 50-422, Poland
| | - Oleksii Bezkrovnyi
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw 50-422, Poland
| | - Piotr Kraszkiewicz
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw 50-422, Poland
| | - Rafal J. Wiglusz
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw 50-422, Poland
- Department
of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland
| |
Collapse
|
5
|
Paluch E, Seniuk A, Plesh G, Widelski J, Szymański D, Wiglusz RJ, Motola M, Dworniczek E. Mechanism of Action and Efficiency of Ag 3PO 4-Based Photocatalysts for the Control of Hazardous Gram-Positive Pathogens. Int J Mol Sci 2023; 24:13553. [PMID: 37686356 PMCID: PMC10487690 DOI: 10.3390/ijms241713553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Silver phosphate and its composites have been attracting extensive interest as photocatalysts potentially effective against pathogenic microorganisms. The purpose of the present study was to investigate the mechanism of bactericidal action on cells of opportunistic pathogens. The Ag3PO4/P25 (AGP/P25) and Ag3PO4/HA (HA/AGP) powders were prepared via a co-precipitation method. Thereafter, their antimicrobial properties against Enterococcus faecalis, Staphylococcus epidermidis, and Staphylococcus aureus (clinical and reference strains) were analyzed in the dark and after exposure to visible light (VIS). The mechanism leading to cell death was investigated by the leakage of metabolites and potassium ions, oxidative stress, and ROS production. Morphological changes of the bacterial cells were visualized by transmission electron microscopy (TEM) and scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy (SEM EDS) analysis. It has been shown that Ag3PO4-based composites are highly effective agents that can eradicate 100% of bacterial populations during the 60 min photocatalytic inactivation. Their action is mainly due to the production of hydroxyl radicals and photogenerated holes which lead to oxidative stress in cells. The strong affinity to the bacterial cell wall, as well as the well-known biocidal properties of silver itself, increase undoubtedly the antimicrobial potential of the Ag3PO4-based composites.
Collapse
Affiliation(s)
- Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Tytusa Chałubińskiego 4, 50-376 Wroclaw, Poland (E.D.)
| | - Alicja Seniuk
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Tytusa Chałubińskiego 4, 50-376 Wroclaw, Poland (E.D.)
| | - Gustav Plesh
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (G.P.); (M.M.)
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Lublin Medical University, 20-093 Lublin, Poland;
| | - Damian Szymański
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland (R.J.W.)
| | - Rafał J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland (R.J.W.)
| | - Martin Motola
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (G.P.); (M.M.)
| | - Ewa Dworniczek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Tytusa Chałubińskiego 4, 50-376 Wroclaw, Poland (E.D.)
| |
Collapse
|
6
|
Pilarska AA, Marzec-Grządziel A, Paluch E, Pilarski K, Wolna-Maruwka A, Kubiak A, Kałuża T, Kulupa T. Biofilm Formation and Genetic Diversity of Microbial Communities in Anaerobic Batch Reactor with Polylactide (PLA) Addition. Int J Mol Sci 2023; 24:10042. [PMID: 37373189 DOI: 10.3390/ijms241210042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
In this paper, an anaerobic digestion (AD) study was conducted on confectionery waste with granular polylactide (PLA) as a cell carrier. Digested sewage sludge (SS) served as the inoculum and buffering agent of systems. This article shows the results of the analyses of the key experimental properties of PLA, i.e., morphological characteristics of the microstructure, chemical composition and thermal stability of the biopolymer. The evaluation of quantitative and qualitative changes in the genetic diversity of bacterial communities, performed using the state-of-the-art next generation sequencing (NGS) technique, revealed that the material significantly enhanced bacterial proliferation; however, it does not change microbiome biodiversity, as also confirmed via statistical analysis. More intense microbial proliferation (compared to the control sample, without PLA and not digested, CW-control, CW-confectionery waste) may be indicative of the dual role of the biopolymer-support and medium. Actinobacteria (34.87%) were the most abundant cluster in the CW-control, while the most dominant cluster in digested samples was firmicutes: in the sample without the addition of the carrier (CW-dig.) it was 68.27%, and in the sample with the addition of the carrier (CW + PLA) it was only 26.45%, comparable to the control sample (CW-control)-19.45%. Interestingly, the number of proteobacteria decreased in the CW-dig. sample (17.47%), but increased in the CW + PLA sample (39.82%) compared to the CW-control sample (32.70%). The analysis of biofilm formation dynamics using the BioFlux microfluidic system shows a significantly faster growth of the biofilm surface area for the CW + PLA sample. This information was complemented by observations of the morphological characteristics of the microorganisms using fluorescence microscopy. The images of the CW + PLA sample showed carrier sections covered with microbial consortia.
Collapse
Affiliation(s)
- Agnieszka A Pilarska
- Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, Piątkowska 94A, 60-649 Poznan, Poland
| | - Anna Marzec-Grządziel
- Department of Agriculture Microbiology, Institute of Soil Science and Plant Cultivation-State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Tytusa Chałubińskiego 4, 50-376 Wroclaw, Poland
| | - Krzysztof Pilarski
- Department of Biosystems Engineering, Poznań University of Life Sciences, Wojska Polskiego 50, 60-627 Poznan, Poland
| | - Agnieszka Wolna-Maruwka
- Department of Soil Science and Microbiology, Poznań University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| | - Adrianna Kubiak
- Department of Soil Science and Microbiology, Poznań University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| | - Tomasz Kałuża
- Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, Piątkowska 94A, 60-649 Poznan, Poland
| | - Tomasz Kulupa
- Department of Hydraulic and Sanitary Engineering, Poznań University of Life Sciences, Piątkowska 94A, 60-649 Poznan, Poland
| |
Collapse
|
7
|
Okamoto K, Kudo D, Phuong DND, Iwamoto Y, Watanabe K, Yoshioka Y, Ariyoshi W, Yamasaki R. Magnesium Hydroxide Nanoparticles Inhibit the Biofilm Formation of Cariogenic Microorganisms. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050864. [PMID: 36903742 PMCID: PMC10005196 DOI: 10.3390/nano13050864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 06/01/2023]
Abstract
Although various caries-preventive agents have been developed, dental caries is still a leading global disease, mostly caused by biological factors such as mutans streptococci. Magnesium hydroxide nanoparticles have been reported to exhibit antibacterial effects; however, they are rarely used in oral care practical applications. In this study, we examined the inhibitory effect of magnesium hydroxide nanoparticles on biofilm formation by Streptococcus mutans and Streptococcus sobrinus-two typical caries-causing bacteria. Three different sizes of magnesium hydroxide nanoparticles (NM80, NM300, and NM700) were studied, all of which inhibited biofilm formation. The results showed that the nanoparticles were important for the inhibitory effect, which was not influenced by pH or the presence of magnesium ions. We also determined that the inhibition process was mainly contact inhibition and that medium (NM300) and large (NM700) sizes were particularly effective in this regard. The findings of our study demonstrate the potential applications of magnesium hydroxide nanoparticles as caries-preventive agents.
Collapse
Affiliation(s)
- Kentaro Okamoto
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan
- Division of Developmental Stomatognathic Function Science, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan
| | - Daisuke Kudo
- SETOLAS Holdings Inc., Hayashida-cho, Sakaide, Kagawa 762-0012, Japan
| | | | - Yoshihito Iwamoto
- SETOLAS Holdings Inc., Hayashida-cho, Sakaide, Kagawa 762-0012, Japan
| | - Koji Watanabe
- Division of Developmental Stomatognathic Function Science, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan
| | - Yoshie Yoshioka
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan
| | - Ryota Yamasaki
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka 803-8580, Japan
- Collaborative Research Centre for Green Materials on Environmental Technology, Kyushu Institute of Technology, 1-1 Sensui-chou, Tobata-ku, Kitakyushu, Fukuoka 804-8550, Japan
| |
Collapse
|
8
|
Yeo WWY, Maran S, Kong ASY, Cheng WH, Lim SHE, Loh JY, Lai KS. A Metal-Containing NP Approach to Treat Methicillin-Resistant Staphylococcus aureus (MRSA): Prospects and Challenges. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175802. [PMID: 36079184 PMCID: PMC9456709 DOI: 10.3390/ma15175802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 06/01/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of pneumonia in humans, and it is associated with high morbidity and mortality rates, especially in immunocompromised patients. Its high rate of multidrug resistance led to an exploration of novel antimicrobials. Metal nanoparticles have shown potent antibacterial activity, thus instigating their application in MRSA. This review summarizes current insights of Metal-Containing NPs in treating MRSA. This review also provides an in-depth appraisal of opportunities and challenges in utilizing metal-NPs to treat MRSA.
Collapse
Affiliation(s)
- Wendy Wai Yeng Yeo
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Sathiya Maran
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Amanda Shen-Yee Kong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Malaysia
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Jiun-Yan Loh
- Centre of Research for Advanced Aquaculture (COORA), UCSI University, Cheras 56000, Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| |
Collapse
|
9
|
Quantitative and Qualitative Changes in the Genetic Diversity of Bacterial Communities in Anaerobic Bioreactors with the Diatomaceous Earth/Peat Cell Carrier. Cells 2022; 11:cells11162571. [PMID: 36010646 PMCID: PMC9406963 DOI: 10.3390/cells11162571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
This paper analyses the impact of the diatomaceous earth/peat (DEP; 3:1) microbial carrier on changes in the bacterial microbiome and the development of biofilm in the anaerobic digestion (AD) of confectionery waste, combined with digested sewage sludge as inoculum. The physicochemical properties of the carrier material are presented, with particular focus on its morphological and dispersion characteristics, as well as adsorption and thermal properties. In this respect, the DEP system was found to be a suitable carrier for both mesophilic and thermophilic AD. The evaluation of quantitative and qualitative changes in the genetic diversity of bacterial communities, carried out using next-generation sequencing (NGS), showed that the material has a modifying effect on the bacterial microbiome. While Actinobacteria was the most abundant cluster in the WF-control sample (WF—waste wafers), Firmicutes was the dominant cluster in the digested samples without the carrier (WF-dig.; dig.—digested) and with the carrier (WF + DEP). The same was true for the count of Proteobacteria, which decreased twofold during biodegradation in favor of Synergistetes. The Syntrophomonas cluster was identified as the most abundant genus in the two samples, particularly in WF + DEP. This information was supplemented by observations of morphological features of microorganisms carried out using fluorescence microscopy. The biodegradation process itself had a significant impact on changes in the microbiome of samples taken from anaerobic bioreactors, reducing its biodiversity. As demonstrated by the results of this innovative method, namely the BioFlux microfluidic flow system, the decrease in the number of taxa in the digested samples and the addition of DEP contributed to the microbial adhesion in the microfluidic system and the formation of a stable biofilm.
Collapse
|
10
|
In Silico Contact Pressure of Metal-on-Metal Total Hip Implant with Different Materials Subjected to Gait Loading. METALS 2022. [DOI: 10.3390/met12081241] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The use of material for implant bearing has a vital role in minimizing failures that endanger implant recipients. Evaluation of contact pressure of bearing material can be the basis for material selection and have correlations with wear that contribute to the need of revision operations. The current paper aims to investigate three different metallic materials, namely cobalt chromium molybdenum (CoCrMo), stainless steel 316L (SS 316L), and titanium alloy (Ti6Al4V) for application in metal-on-metal bearing of total hip implant in terms of contact pressure. In silico model based on finite element simulation has been considered to predict contact pressure of metal-on-metal bearings under normal walking conditions. It is found that the use of Ti6Al-4V-on-Ti6Al4V is superior in its ability to reduce contact pressure by more than 35% compared to the other studied metal-on-metal couple bearings.
Collapse
|
11
|
Morphological Changes, Antibacterial Activity, and Cytotoxicity Characterization of Hydrothermally Synthesized Metal Ions-Incorporated Nanoapatites for Biomedical Application. Pharmaceuticals (Basel) 2022; 15:ph15070885. [PMID: 35890183 PMCID: PMC9315733 DOI: 10.3390/ph15070885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023] Open
Abstract
The objective of this study was to prepare hydroxyapatite (HA) with potential antibacterial activity against gram-negative and gram-positive bacteria by incorporating different atomic ratios of Cu2+ (0.1–1.0%), Mg2+ (1.0–7.0%), and Zn2+ (1.0–7.0%) to theoretically replace Ca2+ ions during the hydrothermal synthesis of grown precipitated HA nanorods. This study highlights the role of comparing different metal ions on synthetic nanoapatite in regulating the antibacterial properties and toxicity. The comparisons between infrared spectra and between diffractograms have confirmed that metal ions do not affect the formation of HA phases. The results show that after doped Cu2+, Mg2+, and Zn2+ ions replace Ca2+, the ionic radius is almost the same, but significantly smaller than that of the original Ca2+ ions, and the substitution effect causes the lattice distance to change, resulting in crystal structure distortion and reducing crystallinity. The reduction in the length of the nanopatites after the incorporation of Cu2+, Mg2+, and Zn2+ ions confirmed that the metal ions were mainly substituted during the growth of the rod-shape nanoapatite Ca2+ distributed along the longitudinal site. The antibacterial results show that nanoapatite containing Cu2+ (0.1%), Mg2+ (3%), and Zn2+ (5–7%) has obvious and higher antibacterial activity against gram-positive bacteria Staphylococcus aureus within 2 days. The antibacterial effect against the gram-negative bacillus Escherichia coli is not as pronounced as against Staphylococcus aureus. The antibacterial effect of Cu2+ substituted Ca2+ with an atomic ratio of 0.1~1.0% is even better than that of Mg2+- and Zn2+- doped with 1~7% groups. In terms of cytotoxicity, nanoapatites with Cu2+ (~0.2%) exhibit cytotoxicity, whereas Mg2+- (1–5%) and Zn2+- (~1%) doped nanoapatites are biocompatible at low concentrations but become cytotoxic as ionic concentration increases. The results show that the hydrothermally synthesized nanoapatite combined with Cu2+ (0.2%), Mg2+ (3%), and Zn2+ (3%) exhibits low toxicity and high antibacterial activity, which provides a good prospect for bypassing antibiotics for future biomedical applications.
Collapse
|