1
|
Lv L, Yang C, Zhang X, Chen T, Luo M, Yu G, Chen Q. Autophagy-related protein PlATG2 regulates the vegetative growth, sporangial cleavage, autophagosome formation, and pathogenicity of peronophythora litchii. Virulence 2024; 15:2322183. [PMID: 38438325 PMCID: PMC10913709 DOI: 10.1080/21505594.2024.2322183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/18/2024] [Indexed: 03/06/2024] Open
Abstract
Autophagy is an intracellular degradation process that is important for the development and pathogenicity of phytopathogenic fungi and for the defence response of plants. However, the molecular mechanisms underlying autophagy in the pathogenicity of the plant pathogenic oomycete Peronophythora litchii, the causal agent of litchi downy blight, have not been well characterized. In this study, the autophagy-related protein ATG2 homolog, PlATG2, was identified and characterized using a CRISPR/Cas9-mediated gene replacement strategy in P. litchii. A monodansylcadaverine (MDC) staining assay indicated that deletion of PlATG2 abolished autophagosome formation. Infection assays demonstrated that ΔPlatg2 mutants showed significantly impaired pathogenicity in litchi leaves and fruits. Further studies have revealed that PlATG2 participates in radial growth and asexual/sexual development of P. litchii. Moreover, zoospore release and cytoplasmic cleavage of sporangia were considerably lower in the ΔPlatg2 mutants than in the wild-type strain by FM4-64 staining. Taken together, our results revealed that PlATG2 plays a pivotal role in vegetative growth, sporangia and oospore production, zoospore release, sporangial cleavage, and plant infection of P. litchii. This study advances our understanding of the pathogenicity mechanisms of the phytopathogenic oomycete P. litchii and is conducive to the development of effective control strategies.
Collapse
Affiliation(s)
- Lin Lv
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Chengdong Yang
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xue Zhang
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Taixu Chen
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Manfei Luo
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Ge Yu
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Qinghe Chen
- Hainan Yazhou Bay Seed Laboratory, College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
2
|
Situ J, Song Y, Feng D, Wan L, Li W, Ning Y, Huang W, Li M, Xi P, Deng Y, Jiang Z, Kong G. Oomycete pathogen pectin acetylesterase targets host lipid transfer protein to reduce salicylic acid signaling. PLANT PHYSIOLOGY 2024; 194:1779-1793. [PMID: 38039157 DOI: 10.1093/plphys/kiad638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 12/03/2023]
Abstract
During initial stages of microbial invasion, the extracellular space (apoplast) of plant cells is a vital battleground between plants and pathogens. The oomycete plant pathogens secrete an array of apoplastic carbohydrate active enzymes, which are central molecules for understanding the complex plant-oomycete interactions. Among them, pectin acetylesterase (PAE) plays a critical role in the pathogenesis of plant pathogens including bacteria, fungi, and oomycetes. Here, we demonstrated that Peronophythora litchii (syn. Phytophthora litchii) PlPAE5 suppresses litchi (Litchi chinensis) plant immunity by interacting with litchi lipid transfer protein 1 (LcLTP1). The LcLTP1-binding activity and virulence function of PlPAE5 depend on its PAE domain but not on its PAE activity. The high expression of LcLTP1 enhances plant resistance to oomycete and fungal pathogens, and this disease resistance depends on BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1 (BAK1) and Suppressor of BIR1 (SOBIR1) in Nicotiana benthamiana. LcLTP1 activates the plant salicylic acid (SA) signaling pathway, while PlPAE5 subverts the LcLTP1-mediated SA signaling pathway by destabilizing LcLTP1. Conclusively, this study reports a virulence mechanism of oomycete PAE suppressing plant LTP-mediated SA immune signaling and will be instrumental for boosting plant resistance breeding.
Collapse
Affiliation(s)
- Junjian Situ
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Yu Song
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Dinan Feng
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Lang Wan
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Wen Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Yue Ning
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Weixiong Huang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Minhui Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Pinggen Xi
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Yizhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zide Jiang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Guanghui Kong
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Yu G, Li W, Yang C, Zhang X, Luo M, Chen T, Wang X, Wang R, Chen Q. PlAtg8-mediated autophagy regulates vegetative growth, sporangial cleavage, and pathogenesis in Peronophythora litchii. Microbiol Spectr 2024; 12:e0353123. [PMID: 38084976 PMCID: PMC10783124 DOI: 10.1128/spectrum.03531-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/13/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Peronophythora litchii is the pathogen of litchi downy blight, which is the most serious disease in litchi. Autophagy is an evolutionarily conserved catabolic process in eukaryotes. Atg8 is a core protein of the autophagic pathway, which modulates growth and pathogenicity in the oomycete P. litchii. In P. litchii, CRISPR/Cas9-mediated knockout of the PlATG8 impaired autophagosome formation. PlATG8 knockout mutants exhibited attenuated colony expansion, sporangia production, zoospore discharge, and virulence on litchi leaves and fruits. The reduction in zoospore release was likely underpinned by impaired sporangial cleavage. Thus, in addition to governing autophagic flux, PlAtg8 is indispensable for vegetative growth and infection of P. litchii.
Collapse
Affiliation(s)
- Ge Yu
- School of Tropical Agriculture and Forestry, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Wenqiang Li
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Chengdong Yang
- School of Tropical Agriculture and Forestry, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Xue Zhang
- School of Tropical Agriculture and Forestry, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Manfei Luo
- School of Tropical Agriculture and Forestry, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Taixu Chen
- School of Tropical Agriculture and Forestry, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Xuejian Wang
- School of Tropical Agriculture and Forestry, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Rongbo Wang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Qinghe Chen
- School of Tropical Agriculture and Forestry, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| |
Collapse
|
4
|
Yang J, Qiu L, Mei Q, Sun Y, Li N, Gong X, Ma F, Mao K. MdHB7-like positively modulates apple salt tolerance by promoting autophagic activity and Na + efflux. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:669-689. [PMID: 37471682 DOI: 10.1111/tpj.16395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Salt stress adversely affects the yield and quality of crops and limits their geographical distribution. Studying the functions and regulatory mechanisms of key genes in the salt stress response is important for breeding crops with enhanced stress resistance. Autophagy plays an important role in modulating the tolerance of plants to various types of abiotic stressors. However, the mechanisms underlying salt-induced autophagy are largely unknown. Cation/Ca2+ exchanger proteins enhance apple salt tolerance by inhibiting Na+ accumulation but the mechanism underlying the response to salt stress remains unclear. Here, we show that the autophagy-related gene MdATG18a modulated apple salt tolerance. Under salt stress, the autophagic activity, proline content, and antioxidant enzyme activities were higher and Na+ accumulation was lower in MdATG18a-overexpressing transgenic plants than in control plants. The use of an autophagy inhibitor during the salt treatment demonstrated that the regulatory function of MdATG18a depended on autophagy. The yeast-one-hybrid assay revealed that the homeodomain-leucine zipper (HD-Zip) transcription factor MdHB7-like directly bound to the MdATG18a promoter. Transcriptional regulation and genetic analyses showed that MdHB7-like enhanced salt-induced autophagic activity by promoting MdATG18a expression. The analysis of Na+ efflux rate in transgenic yeast indicated that MdCCX1 expression significantly promoted Na+ efflux. Promoter binding, transcriptional regulation, and genetic analyses showed that MdHB7-like promoted Na+ efflux and apple salt tolerance by directly promoting MdCCX1 expression, which was independent of the autophagy pathway. Overall, our findings provide insight into the mechanism underlying MdHB7-like-mediated salt tolerance in apple through the MdHB7-like-MdATG18a and MdHB7-like-MdCCX1 modules. These results will aid future studies on the mechanisms underlying stress-induced autophagy and the regulation of stress tolerance in plants.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lina Qiu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Quanlin Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunxia Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Na Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
5
|
Ru B, Hao X, Li W, Peng Q, Miao J, Liu X. A Novel FYVE Domain-Containing Protein Kinase, PsZFPK1, Plays a Critical Role in Vegetative Growth, Sporangium Formation, Oospore Production, and Virulence in Phytophthora sojae. J Fungi (Basel) 2023; 9:709. [PMID: 37504698 PMCID: PMC10381902 DOI: 10.3390/jof9070709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Proteins containing both FYVE and serine/threonine kinase catalytic (STKc) domains are exclusive to protists. However, the biological function of these proteins in oomycetes has rarely been reported. In the Phytophthora sojae genome database, we identified five proteins containing FYVE and STKc domains, which we named PsZFPK1, PsZFPK2, PsZFPK3, PsZFPK4, and PsZFPK5. In this study, we characterized the biological function of PsZFPK1 using a CRISPR/Cas9-mediated gene replacement system. Compared with the wild-type strain, P6497, the PsZFPK1-knockout mutants exhibited significantly reduced growth on a nutrient-rich V8 medium, while a more pronounced defect was observed on a nutrient-poor Plich medium. The PsZFPK1-knockout mutants also showed a significant increase in sporangium production. Furthermore, PsZFPK1 was found to be essential for oospore production and complete virulence but dispensable for the stress response in P. sojae. The N-terminal region, FYVE and STKc domains, and T602 phosphorylation site were found to be vital for the function of PsZFPK1. Conversely, these domains were not required for the localization of PsZFPK1 protein in the cytoplasm. Our results demonstrate that PsZFPK1 plays a critical role in vegetative growth, sporangium formation, oospore production, and virulence in P. sojae.
Collapse
Affiliation(s)
- Binglu Ru
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
| | - Xinchang Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
| | - Wenhao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
| | - Qin Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
| | - Jianqiang Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China
| |
Collapse
|
6
|
Gu L, Wang Y, Xie S, Liu Y, Yan J, Yin W, Luo C. UvATG6 Interacts with BAX Inhibitor 1 Proteins and Plays Critical Roles in Growth, Conidiation, and Virulence in Ustilaginoidea virens. Microbiol Spectr 2023; 11:e0489822. [PMID: 37102873 PMCID: PMC10269921 DOI: 10.1128/spectrum.04898-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
Autophagy and apoptosis are evolutionarily conserved catabolic processes involved in regulating development and cellular homeostasis. Bax inhibitor 1 (BI-1) and autophagy protein 6 (ATG6) perform essential functions in these roles, such as cellular differentiation and virulence in various filamentous fungi. However, the functions of ATG6 and BI-1 proteins in development and virulence in the rice false smut fungus Ustilaginoidea virens are still poorly understood. In this study, UvATG6 was characterized in U. virens. The deletion of UvATG6 almost abolished autophagy in U. virens and reduced growth, conidial production and germination, and virulence. Stress tolerance assays showed that UvATG6 mutants were sensitive to hyperosmotic, salt, and cell wall integrity stresses but were insensitive to oxidative stress. Furthermore, we found that UvATG6 interacted with UvBI-1 or UvBI-1b and suppressed Bax-induced cell death. We previously found that UvBI-1 could suppress Bax-induced cell death and was a negative regulator of mycelial growth and conidiation. Unlike UvBI-1, UvBI-1b could not suppress cell death. UvBI-1b-deleted mutants exhibited decreased growth and conidiation, while the UvBI-1 and UvBI-1b double deletion reduced the phenotype, indicating that UvBI-1 and UvBI-1b antagonistically regulate mycelial growth and conidiation. In addition, the UvBI-1b and double mutants exhibited decreased virulence. Our results provide evidence of the cross talk of autophagy and apoptosis in U. virens and give clues for studying other phytopathogenic fungi. IMPORTANCE Ustilaginoidea virens causes destructive panicle disease in rice, significantly threatening agricultural production. UvATG6 is required for autophagy and contributes to growth, conidiation, and virulence in U. virens. Additionally, it interacts with the Bax inhibitor 1 proteins UvBI-1 and UvBI-1b. UvBI-1 suppresses cell death induced by Bax, unlike UvBI-1b. UvBI-1 negatively regulates growth and conidiation, while UvBI-1b is required for these phenotypes. These results indicate that UvBI-1 and UvBI-1b may antagonistically regulate growth and conidiation. In addition, both of them contribute to virulence. Additionally, our results suggest cross talk between autophagy and apoptosis, contributing to the development, adaptability, and virulence of U. virens.
Collapse
Affiliation(s)
- Lifan Gu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yufu Wang
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Songlin Xie
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yueran Liu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiali Yan
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weixiao Yin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chaoxi Luo
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Situ J, Xi P, Lin L, Huang W, Song Y, Jiang Z, Kong G. Signal and regulatory mechanisms involved in spore development of Phytophthora and Peronophythora. Front Microbiol 2022; 13:984672. [PMID: 36160220 PMCID: PMC9500583 DOI: 10.3389/fmicb.2022.984672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Oomycetes cause hundreds of destructive plant diseases, threatening agricultural production and food security. These fungus-like eukaryotes show multiple sporulation pattern including the production of sporangium, zoospore, chlamydospore and oospore, which are critical for their survival, dispersal and infection on hosts. Recently, genomic and genetic technologies have greatly promoted the study of molecular mechanism of sporulation in the genus Phytophthora and Peronophythora. In this paper, we characterize the types of asexual and sexual spores and review latest progress of these two genera. We summarize the genes encoding G protein, mitogen-activated protein kinase (MAPK) cascade, transcription factors, RNA-binding protein, autophagy-related proteins and so on, which function in the processes of sporangium production and cleavage, zoospore behaviors and oospore formation. Meanwhile, various molecular, chemical and electrical stimuli in zoospore behaviors are also discussed. Finally, with the molecular mechanism of sporulation in Phytophthora and Peronophythora is gradually being revealed, we propose some thoughts for the further research and provide the alternative strategy for plant protection against phytopathogenic oomycetes.
Collapse
Affiliation(s)
- Junjian Situ
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Long Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Weixiong Huang
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yu Song
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Guanghui Kong
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
- *Correspondence: Guanghui Kong,
| |
Collapse
|