1
|
Dominguez PG, Gutierrez AV, Fass MI, Filippi CV, Vera P, Puebla A, Defacio RA, Paniego NB, Lia VV. Genome-Wide Diversity in Lowland and Highland Maize Landraces From Southern South America: Population Genetics Insights to Assist Conservation. Evol Appl 2024; 17:e70047. [PMID: 39628628 PMCID: PMC11609054 DOI: 10.1111/eva.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
Maize (Zea mays ssp. mays L.) landraces are traditional American crops with high genetic variability that conform a source of original alleles for conventional maize breeding. Northern Argentina, one the southernmost regions of traditional maize cultivation in the Americas, harbours around 57 races traditionally grown in two regions with contrasting environmental conditions, namely, the Andean mountains in the Northwest and the tropical grasslands and Atlantic Forest in the Northeast. These races encounter diverse threats to their genetic diversity and persistence in their regions of origin, with climate change standing out as one of the major challenges. In this work, we use genome-wide SNPs derived from ddRADseq to study the genetic diversity of individuals representing the five groups previously described for this area. This allowed us to distinguish two clearly differentiated gene pools, the highland northwestern maize (HNWA) and the floury northeastern maize (FNEA). Subsequently, we employed essential biodiversity variables at the genetic level, as proposed by the Group on Earth Observations Biodiversity Observation Network (GEO BON), to evaluate the conservation status of these two groups. This assessment encompassed genetic diversity (Pi), inbreeding coefficient (F) and effective population size (Ne). FNEA showed low Ne values and high F values, while HNWA showed low Ne values and low Pi values, indicating that further genetic erosion is imminent for these landraces. Outlier detection methods allowed identification of putative adaptive genomic regions, consistent with previously reported flowering-time loci and chromosomal regions displaying introgression from the teosinte Zea mays ssp. mexicana. Finally, species distribution models were obtained for two future climate scenarios, showing a notable reduction in the potential planting area of HNWA and a shift in the cultivation areas of FNEA. These results suggest that maize landraces from Northern Argentina may be unable to cope with climate change. Therefore, active conservation policies are advisable.
Collapse
Affiliation(s)
- Pia Guadalupe Dominguez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Angela Veronica Gutierrez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Monica Irina Fass
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Carla Valeria Filippi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de AgronomíaUniversidad de la RepúblicaMontevideoUruguay
| | - Pablo Vera
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Andrea Puebla
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Raquel Alicia Defacio
- Instituto Nacional de Tecnología Agropecuaria (INTA)Estación Experimental Agropecuaria PergaminoBuenos AiresArgentina
| | - Norma Beatriz Paniego
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
| | - Veronica Viviana Lia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
- Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
2
|
Awadalla RA, Sallam A, Börner A, Elshamy MM, Heikal YM. The role of salicylic acid in modulating phenotyping in spring wheat varieties for mitigating drought stress. BMC PLANT BIOLOGY 2024; 24:948. [PMID: 39394092 PMCID: PMC11468136 DOI: 10.1186/s12870-024-05620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/23/2024] [Indexed: 10/13/2024]
Abstract
Climate change-related droughts that recur frequently are one of the biggest obstacles to wheat (Triticum aestivum L.) productivity. Worldwide, attempts are being done to establish drought-resistant cultivars. However, progress is slow since drought tolerance is a complex trait controlled by numerous genes, and its expression is influenced by the environment. Phenotypic, biochemical physiological, and genotyping approaches are highlighted as critical research components for leveraging genetic variation in eight wheat genotypes. Treatments included eight spring wheat genotypes (IPK_040, IPK_046, IPK_050, IPK_071, IPK_105, WAS_007, WAS_024 and WAS_031), normal irrigation (NI), drought stress (D) (30% field capacity (FC)), normal irrigation with 0.5 mM SA (NSA), and drought treated with SA (DSA). The results revealed that there was a reduction in relative water content, an increase membrane leakage, and leaf chlorophyll content under drought stress. SA induced the defense responses against drought by increasing the osmolytes and the antioxidative enzymes activities. Compared to the NI group, the DSA treatment improved the water regulation, antioxidant capacity, and drought stress resistance. SA significantly reduced the deleterious effects of water stress on phenotyping more in WAS_ 024 and IPK_ 105 genotypes. The most responsive genotypes to salicylic acid were IPK_ 046 among the IPK genotypes, whereas WAS_031 genotype was amongst WAS genotypes based on the morpho-physiological traits. The findings of this study give a solid foundation for assessing drought resistance in T. aestivum and developing cultivation-specific water management methods.
Collapse
Affiliation(s)
- Rawan A Awadalla
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| | - Ahmed Sallam
- Department Genebank, Resources Genetics and Reproduction, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D, Stadt Seeland, 06466, Germany
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Andreas Börner
- Department Genebank, Resources Genetics and Reproduction, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben D, Stadt Seeland, 06466, Germany
| | - Maha M Elshamy
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Yasmin M Heikal
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
3
|
Chang-Brahim I, Koppensteiner LJ, Beltrame L, Bodner G, Saranti A, Salzinger J, Fanta-Jende P, Sulzbachner C, Bruckmüller F, Trognitz F, Samad-Zamini M, Zechner E, Holzinger A, Molin EM. Reviewing the essential roles of remote phenotyping, GWAS and explainable AI in practical marker-assisted selection for drought-tolerant winter wheat breeding. FRONTIERS IN PLANT SCIENCE 2024; 15:1319938. [PMID: 38699541 PMCID: PMC11064034 DOI: 10.3389/fpls.2024.1319938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/13/2024] [Indexed: 05/05/2024]
Abstract
Marker-assisted selection (MAS) plays a crucial role in crop breeding improving the speed and precision of conventional breeding programmes by quickly and reliably identifying and selecting plants with desired traits. However, the efficacy of MAS depends on several prerequisites, with precise phenotyping being a key aspect of any plant breeding programme. Recent advancements in high-throughput remote phenotyping, facilitated by unmanned aerial vehicles coupled to machine learning, offer a non-destructive and efficient alternative to traditional, time-consuming, and labour-intensive methods. Furthermore, MAS relies on knowledge of marker-trait associations, commonly obtained through genome-wide association studies (GWAS), to understand complex traits such as drought tolerance, including yield components and phenology. However, GWAS has limitations that artificial intelligence (AI) has been shown to partially overcome. Additionally, AI and its explainable variants, which ensure transparency and interpretability, are increasingly being used as recognised problem-solving tools throughout the breeding process. Given these rapid technological advancements, this review provides an overview of state-of-the-art methods and processes underlying each MAS, from phenotyping, genotyping and association analyses to the integration of explainable AI along the entire workflow. In this context, we specifically address the challenges and importance of breeding winter wheat for greater drought tolerance with stable yields, as regional droughts during critical developmental stages pose a threat to winter wheat production. Finally, we explore the transition from scientific progress to practical implementation and discuss ways to bridge the gap between cutting-edge developments and breeders, expediting MAS-based winter wheat breeding for drought tolerance.
Collapse
Affiliation(s)
- Ignacio Chang-Brahim
- Unit Bioresources, Center for Health & Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | | | - Lorenzo Beltrame
- Unit Assistive and Autonomous Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Gernot Bodner
- Department of Crop Sciences, Institute of Agronomy, University of Natural Resources and Life Sciences Vienna, Tulln, Austria
| | - Anna Saranti
- Human-Centered AI Lab, Department of Forest- and Soil Sciences, Institute of Forest Engineering, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Jules Salzinger
- Unit Assistive and Autonomous Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Phillipp Fanta-Jende
- Unit Assistive and Autonomous Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Christoph Sulzbachner
- Unit Assistive and Autonomous Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Felix Bruckmüller
- Unit Assistive and Autonomous Systems, Center for Vision, Automation & Control, AIT Austrian Institute of Technology, Vienna, Austria
| | - Friederike Trognitz
- Unit Bioresources, Center for Health & Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | | | - Elisabeth Zechner
- Verein zur Förderung einer nachhaltigen und regionalen Pflanzenzüchtung, Zwettl, Austria
| | - Andreas Holzinger
- Human-Centered AI Lab, Department of Forest- and Soil Sciences, Institute of Forest Engineering, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Eva M. Molin
- Unit Bioresources, Center for Health & Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
- Human-Centered AI Lab, Department of Forest- and Soil Sciences, Institute of Forest Engineering, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| |
Collapse
|
4
|
Zhao P, Ma X, Zhang R, Cheng M, Niu Y, Shi X, Ji W, Xu S, Wang X. Integration of genome-wide association study, linkage analysis, and population transcriptome analysis to reveal the TaFMO1-5B modulating seminal root growth in bread wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1385-1400. [PMID: 37713270 DOI: 10.1111/tpj.16432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/10/2023] [Accepted: 08/12/2023] [Indexed: 09/16/2023]
Abstract
Bread wheat, one of the keystone crops for global food security, is challenged by climate change and resource shortage. The root system plays a vital role in water and nutrient absorption, making it essential for meeting the growing global demand. Here, using an association-mapping population composed of 406 accessions, we identified QTrl.Rs-5B modulating seminal root development with a genome-wide association study and validated its genetic effects with two F5 segregation populations. Transcriptome-wide association study prioritized TaFMO1-5B, a gene encoding the flavin-containing monooxygenases, as the causal gene for QTrl.Rs-5B, whose expression levels correlate negatively with the phenotyping variations among our population. The lines silenced for TaFMO1-5B consistently showed significantly larger seminal roots in different genetic backgrounds. Additionally, the agriculture traits measured in multiple environments showed that QTrl.Rs-5B also affects yield component traits and plant architecture-related traits, and its favorable haplotype modulates these traits toward that of modern cultivars, suggesting the application potential of QTrl.Rs-5B for wheat breeding. Consistently, the frequency of the favorable haplotype of QTrl.Rs-5B increased with habitat expansion and breeding improvement of bread wheat. In conclusion, our findings identified and demonstrated the effects of QTrl.Rs-5B on seminal root development and illustrated that it is a valuable genetic locus for wheat root improvement.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiuyun Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ruize Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingzhu Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yaxin Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xue Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoming Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
5
|
Jin Y, Wang Y, Liu J, Wang F, Qiu X, Liu P. Genome-wide linkage mapping of root system architecture-related traits in common wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1274392. [PMID: 37900737 PMCID: PMC10612324 DOI: 10.3389/fpls.2023.1274392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023]
Abstract
Identifying loci for root system architecture (RSA) traits and developing available markers are crucial for wheat breeding. In this study, RSA-related traits, including total root length (TRL), total root area (TRA), and number of root tips (NRT), were evaluated in the Doumai/Shi4185 recombinant inbred line (RIL) population under hydroponics. In addition, both the RILs and parents were genotyped using the wheat 90K single-nucleotide polymorphism (SNP) array. In total, two quantitative trait loci (QTLs) each for TRL (QTRL.caas-4A.1 and QTRL.caas-4A.2), TRA (QTRA.caas-4A and QTRA.caas-4D), and NRT (QNRT.caas-5B and QNRT.caas-5D) were identified and each explaining 5.94%-9.47%, 6.85%-7.10%, and 5.91%-10.16% phenotypic variances, respectively. Among these, QTRL.caas-4A.1 and QTRA.caas-4A overlapped with previous reports, while QTRL.caas-4A.2, QTRA.caas-4D, QNRT.caas-5B, and QNRT.caas-5D were novel. The favorable alleles of QTRL.caas-4A.1, QTRA.caas-4A, and QTRA.caas-5B were contributed by Doumai, whereas the favorable alleles of QTRL.caas-4A.2, QTRA.caas-4D, and QTRA.caas-5D originated from Shi 4185. Additionally, two competitive allele-specific PCR (KASP) markers, Kasp_4A_RL (QTRA.caas-4A) and Kasp_5D_RT (QNRT.caas-5D), were developed and validated in 165 wheat accessions. This study provides new loci and available KASP markers, accelerating wheat breeding for higher yields.
Collapse
Affiliation(s)
- Yirong Jin
- Wheat Research Institute, Dezhou Academy of Agricultural Sciences, Dezhou, China
| | - Yamei Wang
- School of Agriculture, Sun Yat-sen University, Shenzhen, China
| | - Jindong Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuyan Wang
- Wheat Research Institute, Dezhou Academy of Agricultural Sciences, Dezhou, China
| | - Xiaodong Qiu
- Department of Science and Technology of Shandong Province, Jinan, China
| | - Peng Liu
- Wheat Research Institute, Dezhou Academy of Agricultural Sciences, Dezhou, China
| |
Collapse
|
6
|
Li X, Wasson AP, Zwart AB, Whan A, Ryan PR, Forrest K, Hayden M, Chin S, Richards R, Delhaize E. Physical Mapping of QTLs for Root Traits in a Population of Recombinant Inbred Lines of Hexaploid Wheat. Int J Mol Sci 2023; 24:10492. [PMID: 37445670 DOI: 10.3390/ijms241310492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Root architecture is key in determining how effective plants are at intercepting and absorbing nutrients and water. Previously, the wheat (Triticum aestivum) cultivars Spica and Maringa were shown to have contrasting root morphologies. These cultivars were crossed to generate an F6:1 population of recombinant inbred lines (RILs) which was genotyped using a 90 K single nucleotide polymorphisms (SNP) chip. A total of 227 recombinant inbred lines (RILs) were grown in soil for 21 days in replicated trials under controlled conditions. At harvest, the plants were scored for seven root traits and two shoot traits. An average of 7.5 quantitative trait loci (QTL) were associated with each trait and, for each of these, physical locations of the flanking markers were identified using the Chinese Spring reference genome. We also compiled a list of genes from wheat and other monocotyledons that have previously been associated with root growth and morphology to determine their physical locations on the Chinese Spring reference genome. This allowed us to determine whether the QTL discovered in our study encompassed genes previously associated with root morphology in wheat or other monocotyledons. Furthermore, it allowed us to establish if the QTL were co-located with the QTL identified from previously published studies. The parental lines together with the genetic markers generated here will enable specific root traits to be introgressed into elite wheat lines. Moreover, the comprehensive list of genes associated with root development, and their physical locations, will be a useful resource for researchers investigating the genetics of root morphology in cereals.
Collapse
Affiliation(s)
- Xiaoqing Li
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Anton P Wasson
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | | | - Alex Whan
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Peter R Ryan
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Kerrie Forrest
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
| | - Matthew Hayden
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Sabrina Chin
- Department of Botany, University of Wisconsin, Madison, WI 53706, USA
| | | | - Emmanuel Delhaize
- Australian Plant Phenomics Facility, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
7
|
Zia MAB, Yousaf MF, Asim A, Naeem M. An overview of genome-wide association mapping studies in Poaceae species (model crops: wheat and rice). Mol Biol Rep 2022; 49:12077-12090. [DOI: 10.1007/s11033-022-08036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
8
|
Liu W, Chen T, Liu Y, Le QT, Wang R, Lee H, Xiong L. The Plastidial DIG5 Protein Affects Lateral Root Development by Regulating Flavonoid Biosynthesis and Auxin Transport in Arabidopsis. Int J Mol Sci 2022; 23:ijms231810642. [PMID: 36142550 PMCID: PMC9501241 DOI: 10.3390/ijms231810642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
To reveal the mechanisms underlying root adaptation to drought stress, we isolated and characterized an Arabidopsis mutant, dig5 (drought inhibition of lateral root growth 5), which exhibited increased sensitivity to the phytohormone abscisic acid (ABA) for the inhibition of lateral root growth. The dig5 mutant also had fewer lateral roots under normal conditions and the aerial parts were yellowish with a lower level of chlorophylls. The mutant seedlings also displayed phenotypes indicative of impaired auxin transport, such as abnormal root curling, leaf venation defects, absence of apical hook formation, and reduced hypocotyl elongation in darkness. Auxin transport assays with [3H]-labeled indole acetic acid (IAA) confirmed that dig5 roots were impaired in polar auxin transport. Map-based cloning and complementation assays indicated that the DIG5 locus encodes a chloroplast-localized tRNA adenosine deaminase arginine (TADA) that is involved in chloroplast protein translation. The levels of flavonoids, which are naturally occurring auxin transport inhibitors in plants, were significantly higher in dig5 roots than in the wild type roots. Further investigation showed that flavonoid biosynthetic genes were upregulated in dig5. Introduction of the flavonoid biosynthetic mutation transparent testa 4 (tt4) into dig5 restored the lateral root growth of dig5. Our study uncovers an important role of DIG5/TADA in retrogradely controlling flavonoid biosynthesis and lateral root development. We suggest that the DIG5-related signaling pathways, triggered likely by drought-induced chlorophyll breakdown and leaf senescence, may potentially help the plants to adapt to drought stress through optimizing the root system architecture.
Collapse
Affiliation(s)
- Wei Liu
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- High-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Tao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yajie Liu
- Department of Biology, Hong Kong Baptist University, Kowloon Tang, Hong Kong, China
| | - Quang Tri Le
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| | - Ruigang Wang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Hojoung Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea
| | - Liming Xiong
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Department of Biology, Hong Kong Baptist University, Kowloon Tang, Hong Kong, China
- State Key Laboratory for Agribiotechnology, Chinese University of Hong Kong, Hong Kong, China
- Correspondence:
| |
Collapse
|
9
|
Ma J, Qi S, Yuan M, Zhao D, Zhang D, Feng J, Wang J, Li W, Song C, Wang T, Zeng Q, Wu J, Han D, Jiang L. A genome-wide association study revealed the genetic variation and candidate genes for grain copper content in bread wheat ( Triticum aestivum L.). Food Funct 2022; 13:5177-5188. [PMID: 35437565 DOI: 10.1039/d1fo04173h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As an essential microelement, copper plays a crucial role in the human body. However, the grains of bread wheat, a major crop food, contain a low copper content. Here, a diversity panel of 443 wheat accessions cultivated in four environments was used to analyse grain copper content by ICAP-7000, and the genetic variation in grain copper content was examined using a 660 K single nucleotide polymorphism chip. Phenotypic analysis indicated that the grain copper content varied between 2.58 mg kg-1 and 13.65 mg kg-1. A genome-wide association study identified 12 QTLs associated with grain copper content that showed significance in at least two environments on chromosomes 1A, 1D, 3D, 4A, 5A, 5D, 6B, 6D, 7A and 7D. Through haplotype analysis, the phenotypic difference between the haplotypes of three genes, TraesCS5D01G282300, TraesCS6B01G052900 and TraesCS7D01G146600, showed significance (P ⩽ 0.05) in four environments. They were considered to be important candidate genes for grain copper content in wheat. In addition, we detected that the grain copper content gradually decreased with release years among wheat accessions in China, and the percentage of favourable alleles showed a similar trend. Analysing the changes in grain copper content with yield factors, we found that the dilute effect was mainly caused by thousand kernel weight. This study provides useful information on the genetic basis for grain copper content, and thus helps in improving the wheat grain quality.
Collapse
Affiliation(s)
- Jianhui Ma
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China.
| | - Siyuan Qi
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China.
| | - Meng Yuan
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China. .,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China.
| | - Dongyang Zhao
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China.
| | - Daijing Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China.
| | - Jinyuan Feng
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China.
| | - Jianing Wang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China.
| | - Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, People's Republic of China
| | - Chengxiang Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, People's Republic of China
| | - Tianlin Wang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China.
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China.
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, People's Republic of China.
| | - Lina Jiang
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, People's Republic of China.
| |
Collapse
|