1
|
Sun C, Serra C, Kalicharan BH, Harding J, Rao M. Challenges and Considerations of Preclinical Development for iPSC-Based Myogenic Cell Therapy. Cells 2024; 13:596. [PMID: 38607035 PMCID: PMC11011706 DOI: 10.3390/cells13070596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Cell therapies derived from induced pluripotent stem cells (iPSCs) offer a promising avenue in the field of regenerative medicine due to iPSCs' expandability, immune compatibility, and pluripotent potential. An increasing number of preclinical and clinical trials have been carried out, exploring the application of iPSC-based therapies for challenging diseases, such as muscular dystrophies. The unique syncytial nature of skeletal muscle allows stem/progenitor cells to integrate, forming new myonuclei and restoring the expression of genes affected by myopathies. This characteristic makes genome-editing techniques especially attractive in these therapies. With genetic modification and iPSC lineage specification methodologies, immune-compatible healthy iPSC-derived muscle cells can be manufactured to reverse the progression of muscle diseases or facilitate tissue regeneration. Despite this exciting advancement, much of the development of iPSC-based therapies for muscle diseases and tissue regeneration is limited to academic settings, with no successful clinical translation reported. The unknown differentiation process in vivo, potential tumorigenicity, and epigenetic abnormality of transplanted cells are preventing their clinical application. In this review, we give an overview on preclinical development of iPSC-derived myogenic cell transplantation therapies including processes related to iPSC-derived myogenic cells such as differentiation, scaling-up, delivery, and cGMP compliance. And we discuss the potential challenges of each step of clinical translation. Additionally, preclinical model systems for testing myogenic cells intended for clinical applications are described.
Collapse
Affiliation(s)
- Congshan Sun
- Vita Therapeutics, Baltimore, MD 21043, USA (M.R.)
| | - Carlo Serra
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Mahendra Rao
- Vita Therapeutics, Baltimore, MD 21043, USA (M.R.)
| |
Collapse
|
2
|
Vincenten SCC, Voermans NC, Cameron D, van Engelen BGM, van Alfen N, Mul K. The complementary use of muscle ultrasound and MRI in FSHD: Early versus later disease stage follow-up. Clin Neurophysiol 2024:S1388-2457(24)00064-6. [PMID: 38521678 DOI: 10.1016/j.clinph.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVES Muscle MRI and ultrasound provide complementary techniques for characterizing muscle changes and tracking disease progression in facioscapulohumeral muscular dystrophy (FSHD). In this cohort study, we provide longitudinal data that compares both imaging modalities head-to-head. METHODS FSHD patients were assessed at baseline and after five years. Standardized muscle MRI and ultrasound images of five leg muscles were assessed bilaterally. Fat replacement was quantified using MRI fat-fraction (FF) and ultrasound Heckmatt and echogenicity z-scores (EZ-score). Muscle edema was evaluated using T2-weighted turbo inversion recovery magnitude (TIRM) MRI. RESULTS Twenty FSHD patients were included. Muscles with normal baseline imaging showed increases in ultrasound EZ-scores (≥1; in 17%) more often than MRI FF increases (≥10%; in 7%) over time. Muscles with only baseline ultrasound abnormalities often showed considerable FF increases (in 22%), and TIRM positivity at follow-up (44%). Muscles with increased FF at baseline showed stable (80%) or increasing FF (20%) over time. EZ-scores of those muscles either increased (23%), decreased (33%) or remained stable (44%). CONCLUSIONS Muscle ultrasound may capture accelerated pathological muscle changes in FSHD in early disease, while muscle MRI appears better-suited to detecting and monitoring pathology in later stages. SIGNIFICANCE Our results help establish each techniques' optimal use as imaging biomarker.
Collapse
Affiliation(s)
- Sanne C C Vincenten
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Clinical Neuromuscular Imaging Group, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Donnie Cameron
- Clinical Neuromuscular Imaging Group, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nens van Alfen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Clinical Neuromuscular Imaging Group, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Engquist EN, Greco A, Joosten LAB, van Engelen BGM, Zammit PS, Banerji CRS. FSHD muscle shows perturbation in fibroadipogenic progenitor cells, mitochondrial function and alternative splicing independently of inflammation. Hum Mol Genet 2024; 33:182-197. [PMID: 37856562 PMCID: PMC10772042 DOI: 10.1093/hmg/ddad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable myopathy. FSHD is highly heterogeneous, with patients following a variety of clinical trajectories, complicating clinical trials. Skeletal muscle in FSHD undergoes fibrosis and fatty replacement that can be accelerated by inflammation, adding to heterogeneity. Well controlled molecular studies are thus essential to both categorize FSHD patients into distinct subtypes and understand pathomechanisms. Here, we further analyzed RNA-sequencing data from 24 FSHD patients, each of whom donated a biopsy from both a non-inflamed (TIRM-) and inflamed (TIRM+) muscle, and 15 FSHD patients who donated peripheral blood mononucleated cells (PBMCs), alongside non-affected control individuals. Differential gene expression analysis identified suppression of mitochondrial biogenesis and up-regulation of fibroadipogenic progenitor (FAP) gene expression in FSHD muscle, which was particularly marked on inflamed samples. PBMCs demonstrated suppression of antigen presentation in FSHD. Gene expression deconvolution revealed FAP expansion as a consistent feature of FSHD muscle, via meta-analysis of 7 independent transcriptomic datasets. Clustering of muscle biopsies separated patients in an unbiased manner into clinically mild and severe subtypes, independently of known disease modifiers (age, sex, D4Z4 repeat length). Lastly, the first genome-wide analysis of alternative splicing in FSHD muscle revealed perturbation of autophagy, BMP2 and HMGB1 signalling. Overall, our findings reveal molecular subtypes of FSHD with clinical relevance and identify novel pathomechanisms for this highly heterogeneous condition.
Collapse
Affiliation(s)
- Elise N Engquist
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
| | - Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
| | - Christopher R S Banerji
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
- The Alan Turing Institute, The British Library, 96 Euston Road, London NW1 2DB, United Kingdom
| |
Collapse
|
4
|
Daman K, Yan J, Burzenski LM, Kady J, Shultz LD, Brehm MA, Emerson CP. A human immune/muscle xenograft model of FSHD muscle pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567590. [PMID: 38014123 PMCID: PMC10680822 DOI: 10.1101/2023.11.17.567590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Facioscapulohumeral muscular dystrophy (FSHD) disease progression is associated with muscle inflammation, although its role in FSHD muscle pathology is unknown. Methods We have developed a novel humanized mouse strain, NSG-SGM3-W41, that supports the co- engraftment of human hematopoietic stem cells (HSCs) and muscle myoblasts as an experimental model to investigate the role of innate immunity in FSHD muscle pathology. Results The NSG-SGM3-W41 mouse supports the selective expansion of human innate immune cell lineages following engraftment of human HSCs and the co-engraftment and differentiation of patient-derived FSHD or control muscle myoblasts. Immunohistological and NanoString RNA expression assays establish that muscle xenografts from three FSHD subjects were immunogenic compared to those from unaffected first-degree relatives. FSHD muscle xenografts preferentially accumulated human macrophages and B cells and expressed early complement genes of the classical and alternative pathways including complement factor C3 protein, which is a mediator of early complement function through opsonization to mark damaged cells for macrophage engulfment. FSHD muscle xenografts also underwent immune donor dependent muscle turnover as assayed by human spectrin β1 immunostaining of muscle fibers and by NanoString RNA expression assays of muscle differentiation genes. Conclusions The NSG-SGM3-W41 mouse provides an experimental model to investigate the role of innate immunity and complement in FSHD muscle pathology and to develop FSHD therapeutics targeting DUX4 and the innate immunity inflammatory responses.
Collapse
|
5
|
Bosnakovski D, Toso EA, Ener ET, Gearhart MD, Yin L, Lüttmann FF, Magli A, Shi K, Kim J, Aihara H, Kyba M. Antagonism among DUX family members evolved from an ancestral toxic single homeodomain protein. iScience 2023; 26:107823. [PMID: 37744032 PMCID: PMC10514451 DOI: 10.1016/j.isci.2023.107823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/07/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023] Open
Abstract
Double homeobox (DUX) genes are unique to eutherian mammals, expressed transiently during zygotic genome activation (ZGA) and involved in facioscapulohumeral muscular dystrophy (FSHD) and cancer when misexpressed. We evaluate the 3 human DUX genes and the ancestral single homeobox gene sDUX from the non-eutherian mammal, platypus, and find that DUX4 cytotoxicity is not shared with DUXA or DUXB, but surprisingly is shared with platypus sDUX, which binds DNA as a homodimer and activates numerous ZGA genes and long terminal repeat (LTR) elements. DUXA, although transcriptionally inactive, has DNA binding overlap with DUX4, and DUXA-VP64 activates DUX4 targets and is cytotoxic. DUXA competition antagonizes the activity of DUX4 on its target genes, including in FSHD patient cells. Since DUXA is a DUX4 target gene, this competition potentiates feedback inhibition, constraining the window of DUX4 activity. The DUX gene family therefore comprises antagonistic members of opposing function, with implications for their roles in ZGA, FSHD, and cancer.
Collapse
Affiliation(s)
- Darko Bosnakovski
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erik A. Toso
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elizabeth T. Ener
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Micah D. Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lulu Yin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Alessandro Magli
- Department of Cardiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Johnny Kim
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- The Center for Cardiovascular Regeneration and Immunology at TRON – Translational Oncology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Kyba M, Bosnakovski D. Facioscapulohumeral muscular dystrophy's game of homeodomains: therapy wants a biomarker as a sword wants a whetstone. Brain Commun 2023; 5:fcad235. [PMID: 37731901 PMCID: PMC10507743 DOI: 10.1093/braincomms/fcad235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/01/2023] [Accepted: 09/01/2023] [Indexed: 09/22/2023] Open
Abstract
This scientific commentary refers to 'The FSHD muscle-blood biomarker: a circulating transcriptomic biomarker for clinical severity in facioscapulohumeral muscular dystrophy', by Banerji et al. (https://doi.org/10.1093/braincomms/fcad221).
Collapse
Affiliation(s)
- Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minnesota 55455, USA
- Department of Pediatrics, University of Minnesota, Minnesota 55455, USA
| | - Darko Bosnakovski
- Lillehei Heart Institute, University of Minnesota, Minnesota 55455, USA
- Department of Pediatrics, University of Minnesota, Minnesota 55455, USA
| |
Collapse
|
7
|
Claus C, Slavin M, Ansseau E, Lancelot C, Bah K, Lassche S, Fiévet M, Greco A, Tomaiuolo S, Tassin A, Dudome V, Kusters B, Declèves AE, Laoudj-Chenivesse D, van Engelen BGM, Nonclercq D, Belayew A, Kalisman N, Coppée F. The double homeodomain protein DUX4c is associated with regenerating muscle fibers and RNA-binding proteins. Skelet Muscle 2023; 13:5. [PMID: 36882853 PMCID: PMC9990282 DOI: 10.1186/s13395-022-00310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/30/2022] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND We have previously demonstrated that double homeobox 4 centromeric (DUX4C) encoded for a functional DUX4c protein upregulated in dystrophic skeletal muscles. Based on gain- and loss-of-function studies we have proposed DUX4c involvement in muscle regeneration. Here, we provide further evidence for such a role in skeletal muscles from patients affected with facioscapulohumeral muscular dystrophy (FSHD). METHODS DUX4c was studied at RNA and protein levels in FSHD muscle cell cultures and biopsies. Its protein partners were co-purified and identified by mass spectrometry. Endogenous DUX4c was detected in FSHD muscle sections with either its partners or regeneration markers using co-immunofluorescence or in situ proximity ligation assay. RESULTS We identified new alternatively spliced DUX4C transcripts and confirmed DUX4c immunodetection in rare FSHD muscle cells in primary culture. DUX4c was detected in nuclei, cytoplasm or at cell-cell contacts between myocytes and interacted sporadically with specific RNA-binding proteins involved, a.o., in muscle differentiation, repair, and mass maintenance. In FSHD muscle sections, DUX4c was found in fibers with unusual shape or central/delocalized nuclei (a regeneration feature) staining for developmental myosin heavy chain, MYOD or presenting intense desmin labeling. Some couples of myocytes/fibers locally exhibited peripheral DUX4c-positive areas that were very close to each other, but in distinct cells. MYOD or intense desmin staining at these locations suggested an imminent muscle cell fusion. We further demonstrated DUX4c interaction with its major protein partner, C1qBP, inside myocytes/myofibers that presented features of regeneration. On adjacent muscle sections, we could unexpectedly detect DUX4 (the FSHD causal protein) and its interaction with C1qBP in fusing myocytes/fibers. CONCLUSIONS DUX4c upregulation in FSHD muscles suggests it contributes not only to the pathology but also, based on its protein partners and specific markers, to attempts at muscle regeneration. The presence of both DUX4 and DUX4c in regenerating FSHD muscle cells suggests DUX4 could compete with normal DUX4c functions, thus explaining why skeletal muscle is particularly sensitive to DUX4 toxicity. Caution should be exerted with therapeutic agents aiming for DUX4 suppression because they might also repress the highly similar DUX4c and interfere with its physiological role.
Collapse
Affiliation(s)
- Clothilde Claus
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Moriya Slavin
- Department of Biological Chemistry, the Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eugénie Ansseau
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Céline Lancelot
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Karimatou Bah
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Saskia Lassche
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.,Department of Neurology, Zuyderland Medical Center, Heerlen, the Netherlands
| | - Manon Fiévet
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Sara Tomaiuolo
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Alexandra Tassin
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium.,Laboratory of Respiratory Physiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Virginie Dudome
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Benno Kusters
- Department of Pathology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Anne-Emilie Declèves
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | | | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Denis Nonclercq
- Laboratory of Histology, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Alexandra Belayew
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium
| | - Nir Kalisman
- Department of Biological Chemistry, the Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Frédérique Coppée
- Laboratory of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 6, Avenue du Champs de Mars, B-7000, Mons, Belgium.
| |
Collapse
|
8
|
Padberg GW, van Engelen BGM, Voermans NC. Facioscapulohumeral Disease as a myodevelopmental disease: Applying Ockham's razor to its various features. J Neuromuscul Dis 2023; 10:411-425. [PMID: 36872787 DOI: 10.3233/jnd-221624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an exclusively human neuromuscular disease. In the last decades the cause of FSHD was identified: the loss of epigenetic repression of the D4Z4 repeat on chromosome 4q35 resulting in inappropriate transcription of DUX4. This is a consequence of a reduction of the array below 11 units (FSHD1) or of a mutation in methylating enzymes (FSHD2). Both require the presence of a 4qA allele and a specific centromeric SSLP haplotype. Muscles become involved in a rostro-caudally order with an extremely variable progression rate. Mild disease and non-penetrance in families with affected individuals is common. Furthermore, 2% of the Caucasian population carries the pathological haplotype without clinical features of FSHD.In order to explain the various features of FSHD we applied Ockham's Razor to all possible scenarios and removed unnecessary complexities. We postulate that early in embryogenesis a few cells escape epigenetic silencing of the D4Z4 repeat. Their number is assumed to be roughly inversely related to the residual D4Z4 repeat size. By asymmetric cell division, they produce a rostro-caudal and medio-lateral decreasing gradient of weakly D4Z4-repressed mesenchymal stem cells. The gradient tapers towards an end as each cell-division allows renewed epigenetic silencing. Over time, this spatial gradient translates into a temporal gradient based on a decreasing number of weakly silenced stem cells. These cells contribute to a mildly abnormal myofibrillar structure of the fetal muscles. They also form a downward tapering gradient of epigenetically weakly repressed satellite cells. When activated by mechanical trauma, these satellite cells de-differentiate and express DUX4. When fused to myofibrils they contribute to muscle cell death in various ways. Over time and dependent on how far the gradient reaches the FSHD phenotype becomes progressively manifest. We thus hypothesize FSHD to be a myodevelopmental disease with a lifelong attempt to restore DUX4 repression.
Collapse
Affiliation(s)
- G W Padberg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Bosnakovski D, Toso EA, Ener ET, Gearhart MD, Yin L, Lüttmann FF, Magli A, Shi K, Kim J, Aihara H, Kyba M. Antagonism among DUX family members evolved from an ancestral toxic single homeodomain protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.21.524976. [PMID: 36711898 PMCID: PMC9882399 DOI: 10.1101/2023.01.21.524976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Double homeobox (DUX) genes are unique to eutherian mammals and normally expressed transiently during zygotic genome activation. The canonical member, DUX4, is involved in facioscapulohumeral muscular dystrophy (FSHD) and cancer, when misexpressed in other contexts. We evaluate the 3 human DUX genes and the ancestral single homeobox gene sDUX from the non-eutherian mammal, platypus, and find that DUX4 activities are not shared with DUXA or DUXB, which lack transcriptional activation potential, but surprisingly are shared with platypus sDUX. In human myoblasts, platypus sDUX drives cytotoxicity, inhibits myogenesis, and induces DUX4 target genes, particularly those associated with zygotic genome activation (ZGA), by binding DNA as a homodimer in a way that overlaps the DUX4 homeodomain crystal structure. DUXA lacks transcriptional activity but has DNA-binding and chromatin accessibility overlap with DUX4 and sDUX, including on ZGA genes and LTR elements, and can actually be converted into a DUX4-like cytotoxic factor by fusion to a synthetic transactivation domain. DUXA competition antagonizes the activity of DUX4 on its target genes, including in FSHD patient cells. Since DUXA is an early DUX4 target gene, this activity potentiates feedback inhibition, constraining the window of DUX4 activity. The DUX gene family therefore comprises cross-regulating members of opposing function, with implications for their roles in ZGA, FSHD, and cancer. HIGHLIGHTS Platypus sDUX is toxic and inhibits myogenic differentiation.DUXA targets overlap substantially with those of DUX4.DUXA fused to a synthetic transactivation domain acquires DUX4-like toxicity.DUXA behaves as a competitive inhibitor of DUX4.
Collapse
Affiliation(s)
- Darko Bosnakovski
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erik A. Toso
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elizabeth T. Ener
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Micah D. Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lulu Yin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Alessandro Magli
- Department of Cardiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Johnny Kim
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Wang Y, Lu J, Liu Y. Skeletal Muscle Regeneration in Cardiotoxin-Induced Muscle Injury Models. Int J Mol Sci 2022; 23:ijms232113380. [PMID: 36362166 PMCID: PMC9657523 DOI: 10.3390/ijms232113380] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle injuries occur frequently in daily life and exercise. Understanding the mechanisms of regeneration is critical for accelerating the repair and regeneration of muscle. Therefore, this article reviews knowledge on the mechanisms of skeletal muscle regeneration after cardiotoxin-induced injury. The process of regeneration is similar in different mouse strains and is inhibited by aging, obesity, and diabetes. Exercise, microcurrent electrical neuromuscular stimulation, and mechanical loading improve regeneration. The mechanisms of regeneration are complex and strain-dependent, and changes in functional proteins involved in the processes of necrotic fiber debris clearance, M1 to M2 macrophage conversion, SC activation, myoblast proliferation, differentiation and fusion, and fibrosis and calcification influence the final outcome of the regenerative activity.
Collapse
|
11
|
Shams AS, Arpke RW, Gearhart MD, Weiblen J, Mai B, Oyler D, Bosnakovski D, Mahmoud OM, Hassan GM, Kyba M. The chemokine receptor CXCR4 regulates satellite cell activation, early expansion, and self-renewal, in response to skeletal muscle injury. Front Cell Dev Biol 2022; 10:949532. [PMID: 36211464 PMCID: PMC9536311 DOI: 10.3389/fcell.2022.949532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Acute skeletal muscle injury is followed by satellite cell activation, proliferation, and differentiation to replace damaged fibers with newly regenerated muscle fibers, processes that involve satellite cell interactions with various niche signals. Here we show that satellite cell specific deletion of the chemokine receptor CXCR4, followed by suppression of recombination escapers, leads to defects in regeneration and satellite cell pool repopulation in both the transplantation and in situ injury contexts. Mechanistically, we show that endothelial cells and FAPs express the gene for the ligand, SDF1α, and that CXCR4 is principally required for proper activation and for transit through the first cell division, and to a lesser extent the later cell divisions. In the absence of CXCR4, gene expression in quiescent satellite cells is not severely disrupted, but in activated satellite cells a subset of genes normally induced by activation fail to upregulate normally. These data demonstrate that CXCR4 signaling is essential to normal early activation, proliferation, and self-renewal of satellite cells.
Collapse
Affiliation(s)
- Ahmed S. Shams
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Robert W. Arpke
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Micah D. Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Johannes Weiblen
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Ben Mai
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - David Oyler
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Darko Bosnakovski
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Omayma M. Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Gamal M. Hassan
- Department of Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Michael Kyba
- Lillehei Heart Institute, Minneapolis, MN, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Michael Kyba,
| |
Collapse
|
12
|
Di Pietro L, Giacalone F, Ragozzino E, Saccone V, Tiberio F, De Bardi M, Picozza M, Borsellino G, Lattanzi W, Guadagni E, Bortolani S, Tasca G, Ricci E, Parolini O. Non-myogenic mesenchymal cells contribute to muscle degeneration in facioscapulohumeral muscular dystrophy patients. Cell Death Dis 2022; 13:793. [PMID: 36114172 PMCID: PMC9481542 DOI: 10.1038/s41419-022-05233-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 01/22/2023]
Abstract
Muscle-resident non-myogenic mesenchymal cells play key roles that drive successful tissue regeneration within the skeletal muscle stem cell niche. These cells have recently emerged as remarkable therapeutic targets for neuromuscular disorders, although to date they have been poorly investigated in facioscapulohumeral muscular dystrophy (FSHD). In this study, we characterised the non-myogenic mesenchymal stromal cell population in FSHD patients' muscles with signs of disease activity, identified by muscle magnetic resonance imaging (MRI), and compared them with those obtained from apparently normal muscles of FSHD patients and from muscles of healthy, age-matched controls. Our results showed that patient-derived cells displayed a distinctive expression pattern of mesenchymal markers, along with an impaired capacity to differentiate towards mature adipocytes in vitro, compared with control cells. We also demonstrated a significant expansion of non-myogenic mesenchymal cells (identified as CD201- or PDGFRA-expressing cells) in FSHD muscles with signs of disease activity, which correlated with the extent of intramuscular fibrosis. In addition, the accumulation of non-myogenic mesenchymal cells was higher in FSHD muscles that deteriorate more rapidly. Our results prompt a direct association between an accumulation, as well as an altered differentiation, of non-myogenic mesenchymal cells with muscle degeneration in FSHD patients. Elucidating the mechanisms and cellular interactions that are altered in the affected muscles of FSHD patients could be instrumental to clarify disease pathogenesis and identifying reliable novel therapeutic targets.
Collapse
Affiliation(s)
- Lorena Di Pietro
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy ,grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Flavia Giacalone
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elvira Ragozzino
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Saccone
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Tiberio
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco De Bardi
- grid.417778.a0000 0001 0692 3437Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Mario Picozza
- grid.417778.a0000 0001 0692 3437Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giovanna Borsellino
- grid.417778.a0000 0001 0692 3437Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Wanda Lattanzi
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy ,grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Enrico Guadagni
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sara Bortolani
- grid.414603.4Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgio Tasca
- grid.414603.4Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Enzo Ricci
- grid.414603.4Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy ,grid.8142.f0000 0001 0941 3192Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ornella Parolini
- grid.8142.f0000 0001 0941 3192Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy ,grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| |
Collapse
|