1
|
González-Trujillo MM, Artal J, Vicente-Díez I, Blanco-Pérez R, Talavera M, Dueñas-Hernani J, Álvarez-Ortega S, Campos-Herrera R. Direct effects of Xenorhabdus spp. cell-free supernatant on Meloidogyne incognita in tomato plants and its impact on entomopathogenic nematodes. J Invertebr Pathol 2024; 207:108213. [PMID: 39343129 DOI: 10.1016/j.jip.2024.108213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Entomopathogenic Xenorhabdus spp. bacteria, symbiont of the nematode Steinernema spp., shows potential for mitigating agricultural pests and diseases through bioactive compound production. The plant-parasitic nematode (PPN) Meloidogyne incognita affects the yield and quality of numerous crops, causing significant economic losses. We speculate that Cell-Free Supernatants (CFS) from Xenorhabdus spp. could reduce the impact of the root-knot nematode (RKN) M. incognita without negatively affecting entomopathogenic nematodes (EPNs), which are considered beneficial organisms. This study explored the activity of seven CFS against M. incognita (two populations, AL05 and Chipiona) and their possible effects on EPNs. The in vitro impact of CFS at 10 %, 40 %, and 90 % concentrations on nematode motility at four and 24 h were tested on the PPN M. incognita and two EPNs, S. feltiae and H. bacteriophora. Additionally, EPN viability and virulence were evaluated at two and five days. On the other hand, tomato plant-mesocosm experiments examined the activity of four CFS on M. incognita reproductive capacity and EPN virulence. In vitro exposure of M. incognita to 90 % concentration of CFS resulted in reductions of activity over 60 % after four hours of expossure in four out of seven CFS. In the in vitro evaluation of two species of EPNs, none of the CFS affected the activity across any tested doses after four hours of exposure nor after 24 h. Plant-mesocosm experiments showed that CFS application significantly reduced RKN galls, egg masses, and galling index. However, the virulence of both EPN species decreased 15 days after application, with a significant impact on S. feltiae. Overall, these findings suggest that CFS could be used as a bio-tool against M. incognita in tomato crops, mitigating its impact on plant growth. However, this study also highlights the necessity of investigating the effects of CFS on non-target organisms.
Collapse
Affiliation(s)
- M M González-Trujillo
- Departamento de Viticultura. Instituto de las Ciencias de la Vid y del Vino (ICVV: Universidad de La Rioja, CSIC, Gobierno de La Rioja), 26007, Logroño, La Rioja, Spain
| | - J Artal
- ARTAL Smart Agriculture, Pol. Ind. Fuente del Jarro, 46988, Paterna, Valencia, Spain
| | - I Vicente-Díez
- Departamento de Viticultura. Instituto de las Ciencias de la Vid y del Vino (ICVV: Universidad de La Rioja, CSIC, Gobierno de La Rioja), 26007, Logroño, La Rioja, Spain
| | - R Blanco-Pérez
- Departamento de Suelos, Biosistemas y Ecología Agroforestal, Misión Biológica de Galicia (BMG-CSIC), 36143, Pontevedra, Spain
| | - M Talavera
- IFAPA Centro Alameda del Obispo, 14004 Córdoba, Spain
| | - J Dueñas-Hernani
- Departamento de Viticultura. Instituto de las Ciencias de la Vid y del Vino (ICVV: Universidad de La Rioja, CSIC, Gobierno de La Rioja), 26007, Logroño, La Rioja, Spain
| | - S Álvarez-Ortega
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Campus de Móstoles, 28933 Móstoles, Madrid, Spain
| | - R Campos-Herrera
- Departamento de Viticultura. Instituto de las Ciencias de la Vid y del Vino (ICVV: Universidad de La Rioja, CSIC, Gobierno de La Rioja), 26007, Logroño, La Rioja, Spain.
| |
Collapse
|
2
|
Fan Z, Gao K, Wang L, Qin Y, Liu S, Xing R, Yu H, Li K, Li P. Sulfonamide modified chitosan oligosaccharide with high nematicidal activity against Meloidogyne incognita. Int J Biol Macromol 2024; 269:132131. [PMID: 38719017 DOI: 10.1016/j.ijbiomac.2024.132131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/02/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Chitosan oligosaccharide (COS) modification is a feasible way to develop novel green nematicides. This study involved the synthesis of various COS sulfonamide derivatives via hydroxylated protection and deprotection, which were then characterized using NMR, FTIR, MS, elemental analysis, XRD, and TG/DTG. In vitro experiments found that COS-alkyl sulfonamide derivatives (S6 and S11-S13) exhibited high mortality (>98 % at 1 mg/mL) against Meloidogyne incognita second-instar larvaes (J2s) among the derivatives. S6 can cause vacuole-like structures in the middle and tail regions of the nematode body and effectively inhibit egg hatching. In vivo tests have found that S6 has well control effects and low plant toxicity. Additionally, the structure-activity studies revealed that S6 with a high degree of substitution, a low molecular weight, and a sulfonyl bond on the amino group of the COS backbone exhibited increased nematicidal activity. The sulfonamide group is a potential active group for developing COS-based nematicides.
Collapse
Affiliation(s)
- Zhaoqian Fan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Kun Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Linsong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
3
|
Li B, Cui J, Xu T, Xu Y, Long M, Li J, Liu M, Yang T, Du Y, Xu Q. Advances in the preparation, characterization, and biological functions of chitosan oligosaccharide derivatives: A review. Carbohydr Polym 2024; 332:121914. [PMID: 38431416 DOI: 10.1016/j.carbpol.2024.121914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Chitosan oligosaccharide (COS), which represent the positively charged basic amino oligosaccharide in nature, is the deacetylated and degraded products of chitin. COS has become the focus of intensive scientific investigation, with a growing body of practical and clinical studies highlighting its remarkable health-enhancing benefits. These effects encompass a wide range of properties, including antibacterial, antioxidant, anti-inflammatory, and anti-tumor activities. With the rapid advancements in chemical modification technology for oligosaccharides, many COS derivatives have been synthesized and investigated. These newly developed derivatives possess more stable chemical structures, improved biological activities, and find applications across a broader spectrum of fields. Given the recent interest in the chemical modification of COS, this comprehensive review seeks to consolidate knowledge regarding the preparation methods for COS derivatives, alongside discussions on their structural characterization. Additionally, various biological activities of COS derivatives have been discussed in detail. Lastly, the potential applications of COS derivatives in biomedicine have been reviewed and presented.
Collapse
Affiliation(s)
- Bing Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jingchun Cui
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Tiantian Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yunshu Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mingxin Long
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Jiaqi Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mingzhi Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Ting Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yuguang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Qingsong Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
4
|
Liu C, Zhang L, Cao X, Chen Y, Li Z, Maienfisch P, Xu X. Discovery of Trifluorobutene Amide Derivatives as Potential Nematicides: Design, Synthesis, Nematicidal Activity Evaluation, SAR, and Mode of Action Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1429-1443. [PMID: 38189665 DOI: 10.1021/acs.jafc.3c05758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Plant-parasitic nematodes are one of the major threats to crop protection. However, only limited nematicides are currently available and are confronted with a growing resistance problem, which necessitates the development of novel nematicides. In this study, a series of trifluorobutene amide derivatives was synthesized through the strategy of amide bond reversal, and their nematicidal activity against Meloidogyne incognita was evaluated. The bioassay showed that compounds C2, C10, and C18 and some analogues thereof exhibited good nematicidal activity. Among them, the derivatives of compound C2 containing a benzene ring [C26 (R = 2-CH3) and C33 (R = 2-Cl)] exhibited excellent bioactivity against M. incognita in vitro. The LC50/72h values reached 14.13 and 14.71 mg·L-1, respectively. Moreover, analogues of compounds C10 and C18 containing a thiophene ring [C43 (R = 5-CH3), C44 (R = 4-CH3), and C50 (R = 5-Cl)] exhibited significant bioactivity against M. incognita in vivo with inhibition rates of 68.8, 65.5, and 69.8% at 2.5 mg·L-1 in a matrix, respectively. Meanwhile, C44 and C50 also showed excellent control effects against M. incognita in both cups and microplots. The structure-activity relationship (SAR) of synthesized compounds was discussed in detail. Comparative molecular field analysis (CoMFA) was also conducted to develop the SAR profile. The preliminary mode of action investigation showed that compound C33 exhibited strong inhibition on egg hatching, motility, feeding behavior, and growth of Caenorhabditis elegans. At the same time, the impact of active compounds on biochemical indicators related to oxidative stress showed that compound C33 influenced the production of ROS (reactive oxygen species), and the accumulation of lipofuscin and lipids on C. elegans.
Collapse
Affiliation(s)
- Cheng Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Letian Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaofeng Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yadi Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Peter Maienfisch
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
- CreInSol MCB, Aegertenstrasse 21, CH-4118 Rodersdorf, Switzerland
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
5
|
Lin C, Luan F, Su S, Jiang A, Tan W, Guo Z. Water-soluble fluorine-functionalized chitooligosaccharide derivatives: Synthesis, characterization and antimicrobial activity. Carbohydr Res 2023; 533:108935. [PMID: 37717482 DOI: 10.1016/j.carres.2023.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
In this work, a series of water-soluble fluorine-functionalized chitooligosaccharide derivatives were synthesized by conjugating nicotinic acid to chitooligosaccharide via nicotinylation reaction, followed by nucleophilic reaction with ethyl bromide, benzyl bromide and fluorobenzyl bromides. Synthesized derivatives were identified structurally by Fourier Transform Infrared Spectroscopy and Nuclear Magnetic Resonance. In addition, the antibacterial activities of chitooligosaccharide derivatives against several disease-causing bacteria were assessed by the broth dilution method and Kirby-Bauer method, the mycelium growth rate method was used to assessing the antifungal properties of samples against three plant-threatening fungi. Among the chitooligosaccharide derivatives, those containing benzyl or fluorobenzyl exhibited noteworthy antimicrobial activity. Specifically, the chitooligosaccharide derivative containing 2,3,4-trifluorobenzyl displayed remarkable antimicrobial activity, with an inhibition index of 84.35% against Botryis cinerea at a concentration of 1.0 mg/mL. Additionally, its MIC value against Staphylococcus aureus was found to be 0.03125 mg/mL, while the MBC value was determined to be 0.0625 mg/mL. The findings of the study revealed that the incorporation of pyridinium cations and fluorine into the chitooligosaccharide backbone may play a critical role in strengthening its ability to combat harmful microorganisms. Furthermore, the cytotoxicities of chitooligosaccharide derivatives against Huvec cells were evaluated through MTT assay, and all samples were not toxic. As a consequence, the water-soluble fluorine-functionalized chitooligosaccharide derivatives possessed rapid microbicidal properties and good biocompatibility, which provided promising prospects for the development of a more effective and environmentally friendly antimicrobial agent.
Collapse
Affiliation(s)
- Conghao Lin
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Fang Luan
- Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai, 264200, China
| | - Shengjia Su
- Shandong Saline-Alkali Land Modern Agriculture Company, Dongying, 257300, China
| | - Aili Jiang
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Wenqiang Tan
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Zhanyong Guo
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
6
|
Fan Z, Wang L, Qin Y, Li P. Activity of chitin/chitosan/chitosan oligosaccharide against plant pathogenic nematodes and potential modes of application in agriculture: A review. Carbohydr Polym 2023; 306:120592. [PMID: 36746583 DOI: 10.1016/j.carbpol.2023.120592] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023]
Abstract
Chemical nematicide is the most common method of controlling plant-parasitic nematodes (PPN). Given the negative impact of chemical nematicides on the environment and ecosystem, it is necessary to seek their alternatives and novel modes of application. Chitin oligo/polysaccharide (COPS), including chitosan and chitosan oligosaccharide, has unique biological properties. By producing ammonia, encouraging the growth of antagonistic bacteria, and enhancing crop tolerance, COPSs help suppress PPN growth during soil remediation. COPS is also an effective sustained-release carrier that can be used to overcome the shortcomings of nematicidal substances. This review summarizes the advancements of COPS research in nematode control from three perspectives of action mechanism as well as in slow-release carrier-loaded nematicides. Further, it discusses potential agricultural applications for nematode disease management.
Collapse
Affiliation(s)
- Zhaoqian Fan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Linsong Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
7
|
Ren Y, Ma S, Zhang D, Guo S, Chang R, He Y, Yao M, Guan F. Functionalized injectable hyaluronic acid hydrogel with antioxidative and photothermal antibacterial activity for infected wound healing. Int J Biol Macromol 2022; 210:218-232. [PMID: 35537589 DOI: 10.1016/j.ijbiomac.2022.05.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 01/13/2023]
Abstract
Infected wound healing has always been a challenge in clinic. Effective and economic wound dressings with combined antibacterial activity and pro-healing function are highly desirable, especially in the context of infected wounds. An obvious advantage of antibacterial wound dressing is to avoid the overuse of antibiotics and the occurrence of drug resistance. Herein, an injectable hyaluronic acid hydrogel with antioxidative and photothermal antibacterial activity as a functional dressing was prepared, characterized and evaluated in an experimental infected wound model. This hydrogel was developed by loading graphene oxide (GO) in a natural polymer network consisting of hyaluronic acid grafted with tyramine (HT) and gelatin grafted with gallic acid (GGA). The HT/GGA/GO hydrogels have a porous cross-linked network structure and demonstrate a good stability, biocompatibility, antioxidant, hemostatic and photothermal antibacterial activity against Escherichia coli and Staphylococcus aureus. In addition, in vivo studies have shown that HT1/GGA2/GO0.1 hydrogel dressing combined with photothermal therapy can effectively prevent early infection and accelerate wound healing. These results indicated this functionalized injectable hydrogel HT1/GGA2/GO0.1 has a great potential in wound dressing application.
Collapse
Affiliation(s)
- Yikun Ren
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Shanshan Ma
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Dan Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Shen Guo
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Rong Chang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Yuanmeng He
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China; Institute of Neuroscience, Zhengzhou University, Zhengzhou 450000, PR China.
| |
Collapse
|