1
|
Daniello V, De Leo V, Lasalvia M, Hossain MN, Carbone A, Catucci L, Zefferino R, Ingrosso C, Conese M, Di Gioia S. Solanum lycopersicum (Tomato)-Derived Nanovesicles Accelerate Wound Healing by Eliciting the Migration of Keratinocytes and Fibroblasts. Int J Mol Sci 2024; 25:2452. [PMID: 38473700 DOI: 10.3390/ijms25052452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Plant-derived nanovesicles have been considered interesting in medicine for their breakthrough biological effects, including those relevant to wound healing. However, tomato-derived nanovesicles (TDNVs) have not been studied for their effects on wound closure yet. TDNVs were isolated from Solanum lycopersicum (var. Piccadilly) ripe tomatoes by ultracentrifugation. Extract (collected during the isolation procedure) and NVs (pellet) were characterized by transmission electron microscopy and laser Doppler electrophoresis. Wound healing in the presence of Extract or NVs was analyzed by a scratch assay with monocultures of human keratinocytes (HUKE) or NIH-3T3 mouse fibroblasts. Cell proliferation and migration were studied by MTT and agarose spot assay, respectively. The vesicles in the Extract and NV samples were nanosized with a similar mean diameter of 115 nm and 130 nm, respectively. Both Extract and NVs had already accelerated wound closure of injured HUKE and NIH-3T3 monocultures by 6 h post-injury. Although neither sample exerted a cytotoxic effect on HUKE and NIH-3T3 fibroblasts, they did not augment cell proliferation. NVs and the Extract increased cell migration of both cell types. NVs from tomatoes may accelerate wound healing by increasing keratinocyte and fibroblast migration. These results indicate the potential therapeutic usefulness of TDNVs in the treatment of chronic or hard-to-heal ulcers.
Collapse
Affiliation(s)
- Valeria Daniello
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Vincenzo De Leo
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Maria Lasalvia
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Md Niamat Hossain
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Lucia Catucci
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Chiara Ingrosso
- Institute for Chemical and Physical Processes of National Research Council (CNR-IPCF), S.S. Bari, c/o Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 121, 71122 Foggia, Italy
| |
Collapse
|
2
|
Szász C, Pap D, Szebeni B, Bokrossy P, Őrfi L, Szabó AJ, Vannay Á, Veres-Székely A. Optimization of Sirius Red-Based Microplate Assay to Investigate Collagen Production In Vitro. Int J Mol Sci 2023; 24:17435. [PMID: 38139263 PMCID: PMC10744033 DOI: 10.3390/ijms242417435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Tissue fibrosis is characterized by chronic fibroblast activation and consequently excessive accumulation of collagen-rich extracellular matrix. In vitro microplate-based assays are essential to investigate the underlying mechanism and the effect of antifibrotic drugs. In this study, in the absence of a gold-standard method, we optimized a simple, cost-effective, Sirius Red-based colorimetric measurement to determine the collagen production of fibroblasts grown on 96-well tissue culture plates. Based on our findings, the use of a serum-free medium is recommended to avoid aspecific signals, while ascorbate supplementation increases the collagen production of fibroblasts. The cell-associated collagens can be quantified by Sirius Red staining in acidic conditions followed by alkaline elution. Immature collagens can be precipitated from the culture medium by acidic Sirius Red solution, and after subsequent centrifugation and washing steps, their amount can be also measured. Increased attention has been paid to optimizing the assay procedure, including incubation time, temperature, and solution concentrations. The resulting assay shows high linearity and sensitivity and could serve as a useful tool in fibrosis-related basic research as well as in preclinical drug screening.
Collapse
Affiliation(s)
- Csenge Szász
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - Domonkos Pap
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- HUN-REN-SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Beáta Szebeni
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- HUN-REN-SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Péter Bokrossy
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
| | - László Őrfi
- Department of Pharmaceutical Chemistry, Semmelweis University, 1092 Budapest, Hungary
- Vichem Chemie Research Ltd., 1022 Budapest, Hungary
| | - Attila J. Szabó
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- HUN-REN-SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Ádám Vannay
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- HUN-REN-SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Apor Veres-Székely
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary
- HUN-REN-SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| |
Collapse
|
3
|
Pap D, Pajtók C, Veres-Székely A, Szebeni B, Szász C, Bokrossy P, Zrufkó R, Vannay Á, Tulassay T, Szabó AJ. High Salt Promotes Inflammatory and Fibrotic Response in Peritoneal Cells. Int J Mol Sci 2023; 24:13765. [PMID: 37762068 PMCID: PMC10531298 DOI: 10.3390/ijms241813765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Recent studies draw attention to how excessive salt (NaCl) intake induces fibrotic alterations in the peritoneum through sodium accumulation and osmotic events. The aim of our study was to better understand the underlying mechanisms. The effects of additional NaCl were investigated on human primary mesothelial cells (HPMC), human primary peritoneal fibroblasts (HPF), endothelial cells (HUVEC), immune cells (PBMC), as well as ex vivo on peritoneal tissue samples. Our results showed that a high-salt environment and the consequently increased osmolarity increase the production of inflammatory cytokines, profibrotic growth factors, and components of the renin-angiotensin-aldosterone system, including IL1B, IL6, MCP1, TGFB1, PDGFB, CTGF, Renin and Ace both in vitro and ex vivo. We also demonstrated that high salt induces mesenchymal transition by decreasing the expression of epithelial marker CDH1 and increasing the expression of mesenchymal marker ACTA2 and SNAIL1 in HPMCs, HUVECs and peritoneal samples. Furthermore, high salt increased extracellular matrix production in HPFs. We demonstrated that excess Na+ and the consequently increased osmolarity induce a comprehensive profibrotic response in the peritoneal cells, thereby facilitating the development of peritoneal fibrosis.
Collapse
Affiliation(s)
- Domonkos Pap
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
- HUN-REN–SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Csenge Pajtók
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
| | - Apor Veres-Székely
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
- HUN-REN–SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Beáta Szebeni
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
- HUN-REN–SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Csenge Szász
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
| | - Péter Bokrossy
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
| | - Réka Zrufkó
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
| | - Ádám Vannay
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
- HUN-REN–SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Tivadar Tulassay
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
- HUN-REN–SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| | - Attila J. Szabó
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1085 Budapest, Hungary
- HUN-REN–SU Pediatrics and Nephrology Research Group, 1052 Budapest, Hungary
| |
Collapse
|
4
|
Inoue R, Yasuma T, Fridman D’Alessandro V, Toda M, Ito T, Tomaru A, D’Alessandro-Gabazza CN, Tsuruga T, Okano T, Takeshita A, Nishihama K, Fujimoto H, Kobayashi T, Gabazza EC. Amelioration of Pulmonary Fibrosis by Matrix Metalloproteinase-2 Overexpression. Int J Mol Sci 2023; 24:ijms24076695. [PMID: 37047672 PMCID: PMC10095307 DOI: 10.3390/ijms24076695] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive and fatal disease with a poor prognosis. Matrix metalloproteinase-2 is involved in the pathogenesis of organ fibrosis. The role of matrix metalloproteinase-2 in lung fibrosis is unclear. This study evaluated whether overexpression of matrix metalloproteinase-2 affects the development of pulmonary fibrosis. Lung fibrosis was induced by bleomycin in wild-type mice and transgenic mice overexpressing human matrix metalloproteinase-2. Mice expressing human matrix metalloproteinase-2 showed significantly decreased infiltration of inflammatory cells and inflammatory and fibrotic cytokines in the lungs compared to wild-type mice after induction of lung injury and fibrosis with bleomycin. The computed tomography score, Ashcroft score of fibrosis, and lung collagen deposition were significantly reduced in human matrix metalloproteinase transgenic mice compared to wild-type mice. The expression of anti-apoptotic genes was significantly increased, while caspase-3 activity was significantly reduced in the lungs of matrix metalloproteinase-2 transgenic mice compared to wild-type mice. Active matrix metalloproteinase-2 significantly decreased bleomycin-induced apoptosis in alveolar epithelial cells. Matrix metalloproteinase-2 appears to protect against pulmonary fibrosis by inhibiting apoptosis of lung epithelial cells.
Collapse
Affiliation(s)
- Ryo Inoue
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Taro Yasuma
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | | | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Toshiyuki Ito
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Atsushi Tomaru
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | | | - Tatsuki Tsuruga
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Tomohito Okano
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Atsuro Takeshita
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Kota Nishihama
- Department of Diabetes, Metabolism and Endocrinology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| |
Collapse
|