1
|
Chen G, Li W, Liu Y, Li T, Zhu W, Liu Y, Jin X, Mei Q, Ye L. Design, Synthesis, Anticancer Evaluation and In Silico Studies of Imidazole Pyrazine Compounds. Chem Biodivers 2025; 22:e202401553. [PMID: 39513628 DOI: 10.1002/cbdv.202401553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024]
Abstract
The present study focused on design and synthesis novel imidazolopyrazine derivatives, investigate the effect of them on the proliferation and migration of several human cancer cell lines by CCK-8 method, and interactions with the JAKs by reverse molecular docking. It was found that most of the synthesized imidazolopyrazin derivatives exhibited excellent inhibitory effects towards three tested tutor cells in vitro. Among them, three compounds have IC50 values much lower than Fluorouracil while show low toxicity to normal cells L-02. The migration ability assay have proved that A6 and A9 effectively inhibit the migration of tumor cells. Reverse molecular docking studies indicated that the potent targets of these derivatives are JAKs as they well docked into kinases with low energy. These finding suggest that imidazo[1,5-a]pyrazin derivatives may be lead compounds for developing potent JAK targeted anticancer candidates.
Collapse
Affiliation(s)
- Gong Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Weiwei Li
- Department of Laboratory Medicine, Guiyang Maternity and Child Health Hospital, Guiyang, 550003, People's Republic of China
| | - Yuanhui Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Tong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Wenrun Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Ying Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Xiaobao Jin
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Qinghua Mei
- Guangdong Second Provincial General Hospital, Guangzhou, 510317, People's Republic of China
| | - Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
2
|
Chen Z, Xu L, Lin S, Huang H, Long Q, Liu J. GdX inhibits the occurrence and progression of breast cancer by negatively modulating the activity of STAT3. Cancer Biol Ther 2024; 25:2420383. [PMID: 39487760 PMCID: PMC11540090 DOI: 10.1080/15384047.2024.2420383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
AIM To elucidate the biological functionality and regulatory mechanisms of GdX in breast cancer (BC). METHODS The examination of GdX expression in human BC tissues and cell lines was conducted through immunohistochemical (IHC) and Western blot. Cell proliferation capacity was assessed via the CCK-8 and colony formation assay, while cell migration was determined through the wound healing assay. The expression levels of BCL-XL, Cyclin D1, and C-myc gene were quantified using RT-qPCR and Western blot. In vivo tumor growth was evaluated in nude mice xenografted with MDA-MB-231 cells overexpressing GdX, and a mouse model with GdX-deficient BC was established to observe the impact of GdX on BC formation and metastasis. Dual-luciferase reporter assay and immunofluorescence were employed to confirm the interaction between GdX and STAT3. Western blot was employed to validate the influence of GdX overexpression on the phosphorylation process of STAT3. RESULTS GdX exhibited low expression in the cancer tissues of BC patients and cell lines. MDA-MB-231 and MCF-7 cells overexpressing GdX displayed a notable reduction in proliferation and diminished migratory capabilities, accompanied by downregulated mRNA and protein expression of BCL-XL, Cyclin D1, and C-myc. In the xenograft mouse model, heightened GdX expression correlated with a decelerated in vivo tumor growth. Furthermore, in mice deteleing GdX, both the quantity and weight of tumors increased, along with evident pulmonary metastasis. Mechanistically, STAT3 emerged as a downstream target gene of GdX. CONCLUSIONS GdX exerts its inhibitory effects on the initiation and progression of BC by negatively modulating the phosphorylation of STAT3.
Collapse
Affiliation(s)
- Zhilin Chen
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Lu Xu
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Shibin Lin
- Department of Ultrasound, Hainan Women and Children’s Medical Center, Haikou, Hainan, China
| | - Hongjun Huang
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Qing Long
- Department of Breast Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
3
|
Maji L, Sengupta S, Purawarga Matada GS, Teli G, Biswas G, Das PK, Panduranga Mudgal M. Medicinal chemistry perspective of JAK inhibitors: synthesis, biological profile, selectivity, and structure activity relationship. Mol Divers 2024; 28:4467-4513. [PMID: 38236444 DOI: 10.1007/s11030-023-10794-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024]
Abstract
JAK-STAT signalling pathway was discovered more than quarter century ago. The JAK-STAT pathway protein is considered as one of the crucial hubs for cytokine secretion which mediates activation of different inflammatory, cellular responses and hence involved in different etiological factors. The various etiological factors involved are haematopoiesis, immune fitness, tissue repair, inflammation, apoptosis, and adipogenesis. The presence of the active mutation V617K plays a significant role in the progression of the JAK-STAT pathway-related disease. Consequently, targeting the JAK-STAT pathway could be a promising therapeutic approach for addressing a range of causative factors. In this current review, we provided a comprehensive discussion for the in-detail study of anatomy and physiology of the JAK-STAT pathway which contributes structural domain rearrangement, activation, and negative regulation associated with the downstream signaling pathway, relationship between different cytokines and diseases. This review also discussed the recent development of clinical trial entities. Additionally, this review also provides updates on FDA-approved drugs. In the current investigation, we have classified recently developed small molecule inhibitors of JAK-STAT pathway according to different chemical classes and we emphasized their synthetic routes, biological evaluation, selectivity, and structure-activity relationship.
Collapse
Affiliation(s)
- Lalmohan Maji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Sindhuja Sengupta
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | - Ghanshyam Teli
- School of Pharmacy, Sangam University, Atoon, Bhilwara, 311001, Rajasthan, India
| | - Gourab Biswas
- Department of Pharmaceutical Technology, Brainware University, Kolkata, West Bengal, India
| | - Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | |
Collapse
|
4
|
Pal R, Matada GSP, Teli G, Saha M, Patel R. Therapeutic potential of anticancer activity of nitrogen-containing heterocyclic scaffolds as Janus kinase (JAK) inhibitor: Biological activity, selectivity, and structure-activity relationship. Bioorg Chem 2024; 152:107696. [PMID: 39167870 DOI: 10.1016/j.bioorg.2024.107696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/21/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024]
Abstract
The JAK-STAT signalling pathway is primarily involved in cytokine signalling and induces various factors namely, erythropoietin, thrombopoietin, interferons, interleukins, and granulocyte colony-stimulating factors. These factors tremendously influenced understanding human health and illness, specifically cancer. Inhibiting the JAK/STAT pathway offers enormous therapeutic promises against cancer. Many JAK inhibitors are now being studied due to their efficacy in various cancer treatments. Further, the Nitrogen-heterocyclic (N-heterocyclic) scaffold has always shown to be a powerful tool for designing and discovering synthetic compounds with diverse pharmacological characteristics. The review focuses on several FDA-approved JAK inhibitors and their systematic categorization. The medicinal chemistry perspective is highlighted and classified review on the basis of N-heterocyclic molecules. Several examples of designing strategies of N-heterocyclic rings including pyrrolo-azepine, purine, 1H-pyrazolo[3,4-d]pyrimidine, 1H-pyrrolo[2,3-b]pyridine, pyrazole, thieno[3,2-d] pyrimidine, and, pyrimidine-based derivatives and their structure-activity relationships (SAR) are discussed. Among the various N-heterocyclic-based JAK inhibitors pyrimidine-containing compound 1 exhibited excellent inhibition activity against JAK2WT and mutated-JAK2V617F with IC50 of 2.01 and 18.84 nM respectively. Amino pyrimidine-containing compound 6 and thiopheno[3,2-d]pyrimidine-containing compound 13 expressed admirable JAK3 inhibition activity with IC50 of 1.7 nM and 1.38 nM respectively. Our review will support the medicinal chemists in refining and directing the development of novel N-heterocyclic-based JAK inhibitors.
Collapse
Affiliation(s)
- Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India.
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India.
| | - Ghanshyam Teli
- School of Pharmacy, Sangam University, Atoon, Bhilwara, 311001, Rajasthan, India
| | - Moumita Saha
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India; Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, MAHE, Karnataka
| | - Rajiv Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Ghal Kalan, Moga-142001, Punjab, India
| |
Collapse
|
5
|
Hossain MM, Khalid A, Akhter Z, Parveen S, Ayaz MO, Bhat AQ, Badesra N, Showket F, Dar MS, Ahmed F, Dhiman S, Kumar M, Singh U, Hussain R, Keshari P, Mustafa G, Nargorta A, Taneja N, Gupta S, Mir RA, Kshatri AS, Nandi U, Khan N, Ramajayan P, Yadav G, Ahmed Z, Singh PP, Dar MJ. Discovery of a novel and highly selective JAK3 inhibitor as a potent hair growth promoter. J Transl Med 2024; 22:370. [PMID: 38637842 PMCID: PMC11025159 DOI: 10.1186/s12967-024-05144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/23/2024] [Indexed: 04/20/2024] Open
Abstract
JAK-STAT signalling pathway inhibitors have emerged as promising therapeutic agents for the treatment of hair loss. Among different JAK isoforms, JAK3 has become an ideal target for drug discovery because it only regulates a narrow spectrum of γc cytokines. Here, we report the discovery of MJ04, a novel and highly selective 3-pyrimidinylazaindole based JAK3 inhibitor, as a potential hair growth promoter with an IC50 of 2.03 nM. During in vivo efficacy assays, topical application of MJ04 on DHT-challenged AGA and athymic nude mice resulted in early onset of hair regrowth. Furthermore, MJ04 significantly promoted the growth of human hair follicles under ex-vivo conditions. MJ04 exhibited a reasonably good pharmacokinetic profile and demonstrated a favourable safety profile under in vivo and in vitro conditions. Taken together, we report MJ04 as a highly potent and selective JAK3 inhibitor that exhibits overall properties suitable for topical drug development and advancement to human clinical trials.
Collapse
Affiliation(s)
- Md Mehedi Hossain
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Arfan Khalid
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Zaheen Akhter
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Sabra Parveen
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Mir Owais Ayaz
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Aadil Qadir Bhat
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Neetu Badesra
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Farheen Showket
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Mohmmad Saleem Dar
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Farhan Ahmed
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Sumit Dhiman
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Mukesh Kumar
- Medicinal Product Chemistry, Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Umed Singh
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Razak Hussain
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pankaj Keshari
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ghulam Mustafa
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Amit Nargorta
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Neha Taneja
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Somesh Gupta
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Riyaz A Mir
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Aravind Singh Kshatri
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Utpal Nandi
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Nooruddin Khan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - P Ramajayan
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Govind Yadav
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Zabeer Ahmed
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Parvinder Pal Singh
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India.
| | - Mohd Jamal Dar
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India.
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
6
|
Jiang H, Yang J, Li T, Wang X, Fan Z, Ye Q, Du Y. JAK/STAT3 signaling in cardiac fibrosis: a promising therapeutic target. Front Pharmacol 2024; 15:1336102. [PMID: 38495094 PMCID: PMC10940489 DOI: 10.3389/fphar.2024.1336102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/18/2024] [Indexed: 03/19/2024] Open
Abstract
Cardiac fibrosis is a serious health problem because it is a common pathological change in almost all forms of cardiovascular diseases. Cardiac fibrosis is characterized by the transdifferentiation of cardiac fibroblasts (CFs) into cardiac myofibroblasts and the excessive deposition of extracellular matrix (ECM) components produced by activated myofibroblasts, which leads to fibrotic scar formation and subsequent cardiac dysfunction. However, there are currently few effective therapeutic strategies protecting against fibrogenesis. This lack is largely because the molecular mechanisms of cardiac fibrosis remain unclear despite extensive research. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling cascade is an extensively present intracellular signal transduction pathway and can regulate a wide range of biological processes, including cell proliferation, migration, differentiation, apoptosis, and immune response. Various upstream mediators such as cytokines, growth factors and hormones can initiate signal transmission via this pathway and play corresponding regulatory roles. STAT3 is a crucial player of the JAK/STAT pathway and its activation is related to inflammation, malignant tumors and autoimmune illnesses. Recently, the JAK/STAT3 signaling has been in the spotlight for its role in the occurrence and development of cardiac fibrosis and its activation can promote the proliferation and activation of CFs and the production of ECM proteins, thus leading to cardiac fibrosis. In this manuscript, we discuss the structure, transactivation and regulation of the JAK/STAT3 signaling pathway and review recent progress on the role of this pathway in cardiac fibrosis. Moreover, we summarize the current challenges and opportunities of targeting the JAK/STAT3 signaling for the treatment of fibrosis. In summary, the information presented in this article is critical for comprehending the role of the JAK/STAT3 pathway in cardiac fibrosis, and will also contribute to future research aimed at the development of effective anti-fibrotic therapeutic strategies targeting the JAK/STAT3 signaling.
Collapse
Affiliation(s)
- Heng Jiang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Junjie Yang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xinyu Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Zhongcai Fan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qiang Ye
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yanfei Du
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Cooreman K, De Spiegeleer B, Van Poucke C, Vanavermaete D, Delbare D, Wynendaele E, De Witte B. Emerging pharmaceutical therapies of Ascidian-derived natural products and derivatives. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104254. [PMID: 37648122 DOI: 10.1016/j.etap.2023.104254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
In a growing multidrug-resistant environment, the identification of potential new drug candidates with an acceptable safety profile is a substantial crux in pharmaceutical discovery. This review discusses several aspects and properties of approved marine natural products derived from ascidian sources (phylum Chordata, subphylum Tunicata) and/or their deduced analogues including their biosynthetic origin, (bio)chemical preclinical assessments and known efficacy-safety profiles, clinical status in trials, but also translational developments, opportunities and final conclusions. The review also describes the preclinical assessments of a large number of other ascidian compounds that have not been involved in clinical trials yet. Finally, the emerging research on the connectivity of the ascidian hosts and their independent or obligate symbiotic guests is discussed. The review covers the latest information on the topic of ascidian-derived marine natural products over the last two decades including 2022, with the majority of publications published in the last decade.
Collapse
Affiliation(s)
- Kris Cooreman
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Bart De Spiegeleer
- Faculty of Pharmaceutical Sciences, Drug Quality and Registration Group, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| | - Christof Van Poucke
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Brusselsesteenweg 370, BE-9090 Melle, Belgium
| | - David Vanavermaete
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Daan Delbare
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Evelien Wynendaele
- Faculty of Pharmaceutical Sciences, Drug Quality and Registration Group, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| | - Bavo De Witte
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium.
| |
Collapse
|