1
|
Zhao J, Jiao Y, Wang H, Song P, Gao Z, Bing X, Zhang C, Ouyang A, Yao J, Wang S, Jiang H. Radiomic features of the hippocampal based on magnetic resonance imaging in the menopausal mouse model linked to neuronal damage and cognitive deficits. Brain Imaging Behav 2024; 18:368-377. [PMID: 38102441 PMCID: PMC11156756 DOI: 10.1007/s11682-023-00808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2023] [Indexed: 12/17/2023]
Abstract
Estrogen deficiency in the early postmenopausal phase is associated with an increased long-term risk of cognitive decline or dementia. Non-invasive characterization of the pathological features of the pathological hallmarks in the brain associated with postmenopausal women (PMW) could enhance patient management and the development of therapeutic strategies. Radiomics is a means to quantify the radiographic phenotype of a diseased tissue via the high-throughput extraction and mining of quantitative features from images acquired from modalities such as CT and magnetic resonance imaging (MRI). This study set out to explore the correlation between radiomics features based on MRI and pathological features of the hippocampus and cognitive function in the PMW mouse model. Ovariectomized (OVX) mice were used as PWM models. MRI scans were performed two months after surgery. The brain's hippocampal region was manually annotated, and the radiomic features were extracted with PyRadiomics. Chemiluminescence was used to evaluate the peripheral blood estrogen level of mice, and the Morris water maze test was used to evaluate the cognitive ability of mice. Nissl staining and immunofluorescence were used to quantify neuronal damage and COX1 expression in brain sections of mice. The OVX mice exhibited marked cognitive decline, brain neuronal damage, and increased expression of mitochondrial complex IV subunit COX1, which are pathological phenomena commonly observed in the brains of AD patients, and these phenotypes were significantly correlated with radiomics features (p < 0.05, |r|>0.5), including Original_firstorder_Interquartile Range, Original_glcm_Difference Average, Original_glcm_Difference Average and Wavelet-LHH_glszm_Small Area Emphasis. Meanwhile, the above radiomics features were significantly different between the sham-operated and OVX groups (p < 0.01) and were associated with decreased serum estrogen levels (p < 0.05, |r|>0.5). This initial study indicates that the above radiomics features may have a role in the assessment of the pathology of brain damage caused by estrogen deficiency using routinely acquired structural MR images.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Jiao
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hui Wang
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Peiji Song
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhen Gao
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xue Bing
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chunling Zhang
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Aimei Ouyang
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jian Yao
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Song Wang
- Department of Radiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, No.725, South Wanping Road, Shanghai, 200032, China.
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
2
|
Tan L, Qi X, Kong W, Jin J, Lu D, Zhang X, Wang Y, Wang S, Dong W, Shi X, Chen W, Wang J, Li K, Xie Y, Gao L, Guan F, Gao K, Li C, Wang C, Hu Z, Zhang L, Guo X, Shen B, Ma Y. A conditional knockout rat resource of mitochondrial protein-coding genes via a DdCBE-induced premature stop codon. SCIENCE ADVANCES 2023; 9:eadf2695. [PMID: 37058569 PMCID: PMC10104465 DOI: 10.1126/sciadv.adf2695] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Hundreds of pathogenic variants of mitochondrial DNA (mtDNA) have been reported to cause mitochondrial diseases, which still lack effective treatments. It is a huge challenge to install these mutations one by one. We repurposed the DddA-derived cytosine base editor to incorporate a premature stop codon in the mtProtein-coding genes to ablate mitochondrial proteins encoded in the mtDNA (mtProteins) instead of installing pathogenic variants and generated a library of both cell and rat resources with mtProtein depletion. In vitro, we depleted 12 of 13 mtProtein-coding genes with high efficiency and specificity, resulting in decreased mtProtein levels and impaired oxidative phosphorylation. Moreover, we generated six conditional knockout rat strains to ablate mtProteins using Cre/loxP system. Mitochondrially encoded ATP synthase membrane subunit 8 and NADH:ubiquinone oxidoreductase core subunit 1 were specifically depleted in heart cells or neurons, resulting in heart failure or abnormal brain development. Our work provides cell and rat resources for studying the function of mtProtein-coding genes and therapeutic strategies.
Collapse
Affiliation(s)
- Lei Tan
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaolong Qi
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Weining Kong
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Jiachuan Jin
- Center for Reproductive Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Lu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Xu Zhang
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Yue Wang
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Siting Wang
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Dong
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Xudong Shi
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Wei Chen
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Jianying Wang
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Keru Li
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Yuan Xie
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lijuan Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Feifei Guan
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Kai Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| | - Chaojun Li
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Gusu School, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lianfeng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
- Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Gusu School, Nanjing Medical University, Nanjing, Jiangsu, China
- Zhejiang Laboratory, Hangzhou, Zhejiang, China
| | - Yuanwu Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
- Neuroscience center, Chinese Academy of Medical Sciences, Beijing, China
- National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing, China
| |
Collapse
|