1
|
Zamanian Z, Tajbakhsh E, Arbab Soleimani N, Ghasemian A. Aqueous extract-mediated green synthesis of CuO nanoparticles: Potential anti-tuberculosis agents. Food Sci Nutr 2024; 12:5907-5921. [PMID: 39139956 PMCID: PMC11317747 DOI: 10.1002/fsn3.4227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/14/2024] [Accepted: 05/04/2024] [Indexed: 08/15/2024] Open
Abstract
The emergence of drug-resistant strains in tuberculosis treatment underscores the urgency for novel therapeutic approaches. This study investigates the anti-tuberculosis activity of green-synthesized copper oxide (CuO) nanoparticles (NPs) using garlic and astragalus extracts. The physicochemical characterization of the nanoparticles confirms successful synthesis, followed by assessment of their antibacterial properties and safety profile. Rats infected with Mycobacterium tuberculosis are treated with nanocomposites derived from garlic extract at doses of 50 mg/kg and 100 mg/kg body weight. Evaluation includes the analysis of Early secreted antigenic target of 6 kDa (ESAT-6) expression and confirmation of antibodies through molecular assays. Administration of garlic and nanocomposites demonstrates significant inhibitory effects on tuberculosis progression in rats, validated by safety assessments and antibacterial efficacy. Notably, the 100 mg/kg dosage exhibits pronounced mitigation of tuberculosis-induced oxidative stress and lung damage. In conclusion, the combined administration of garlic extracts and green-synthesized nanocomposites shows promising efficacy in reducing tuberculosis infection, highlighting a potential avenue for anti-tuberculosis interventions.
Collapse
Affiliation(s)
- Zohreh Zamanian
- Department of Microbiology, Shahrekord BranchIslamic Azad UniversityShahrekordIran
| | - Elahe Tajbakhsh
- Department of Microbiology, Shahrekord BranchIslamic Azad UniversityShahrekordIran
| | | | - AbdolMajid Ghasemian
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| |
Collapse
|
2
|
Quintero M, Manrique-Moreno M, Riascos H, Torres-Palma RA, Castro-Narvaez S, Ávila-Torres YP. Laser Ablation for the Synthesis of Cu/Cu 2O/CuO and Its Development as Photocatalytic Material for Escherichia coli Detoxification. Int J Mol Sci 2024; 25:6817. [PMID: 38999926 PMCID: PMC11241169 DOI: 10.3390/ijms25136817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/14/2024] Open
Abstract
Advanced Oxidation Processes (AOPs) offer promising methods for disinfection by generating radical species like hydroxyl radicals, superoxide anion radicals, and hydroxy peroxyl, which can induce oxidative stress and deactivate bacterial cells. Photocatalysis, a subset of AOPs, activates a semiconductor using specific electromagnetic wavelengths. A novel material, Cu/Cu2O/CuO nanoparticles (NPs), was synthesized via a laser ablation protocol (using a 1064 nm wavelength laser with water as a solvent, with energy ranges of 25, 50, and 80 mJ for 10 min). The target was sintered from 100 °C to 800 °C at rates of 1.6, 1.1, and 1 °C/min. The composite phases of Cu, CuO, and Cu2O showed enhanced photocatalytic activity under visible-light excitation at 368 nm. The size of Cu/Cu2O/CuO NPs facilitates penetration into microorganisms, thereby improving the disinfection effect. This study contributes to synthesizing mixed copper oxides and exploring their activation as photocatalysts for cleaner surfaces. The electronic and electrochemical properties have potential applications in other fields, such as capacitor materials. The laser ablation method allowed for modification of the band gap absorption and enhancement of the catalytic properties in Cu/Cu2O/CuO NPs compared to precursors. The disinfection of E. coli with Cu/Cu2O/CuO systems serves as a case study demonstrating the methodology's versatility for various applications, including disinfection against different microorganisms, both Gram-positive and Gram-negative.
Collapse
Affiliation(s)
- Marcy Quintero
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, A.A 1226, Medellín 050010, Colombia
| | - Marcela Manrique-Moreno
- Grupo de Bioquímica Estructural de Macromoléculas, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, A.A 1226, Medellín 050010, Colombia
| | - Henry Riascos
- Grupo de Investigación Plasma, láser y Aplicaciones, Departamento de Física, Facultad de Ciencias Básicas, Universidad Tecnológica de Pereira, Carrera 27 #10-02 Barrio Álamos, Pereira 660003, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, A.A 1226, Medellín 050010, Colombia
| | - Sandra Castro-Narvaez
- Grupo de Investigación en Electroquímica y Medio Ambiente, Universidad Santiago de Cali, Calle 5 No. 62-00, Santiago de Cali 760035, Colombia
| | - Yenny P Ávila-Torres
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, A.A 1226, Medellín 050010, Colombia
| |
Collapse
|
3
|
Shaheen F, Imran M, Haider A, Shahzadi A, Moeen S, Ul-Hamid A, Ullah H, Khan S, Alshomrany AS, Jeridi M, Al-Anazy MM, Ikram M. Size-controlled synthesis of La and chitosan doped cobalt selenide nanostructures for catalytic and antibacterial activity with molecular docking analysis. Int J Biol Macromol 2024; 263:130096. [PMID: 38354925 DOI: 10.1016/j.ijbiomac.2024.130096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/28/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Co-precipitation method was adopted to synthesize ternary heterostructure catalysts La/CS-CoSe NSs (lanthanum/chitosan‑cobalt selenide nanostructures) without the use of a surfactant. During synthesis, a fixed amount (3 wt%) of CS was doped with 2 and 4 wt% La to control the growth, recombination rate and stability of CoSe NSs. The doped samples served to enhance the surface area, porosity and active sites for catalytic degradation of rhodamine B dye and antibacterial potential against Staphylococcus aureus (S. aureus). Additionally, the synthesized catalysts were examined for morphological, structural and optical characteristics to assess the influence of dopants to CoSe. XRD spectra verified the hexagonal and cubic structure of CoSe, whereas the porosity of the undoped sample (CoSe) increased from 45 to 60 % upon incorporation of dopants (La and Cs). Among the samples analyzed during this study, 4 % La/CS-CoSe exhibited significant bactericidal behavior as well as the highest catalytic reduction of rhodamine B dye in a neutral environment. Molecular docking analysis was employed to elucidate the underlying mechanism behind the bactericidal activity exhibited by CS-CoSe and La/CS-CoSe NSs against DHFRS. aureus and DNA gyraseS. aureus.
Collapse
Affiliation(s)
- Fatima Shaheen
- Department of Chemistry, Government College University, Faisalabad, Pakpattan Road, Sahiwal, Punjab, 57000, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Government College University, Faisalabad, Pakpattan Road, Sahiwal, Punjab, 57000, Pakistan.
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Punjab, Pakistan.
| | - Anum Shahzadi
- Department of Pharmacy, COMSATS Islamabad, Lahore campus, 54000, Pakistan
| | - Sawaira Moeen
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Hameed Ullah
- Laboratory of Nanomaterials for Renewable Energy and Artificial Photosynthesis (NanoREAP), Institute of Physics, U.F.R.G.S., 91509-900 Porto Alegre, Rio Grande do Sul, Brazil
| | - Sherdil Khan
- Laboratory of Nanomaterials for Renewable Energy and Artificial Photosynthesis (NanoREAP), Institute of Physics, U.F.R.G.S., 91509-900 Porto Alegre, Rio Grande do Sul, Brazil
| | - Ali S Alshomrany
- Department of Physics, College of Sciences, Umm Al-Qura University, Al Taif HWY, Mecca 24381, Saudi Arabia
| | - Mouna Jeridi
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Murefah Mana Al-Anazy
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan.
| |
Collapse
|
4
|
Song M, Tang Q, Ding Y, Tan P, Zhang Y, Wang T, Zhou C, Xu S, Lyu M, Bai Y, Ma X. Staphylococcus aureus and biofilms: transmission, threats, and promising strategies in animal husbandry. J Anim Sci Biotechnol 2024; 15:44. [PMID: 38475886 PMCID: PMC10936095 DOI: 10.1186/s40104-024-01007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/03/2024] [Indexed: 03/14/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a common pathogenic bacterium in animal husbandry that can cause diseases such as mastitis, skin infections, arthritis, and other ailments. The formation of biofilms threatens and exacerbates S. aureus infection by allowing the bacteria to adhere to pathological areas and livestock product surfaces, thus triggering animal health crises and safety issues with livestock products. To solve this problem, in this review, we provide a brief overview of the harm caused by S. aureus and its biofilms on livestock and animal byproducts (meat and dairy products). We also describe the ways in which S. aureus spreads in animals and the threats it poses to the livestock industry. The processes and molecular mechanisms involved in biofilm formation are then explained. Finally, we discuss strategies for the removal and eradication of S. aureus and biofilms in animal husbandry, including the use of antimicrobial peptides, plant extracts, nanoparticles, phages, and antibodies. These strategies to reduce the spread of S. aureus in animal husbandry help maintain livestock health and improve productivity to ensure the ecologically sustainable development of animal husbandry and the safety of livestock products.
Collapse
Affiliation(s)
- Mengda Song
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qi Tang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yakun Ding
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yucheng Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tao Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chenlong Zhou
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shenrui Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mengwei Lyu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yueyu Bai
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xi Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Shahzadi I, Islam M, Saeed H, Haider A, Shahzadi A, Rathore HA, Ul-Hamid A, Abd-Rabboh HSM, Ikram M. Synthesis of curcuma longa doped cellulose grafted hydrogel for catalysis, bactericidial and insilico molecular docking analysis. Int J Biol Macromol 2023; 253:126827. [PMID: 37696378 DOI: 10.1016/j.ijbiomac.2023.126827] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Curcumin (diferuloylmethane), the primary curcuminoid in turmeric rhizome, has been acknowledged as a bioactive compound for numerous pharmacological activities. Nonetheless, the hydrophobic nature, rapid metabolism, and physicochemical and biological instability of this phenolic compound correspond to its poor bioavailability. So, recent scientific advances have found many components and strategies for enhancing the bioavailability of curcumin with the inclusion of biotechnology and nanotechnology to address its existing limitations. Therefore, In this study, copolymerized aqua-gel was synthesized by graft polymerization of poly-acrylic acid (P-AA) on cellulose nanocrystals (CNC), after that Curcuma longa (Cur) was incorporated as dopant (5, 10, 15, and 25 mg) in hydrogel (Cur/C-P) as a stabilizing agent for evaluation of bacterial potential and sewage treatment. The antioxidant tendency of 25 mg Cur/C-P was much higher (72.21 %) than other samples and displayed a catalytic activity of up to 93.89 % in acidic conditions and optimized bactericidal inclinations toward gram-positive bacterial strains. Furthermore, ligand binding was conducted against targeted protein enoyl-[acylcarrier-protein] reductase (FabI) enzyme to comprehend the putative mechanism of microbicidal action of CNC-PAA (CP), Cur/C-P, and curcumin. Our outcomes suggest that 25 mg Cur/C-P hydrogels are plausible sources for hybrid, multifunctional biological activity.
Collapse
Affiliation(s)
- Iram Shahzadi
- Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54000, Punjab, Pakistan
| | - Muhammad Islam
- Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54000, Punjab, Pakistan
| | - Hamid Saeed
- Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54000, Punjab, Pakistan
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Punjab, Pakistan.
| | - Anum Shahzadi
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | | | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Hisham S M Abd-Rabboh
- Chemistry Department, Faculty of Science, King Khalid University, P.O.Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan.
| |
Collapse
|
6
|
Luque-Jacobo CM, Cespedes-Loayza AL, Echegaray-Ugarte TS, Cruz-Loayza JL, Cruz I, de Carvalho JC, Goyzueta-Mamani LD. Biogenic Synthesis of Copper Nanoparticles: A Systematic Review of Their Features and Main Applications. Molecules 2023; 28:4838. [PMID: 37375393 DOI: 10.3390/molecules28124838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Nanotechnology is an innovative field of study that has made significant progress due to its potential versatility and wide range of applications, precisely because of the development of metal nanoparticles such as copper. Nanoparticles are bodies composed of a nanometric cluster of atoms (1-100 nm). Biogenic alternatives have replaced their chemical synthesis due to their environmental friendliness, dependability, sustainability, and low energy demand. This ecofriendly option has medical, pharmaceutical, food, and agricultural applications. When compared to their chemical counterparts, using biological agents, such as micro-organisms and plant extracts, as reducing and stabilizing agents has shown viability and acceptance. Therefore, it is a feasible alternative for rapid synthesis and scaling-up processes. Several research articles on the biogenic synthesis of copper nanoparticles have been published over the past decade. Still, none provided an organized, comprehensive overview of their properties and potential applications. Thus, this systematic review aims to assess research articles published over the past decade regarding the antioxidant, antitumor, antimicrobial, dye removal, and catalytic activities of biogenically synthesized copper nanoparticles using the scientific methodology of big data analytics. Plant extract and micro-organisms (bacteria and fungi) are addressed as biological agents. We intend to assist the scientific community in comprehending and locating helpful information for future research or application development.
Collapse
Affiliation(s)
- Cristina M Luque-Jacobo
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru
| | | | | | | | - Isemar Cruz
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru
| | - Júlio Cesar de Carvalho
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná-Polytechnic Center, Curitiba 81531-980, Brazil
| | - Luis Daniel Goyzueta-Mamani
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n-Umacollo, Arequipa 04000, Peru
| |
Collapse
|
7
|
Jia HJ, Jia PP, Yin S, Bu LK, Yang G, Pei DS. Engineering bacteriophages for enhanced host range and efficacy: insights from bacteriophage-bacteria interactions. Front Microbiol 2023; 14:1172635. [PMID: 37323893 PMCID: PMC10264812 DOI: 10.3389/fmicb.2023.1172635] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Bacteriophages, the most abundant organisms on earth, have the potential to address the rise of multidrug-resistant bacteria resulting from the overuse of antibiotics. However, their high specificity and limited host range can hinder their effectiveness. Phage engineering, through the use of gene editing techniques, offers a means to enhance the host range of bacteria, improve phage efficacy, and facilitate efficient cell-free production of phage drugs. To engineer phages effectively, it is necessary to understand the interaction between phages and host bacteria. Understanding the interaction between the receptor recognition protein of bacteriophages and host receptors can serve as a valuable guide for modifying or replacing these proteins, thereby altering the receptor range of the bacteriophage. Research and development focused on the CRISPR-Cas bacterial immune system against bacteriophage nucleic acids can provide the necessary tools to promote recombination and counter-selection in engineered bacteriophage programs. Additionally, studying the transcription and assembly functions of bacteriophages in host bacteria can facilitate the engineered assembly of bacteriophage genomes in non-host environments. This review highlights a comprehensive summary of phage engineering methods, including in-host and out-of-host engineering, and the use of high-throughput methods to understand their role. The main aim of these techniques is to harness the intricate interactions between bacteriophages and hosts to inform and guide the engineering of bacteriophages, particularly in the context of studying and manipulating the host range of bacteriophages. By employing advanced high-throughput methods to identify specific bacteriophage receptor recognition genes, and subsequently introducing modifications or performing gene swapping through in-host recombination or out-of-host synthesis, it becomes possible to strategically alter the host range of bacteriophages. This capability holds immense significance for leveraging bacteriophages as a promising therapeutic approach against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Huang-Jie Jia
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Supei Yin
- Urinary Nephropathy Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling-Kang Bu
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Guan Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Shahzadi I, Islam M, Saeed H, Shahzadi A, Haider J, Haider A, Imran M, Rathore HA, Ul-Hamid A, Nabgan W, Ikram M. Facile synthesis of copolymerized cellulose grafted hydrogel doped calcium oxide nanocomposites with improved antioxidant activity for anti-arthritic and controlled release of doxorubicin for anti-cancer evaluation. Int J Biol Macromol 2023; 235:123874. [PMID: 36870651 DOI: 10.1016/j.ijbiomac.2023.123874] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/13/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
The combination treatment is considered an approach to attaining synergistic impact while minimizing applied dosage. Hydrogels are analogous to the tissue environment attributed to hydrophilic and porous structure. Despite extensive study in biological and biotechnological domains, their restricted mechanical strength and limited functionalities impede their potential uses. Emerging strategies are centred on research and developing nanocomposite hydrogels to combat these issues. Herein, we prepared copolymerized hydrogel by grafting poly-acrylic acid P(AA) onto cellulose nanocrystals (CNC) and adding CNC-g-PAA as dopant (2 and 4 wt%) in calcium oxide (CaO) nanoparticles to generate an effective hydrogel doped nanocomposite (NCH) (CNC-g-PAA/CaO) for biomedical applications such as anti-arthritic, anti-cancer, and antibacterial investigations alongside their comprehensive characterization. CNC-g-PAA/CaO (4 %), compared to other samples, had a substantially higher antioxidant potential (72.21 %). Doxorubicin, a potential chemotherapeutic drug, was then effectively loaded into NCH (99 %) via electrostatic interaction, and pH-triggered based release was found to be >57.9 % in 24 h. Furthermore, molecular docking investigation against targeted protein Cyclin-dependent kinase 2 and in vitro cytotoxicity study verified the improved antitumor effectiveness of CNC-g-PAA and CNC-g-PAA/CaO. These outcomes indicated that hydrogels might serve as potential delivery vehicles for innovative multifunctional biomedical applications.
Collapse
Affiliation(s)
- Iram Shahzadi
- Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54000, Punjab, Pakistan
| | - Muhammad Islam
- Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54000, Punjab, Pakistan
| | - Hamid Saeed
- Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54000, Punjab, Pakistan
| | - Anum Shahzadi
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Punjab, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Government College University, Faisalabad, Sahiwal Road, Sahiwal, Punjab 57000, Pakistan
| | | | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av Països Catalans 26, 43007 Tarragona, Spain.
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan.
| |
Collapse
|
9
|
Vetrimani A, Geetha K, Angel Jemima E, Arulnathan N, Kim HS, Kathalingam A. Effect of the green synthesis of CuO plate-like nanoparticles on their photodegradation and antibacterial activities. Phys Chem Chem Phys 2022; 24:28923-28933. [PMID: 36416292 DOI: 10.1039/d2cp03531f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Green synthesis of copper oxide nanoparticles and its effects on photocatalytic dye degradation and antibacterial activities are reported. The synthesis of nanoparticles by green routes provides many advantages over chemical routes, including simplicity, cost-effectiveness, and fast processing route without using any costly or harmful chemicals. Tridax procumbense (coat buttons) plant root extract was used to synthesize copper oxide nanoparticles. The synthesized Tridax procumbense-copper oxide nanoparticles (TP-CuO NPs) were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering spectroscopy (DLS), and X-ray diffraction (XRD) techniques. The synthesized TP-CuO NPs were applied for photocatalytic dye degradation and antibacterial activity studies. The TP-CuO NPs exhibited a maximum antibacterial activity at 500 μg mL-1 concentration against Staphylococcus aureus and E. coli showing inhibition zones of 7.5 mm and 7.2 mm, respectively. The photocatalytic ability of the TP-CuO was also tested against the textile dye Trypan blue (TB), and showed about 55% degradation after 48 h for 500 μg mL-1 CuO NP concentration, showing a concentration-dependent degradation efficiency. This is the first work on TP-derived CuO nanoparticles and their photocatalytic and antimicrobial applications. Overall, this study supports the superiority of green-synthesized TP-CuO NPs as photocatalytic and antimicrobial agents.
Collapse
Affiliation(s)
- A Vetrimani
- Nanotechnology Division, Department of Biotechnology, Periyar Maniammai Institute of Science and Technology, Vallam, Thanjavur, Tamil Nadu, India
| | - K Geetha
- Nanotechnology Division, Department of Biotechnology, Periyar Maniammai Institute of Science and Technology, Vallam, Thanjavur, Tamil Nadu, India
| | - E Angel Jemima
- Trichy Research Institute of Biotechnology Private Limited, Tiruchirappalli, Tamil Nadu, India
| | - N Arulnathan
- Department of Animal Nutrition, Veterinary College and Research Institute, Tirunelveli, Tamil Nadu, India
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - A Kathalingam
- Millimeter-wave Innovation Technology (MINT) Research Center, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
10
|
Corrales J, Acosta J, Castro S, Riascos H, Serna-Galvis E, Torres-Palma RA, Ávila-Torres Y. Manganese Dioxide Nanoparticles Prepared by Laser Ablation as Materials with Interesting Electronic, Electrochemical, and Disinfecting Properties in Both Colloidal Suspensions and Deposited on Fluorine-Doped Tin Oxide. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4061. [PMID: 36432347 PMCID: PMC9698065 DOI: 10.3390/nano12224061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Nanoparticles (NPs) of α-MnO2 have high applicability in photoelectrochemical, heterogeneous photocatalysis, optical switching, and disinfection processes. To widen this panorama about MnO2 NPs, the formation of this material by laser ablation and deposition by dip-coating on fluorine-doped tin oxide (FTO), were considered in this study. The optical, spectroscopic, electrochemical characterization, and the evaluation of the antimicrobial activity, plus the photocatalytic response, were measured herein in colloidal media and deposited. For the deposition of NPs on FTO sheet, an anode is produced with a pseudocapacitive behavior, and 2.82 eV of band gap (GAP) in comparison with colloidal NPs for a value of 3.84 eV. Both colloidal suspension and deposited NPs have intrinsic antibacterial activity against two representative microorganisms (E. coli and S. aureus), and this biological activity was significantly enhanced in the presence of UVA light, indicating photocatalytic activity of the material. Thus, both the colloidal suspension and deposited NPs can act as disinfecting agents themselves or via light activation. However, an antibacterial behavior different for E. coli and S. aureus was observed, in function of the aggregation state, obtaining total E. coli disinfection at 30 min for deposited samples on FTO.
Collapse
Affiliation(s)
- Jhonatan Corrales
- Maester in Chemical Sciencies, Faculty of technology, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| | - Jorge Acosta
- Department of Macromolecular Compounds, Faculty of Chemistry, Lomonosov Moscow State University MSU, 119991 Moscow, Russia
| | - Sandra Castro
- Grupo de Investigación en Elctroquímica y Medio Ambiente, Universidad Santiago de Cali, Faculty of Sciences, Santiago de Cali 760035, Colombia
| | - Henry Riascos
- Grupo de Ablación Láser, Universidad Tecnológica de Pereira, Pereira 660001, Colombia
| | - Efraim Serna-Galvis
- Grupo de Investigación Catalizadores y Adsorbentes (Catalad), Faculty of Exact and Natural Sciences, Chemistry Institution, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Faculty of Exact and Natural Sciences, Chemistry Institution, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Ricardo A. Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Faculty of Exact and Natural Sciences, Chemistry Institution, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Yenny Ávila-Torres
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Faculty of Exact and Natural Sciences, Chemistry Institution, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia
| |
Collapse
|
11
|
Ikram M, Shahzadi I, Haider A, Hayat S, Haider J, Ul-Hamid A, Shahzadi A, Nabgan W, Dilpazir S, Ali S. Improved catalytic activity and bactericidal behavior of novel chitosan/V 2O 5 co-doped in tin-oxide quantum dots. RSC Adv 2022; 12:23129-23142. [PMID: 36090420 PMCID: PMC9380412 DOI: 10.1039/d2ra03975c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022] Open
Abstract
The novel V2O5/chitosan (CS) co-doped tin oxide (SnO2) quantum dots (QDs) were synthesized via co-precipitation technique. The optical, structural, morphological, and catalytic properties of the concerned specimens were examined by UV-Vis, PL, FTIR, X-ray diffraction, HR-TEM, and EDS. Structural analysis through XRD confirmed the tetragonal structure of SnO2; meanwhile, HR-TEM measurements unveiled quantum dot morphology. Rotational and vibrational modes related to functional groups of (O-H, C-H, Sn-O, and Sn-O-Sn) have been assessed with FTIR spectra. Through UV-Vis spectroscopy, a reduction in band-gap (4.39 eV to 3.98 eV) and redshift in co-doped spectra of SnO2 were identified. Both CS/SnO2 and V2O5-doped CS@SnO2 showed promising catalytic activity in all media. Meanwhile, CS/SnO2 showed higher activity for use in hospital and industrial dye degradation in comparison to dopant-free Ch/SnO2. For V2O5/CS@ SnO2 QDs, inhibition domains of G -ve were significantly confirmed as 1.40-4.15 mm and 1.85-5.45 mm; meanwhile, for G +ve were noticed as 2.05-4.15 mm and 2.40-5.35 mm at least and maximum concentrations, correspondingly. These findings demonstrate the efficient role of V2O5/CS@SnO2 QDs towards industrial dye degradation and antimicrobial activity.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore Lahore 54000 Punjab Pakistan
| | - Iram Shahzadi
- College of Pharmacy, University of the Punjab 54000 Lahore Pakistan
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture 66000 Multan Pakistan
| | - Shaukat Hayat
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Anum Shahzadi
- College of Pharmacy, University of the Punjab 54000 Lahore Pakistan
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira i Virgili Av Països Catalans 26 43007 Tarragona Spain
| | - Sobia Dilpazir
- Department of Chemistry, Comsats University 45550 Islamabad Pakistan
| | - Salamat Ali
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University 14 Ali Road Lahore Pakistan
| |
Collapse
|