1
|
Shulhai AM, Rotondo R, Petraroli M, Patianna V, Predieri B, Iughetti L, Esposito S, Street ME. The Role of Nutrition on Thyroid Function. Nutrients 2024; 16:2496. [PMID: 39125376 PMCID: PMC11314468 DOI: 10.3390/nu16152496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Thyroid function is closely linked to nutrition through the diet-gut-thyroid axis. This narrative review highlights the influence of nutritional components and micronutrients on thyroid development and function, as well as on the gut microbiota. Micronutrients such as iodine, selenium, iron, zinc, copper, magnesium, vitamin A, and vitamin B12 influence thyroid hormone synthesis and regulation throughout life. Dietary changes can alter the gut microbiota, leading not just to dysbiosis and micronutrient deficiency but also to changes in thyroid function through immunological regulation, nutrient absorption, and epigenetic changes. Nutritional imbalance can lead to thyroid dysfunction and/or disorders, such as hypothyroidism and hyperthyroidism, and possibly contribute to autoimmune thyroid diseases and thyroid cancer, yet controversial issues. Understanding these relationships is important to rationalize a balanced diet rich in essential micronutrients for maintaining thyroid health and preventing thyroid-related diseases. The synthetic comprehensive overview of current knowledge shows the importance of micronutrients and gut microbiota for thyroid function and uncovers potential gaps that require further investigation.
Collapse
Affiliation(s)
- Anna-Mariia Shulhai
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (A.-M.S.); (R.R.); (S.E.)
| | - Roberta Rotondo
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (A.-M.S.); (R.R.); (S.E.)
| | - Maddalena Petraroli
- Paediatric Clinic, University Hospital of Parma, 43121 Parma, Italy; (M.P.); (V.P.)
| | - Viviana Patianna
- Paediatric Clinic, University Hospital of Parma, 43121 Parma, Italy; (M.P.); (V.P.)
| | - Barbara Predieri
- Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (B.P.); (L.I.)
| | - Lorenzo Iughetti
- Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (B.P.); (L.I.)
| | - Susanna Esposito
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (A.-M.S.); (R.R.); (S.E.)
- Paediatric Clinic, University Hospital of Parma, 43121 Parma, Italy; (M.P.); (V.P.)
| | - Maria Elisabeth Street
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (A.-M.S.); (R.R.); (S.E.)
- Paediatric Clinic, University Hospital of Parma, 43121 Parma, Italy; (M.P.); (V.P.)
| |
Collapse
|
2
|
Gao C, Zhang H, Wang Y, Wang S, Guo X, Han Y, Zhao H, An X. Global Transcriptomic and Characteristics Comparisons between Mouse Fetal Liver and Bone Marrow Definitive Erythropoiesis. Cells 2024; 13:1149. [PMID: 38995000 PMCID: PMC11240549 DOI: 10.3390/cells13131149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Erythropoiesis occurs first in the yolk sac as a transit "primitive" form, then is gradually replaced by the "definitive" form in the fetal liver (FL) during fetal development and in the bone marrow (BM) postnatally. While it is well known that differences exist between primitive and definitive erythropoiesis, the similarities and differences between FL and BM definitive erythropoiesis have not been studied. Here we performed comprehensive comparisons of erythroid progenitors and precursors at all maturational stages sorted from E16.5 FL and adult BM. We found that FL cells at all maturational stages were larger than their BM counterparts. We further found that FL BFU-E cells divided at a faster rate and underwent more cell divisions than BM BFU-E. Transcriptome comparison revealed that genes with increased expression in FL BFU-Es were enriched in cell division. Interestingly, the expression levels of glucocorticoid receptor Nr3c1, Myc and Myc downstream target Ccna2 were significantly higher in FL BFU-Es, indicating the role of the Nr3c1-Myc-Ccna2 axis in the enhanced proliferation/cell division of FL BFU-E cells. At the CFU-E stage, the expression of genes associated with hemoglobin biosynthesis were much higher in FL CFU-Es, indicating more hemoglobin production. During terminal erythropoiesis, overall temporal patterns in gene expression were conserved between the FL and BM. While biological processes related to translation, the tricarboxylic acid cycle and hypoxia response were upregulated in FL erythroblasts, those related to antiviral signal pathway were upregulated in BM erythroblasts. Our findings uncovered previously unrecognized differences between FL and BM definitive erythropoiesis and provide novel insights into erythropoiesis.
Collapse
Affiliation(s)
- Chengjie Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Huan Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yaomei Wang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Shihui Wang
- Institute of Hematology, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xinhua Guo
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Yongshuai Han
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| | - Huizhi Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, NY 10065, USA
| |
Collapse
|
3
|
Garofalo V, Condorelli RA, Cannarella R, Aversa A, Calogero AE, La Vignera S. Relationship between Iron Deficiency and Thyroid Function: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:4790. [PMID: 38004184 PMCID: PMC10675576 DOI: 10.3390/nu15224790] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Objective: Iron deficiency (ID) is the most prevalent nutritional deficiency worldwide. Low levels of serum ferritin (SF) could affect the thyroid gland and its functioning. The purpose of this systematic review and meta-analysis is to summarize the main currently available evidence and analyze data on the relationship between ID and thyroid function. Methods: This study included all articles evaluating the relationship between ID and thyroid function. Quality assessment was performed using Cambridge Quality Checklists. The search strategy included the following combination of Medical Subjects Headings terms and keywords: "iron deficiency", "thyroid function", "thyroid disease", "thyroid dysfunction", and "hypothyroidism". A meta-analysis was performed to evaluate whether thyroid stimulating hormone (TSH), free thyroxine (FT4), and free triiodothyronine (FT3) levels differed between patients with ID and healthy controls without ID. For statistical comparison between cases and controls, the mean difference (MD) was calculated, and a subgroup analysis of pregnant and non-pregnant women was performed. Cochran's Q testing and heterogeneity indices (I2) were used to assess statistical heterogeneity. Sensitivity analysis and publication bias analyses were also performed, both qualitatively and quantitatively. Finally, a meta-regression analysis was performed to evaluate the correlation between serum TSH or FT4 levels and SF in the study population. Results: Ten cross-sectional studies were identified and reviewed. Patients with ID showed TSH (MD: -0.24 mIU/L; 95% CI -0.41, -0.07; I2 = 100%, p = 0.005), FT4 (MD: -1.18 pmol/L; 95% CI -1.43, -0.94; I2 = 99%, p < 0.000001), and FT3 (MD: -0.22 pmol/L; 95% CI -0.32, -0.12; I2 = 99%, p < 0.00001) levels that were significantly lower. Subgroup analysis confirmed significantly lower TSH, FT4, and FT3 levels in pregnant women. Non-pregnant women showed significantly lower serum FT4 and FT3 levels but no difference in TSH values. Meta-regression analysis showed that serum TSH and FT4 levels were positively correlated with SF levels. Our systematic review of the literature found that ID significantly increases the prevalence of thyroid autoantibody (anti-thyroglobulin antibodies and anti-thyroid peroxidase antibodies) positivity both individually and collectively. Conclusion: Studies currently published in the literature indicate a possible relationship between ID, thyroid function, and autoimmunity, especially in some patient groups. Data analysis shows that thyroid hormone levels are lower in patients with ID and, in particular, in pregnant women. Further studies are needed to understand the role played by iron in thyroid metabolism.
Collapse
Affiliation(s)
- Vincenzo Garofalo
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (V.G.); (R.C.); (A.E.C.); (S.L.V.)
| | - Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (V.G.); (R.C.); (A.E.C.); (S.L.V.)
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (V.G.); (R.C.); (A.E.C.); (S.L.V.)
- Cleveland Clinic Foundation, Glickman Urological & Kidney Institute, Cleveland, OH 44195, USA
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (V.G.); (R.C.); (A.E.C.); (S.L.V.)
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (V.G.); (R.C.); (A.E.C.); (S.L.V.)
| |
Collapse
|
4
|
Mohammed OS, Attia HG, Mohamed BMSA, Elbaset MA, Fayed HM. Current investigations for liver fibrosis treatment: between repurposing the FDA-approved drugs and the other emerging approaches. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2023; 26:11808. [PMID: 38022905 PMCID: PMC10662312 DOI: 10.3389/jpps.2023.11808] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Long-term liver injuries lead to hepatic fibrosis, often progressing into cirrhosis, liver failure, portal hypertension, and hepatocellular carcinoma. There is currently no effective therapy available for liver fibrosis. Thus, continuous investigations for anti-fibrotic therapy are ongoing. The main theme of anti-fibrotic investigation during recent years is the rationale-based selection of treatment molecules according to the current understanding of the pathology of the disease. The research efforts are mainly toward repurposing current FDA-approved drugs targeting etiological molecular factors involved in developing liver fibrosis. In parallel, investigations also focus on experimental small molecules with evidence to hinder or reverse the fibrosis. Natural compounds, immunological, and genetic approaches have shown significant encouraging effects. This review summarizes the efficacy and safety of current under-investigation antifibrosis medications targeting various molecular targets, as well as the properties of antifibrosis medications, mainly in phase II and III clinical trials.
Collapse
Affiliation(s)
- Omima S. Mohammed
- Department of Microbiology, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Hany G. Attia
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Bassim M. S. A. Mohamed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Marawan A. Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Hany M. Fayed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
5
|
Banyeh M, Kangkpi T, Bani SB, Zogli KE, Tanko MM, Atuahene PE, Iddrisu AY, Ekor C, Akoto EO, Amidu N. Are sex differences in blood cell count and hemoglobin moderated by the 2D:4D ratio? A cross-sectional study in a Ghanaian population. Health Sci Rep 2023; 6:e1547. [PMID: 37670848 PMCID: PMC10476464 DOI: 10.1002/hsr2.1547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/02/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Background and Aims There are sex differences in blood cell count and hemoglobin (HGB) in adulthood due to differences in the levels of circulating sex hormones. The second-to-fourth digit ratio (2D:4D) is the putative marker of prenatal hormone exposure. The 2D:4D or the right-left difference (Dr-l) are sexually dimorphic and are correlates of sex hormones in adulthood. The study sought to determine whether sex differences in adult blood cell count and HGB can be partly explained by the 2D:4D or Dr-l. Methods The study was cross-sectional between June and December 2021 at the University for Development Studies. The study involved 207 healthy participants (females = 113) aged from 18 to 32 years. The right-hand (2D:4DR), and the left-hand (2D:4DL) digit ratio and their difference (Dr-l) were measured using Computer-assisted analysis. Blood cell count, HGB, testosterone, and estradiol were measured from venous blood samples using an automated HGB analyzer and ELIZA technique. Results The platelet count was inversely related to the 2D:4DR in the total sample with the 2D:4DR accounting for about 0.2% (adjR 2 = 0.002) of the variability in platelet count. However, there was a sex difference as indicated by the significant interaction between sex and the 2D:4DR on platelet count (p = 0.03). The relationship between platelet count and the 2D:4DR was negative in females but positive in males. Also, there was a positive relationship between HGB concentration and the Dr-l in the total study sample, where the Dr-l accounted for about 0.6% (adjR 2 = 0.006) of the variability in HGB concentration. Sex interacted significantly with the Dr-l on HGB concentration (p = 0.01) such that the relationship between HGB and the Dr-l was positive in females but negative in males. Conclusion Prenatal hormone exposure, as indexed by the 2D:4D ratio, may partly account for the observed sex differences in platelet count and HGB levels in adulthood.
Collapse
Affiliation(s)
- Moses Banyeh
- Department of Biomedical Laboratory ScienceUniversity for Development StudiesTamaleGhana
| | - Thea Kangkpi
- Department of Biomedical Laboratory ScienceUniversity for Development StudiesTamaleGhana
| | - Simon B. Bani
- Department of Biomedical Laboratory ScienceUniversity for Development StudiesTamaleGhana
| | - Kervin Edinam Zogli
- Department of Biomedical Laboratory ScienceUniversity for Development StudiesTamaleGhana
| | - Muniru Mohammed Tanko
- Department of Biomedical Laboratory ScienceUniversity for Development StudiesTamaleGhana
| | - Peter Eugene Atuahene
- Department of Biomedical Laboratory ScienceUniversity for Development StudiesTamaleGhana
| | - Aisha Yaaba Iddrisu
- Department of Biomedical Laboratory ScienceUniversity for Development StudiesTamaleGhana
| | - Christine Ekor
- Department of Biomedical Laboratory ScienceUniversity for Development StudiesTamaleGhana
| | - Emmanuel Osei Akoto
- Department of Biomedical Laboratory ScienceUniversity for Development StudiesTamaleGhana
| | - Nafiu Amidu
- Department of Biomedical Laboratory ScienceUniversity for Development StudiesTamaleGhana
| |
Collapse
|
6
|
Xu P. Nuclear Receptors in Health and Diseases. Int J Mol Sci 2023; 24:9153. [PMID: 37298107 PMCID: PMC10252477 DOI: 10.3390/ijms24119153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Nuclear receptors (NRs) are a vital superfamily of transcription factors that play crucial roles in physiology and pharmacology [...].
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China;
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
7
|
Selenium, Iodine and Iron-Essential Trace Elements for Thyroid Hormone Synthesis and Metabolism. Int J Mol Sci 2023; 24:ijms24043393. [PMID: 36834802 PMCID: PMC9967593 DOI: 10.3390/ijms24043393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
The adequate availability and metabolism of three essential trace elements, iodine, selenium and iron, provide the basic requirements for the function and action of the thyroid hormone system in humans, vertebrate animals and their evolutionary precursors. Selenocysteine-containing proteins convey both cellular protection along with H2O2-dependent biosynthesis and the deiodinase-mediated (in-)activation of thyroid hormones, which is critical for their receptor-mediated mechanism of cellular action. Disbalances between the thyroidal content of these elements challenge the negative feedback regulation of the hypothalamus-pituitary-thyroid periphery axis, causing or facilitating common diseases related to disturbed thyroid hormone status such as autoimmune thyroid disease and metabolic disorders. Iodide is accumulated by the sodium-iodide-symporter NIS, and oxidized and incorporated into thyroglobulin by the hemoprotein thyroperoxidase, which requires local H2O2 as cofactor. The latter is generated by the dual oxidase system organized as 'thyroxisome' at the surface of the apical membrane facing the colloidal lumen of the thyroid follicles. Various selenoproteins expressed in thyrocytes defend the follicular structure and function against life-long exposure to H2O2 and reactive oxygen species derived therefrom. The pituitary hormone thyrotropin (TSH) stimulates all processes required for thyroid hormone synthesis and secretion and regulates thyrocyte growth, differentiation and function. Worldwide deficiencies of nutritional iodine, selenium and iron supply and the resulting endemic diseases are preventable with educational, societal and political measures.
Collapse
|