1
|
Yan J, Tan X. Comprehensive analysis of gene signatures associated with aging in human aortic dissection. Heliyon 2024; 10:e31298. [PMID: 38828294 PMCID: PMC11140614 DOI: 10.1016/j.heliyon.2024.e31298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Background Aortic dissection (AD) is a lethal aortic disease with limited effective therapeutic strategies. Aging increases the risk of AD, yet the underlying mechanisms remain unclear. This study aims to analyze the association of aging-related genes (Args) and AD using bioinformatic analysis. This helps provide novel insights into AD pathogenesis and contributes to developing novel therapeutic strategies. Methods mRNA (GSE52093, GSE153434), miRNA (GSE98770) and single-cell RNA-sequencing (scRNA-seq, GSE213740) datasets of AD were downloaded from GEO database. Args were downloaded from Aging Atlas database. Differentially-expressed Args were determined by intersecting Args and differentially-expressed mRNAs of two mRNA datasets. Cytoscape was used to identify hub genes and construct hub gene regulatory networks related to miRNAs. Seurat and clusterProfiler R package were used for investigating expression patterns of hub genes at single-cell level, and functional analysis, respectively. To validate the cellular expression pattern of hub genes, the same analysis was applied to our own scRNA-seq data. Drugs targeting hub Args were determined using the DGIdb database. Results HGF, CXCL8, SERPINE1, HIF1A, TIMP1, ESR1 and PLAUR were identified as aging-related hub genes in AD. miR-221-3p was predicted to interact with ESR1. A decreased ESR1 expression in smooth muscle cell subpopulation 4 (SMC4) was observed in AD versus normal aortic tissues, which was validated by sequencing 197,605 aortic cells from 13 AD patients. Additionally, upregulated genes of SMC4 in AD tissues were enriched in the "cellular senescence" pathway. These data indicated that decreased ESR1 might promote SMC4 aging during AD formation. Eleven existing drugs targeting hub genes were identified, including ruxolitinib and filgrastim, which are associated with AD. Conclusions By sequencing transcriptomic data, this study revealed aging-related hub genes and regulatory network involved in AD formation. Additionally, this study proposed a noteworthy hypothesis that downregulated ESR1 may exacerbate AD by promoting SMC aging, which requires further investigation.
Collapse
Affiliation(s)
- Jingyi Yan
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xuerui Tan
- Department of Cardiology, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
- Clinical Research Center, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| |
Collapse
|
3
|
Visniauskas B, Kilanowski-Doroh I, Ogola BO, Mcnally AB, Horton AC, Imulinde Sugi A, Lindsey SH. Estrogen-mediated mechanisms in hypertension and other cardiovascular diseases. J Hum Hypertens 2023; 37:609-618. [PMID: 36319856 PMCID: PMC10919324 DOI: 10.1038/s41371-022-00771-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 06/08/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally for men and women. Premenopausal women have a lower incidence of hypertension and other cardiovascular events than men of the same age, but diminished sex differences after menopause implicates 17-beta-estradiol (E2) as a protective agent. The cardioprotective effects of E2 are mediated by nuclear estrogen receptors (ERα and ERβ) and a G protein-coupled estrogen receptor (GPER). This review summarizes both established as well as emerging estrogen-mediated mechanisms that underlie sex differences in the vasculature during hypertension and CVD. In addition, remaining knowledge gaps inherent in the association of sex differences and E2 are identified, which may guide future clinical trials and experimental studies in this field.
Collapse
Affiliation(s)
- Bruna Visniauskas
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Benard O Ogola
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alexandra B Mcnally
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alec C Horton
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ariane Imulinde Sugi
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Center of Excellence in Sex-Based Biology and Medicine, New Orleans, LA, USA.
- Tulane Brain Institute, New Orleans, LA, USA.
| |
Collapse
|
5
|
SenthilKumar G, Katunaric B, Bordas-Murphy H, Sarvaideo J, Freed JK. Estrogen and the Vascular Endothelium: The Unanswered Questions. Endocrinology 2023; 164:bqad079. [PMID: 37207450 PMCID: PMC10230790 DOI: 10.1210/endocr/bqad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Premenopausal women have a lower incidence of cardiovascular disease (CVD) compared with their age-matched male counterparts; however, this discrepancy is abolished following the transition to menopause or during low estrogen states. This, combined with a large amount of basic and preclinical data indicating that estrogen is vasculoprotective, supports the concept that hormone therapy could improve cardiovascular health. However, clinical outcomes in individuals undergoing estrogen treatment have been highly variable, challenging the current paradigm regarding the role of estrogen in the fight against heart disease. Increased risk for CVD correlates with long-term oral contraceptive use, hormone replacement therapy in older, postmenopausal cisgender females, and gender affirmation treatment for transgender females. Vascular endothelial dysfunction serves as a nidus for the development of many cardiovascular diseases and is highly predictive of future CVD risk. Despite preclinical studies indicating that estrogen promotes a quiescent, functional endothelium, it still remains unclear why these observations do not translate to improved CVD outcomes. The goal of this review is to explore our current understanding of the effect of estrogen on the vasculature, with a focus on endothelial health. Following a discussion regarding the influence of estrogen on large and small artery function, critical knowledge gaps are identified. Finally, novel mechanisms and hypotheses are presented that may explain the lack of cardiovascular benefit in unique patient populations.
Collapse
Affiliation(s)
- Gopika SenthilKumar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovasular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI 53226, USA
| | - Boran Katunaric
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI 53226, USA
| | - Henry Bordas-Murphy
- Cardiovasular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI 53226, USA
| | - Jenna Sarvaideo
- Divison of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Julie K Freed
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovasular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI 53226, USA
| |
Collapse
|
6
|
Chehaitly A, Guihot AL, Proux C, Grimaud L, Aurrière J, Legouriellec B, Rivron J, Vessieres E, Tétaud C, Zorzano A, Procaccio V, Joubaud F, Reynier P, Lenaers G, Loufrani L, Henrion D. Altered Mitochondrial Opa1-Related Fusion in Mouse Promotes Endothelial Cell Dysfunction and Atherosclerosis. Antioxidants (Basel) 2022; 11:antiox11061078. [PMID: 35739974 PMCID: PMC9219969 DOI: 10.3390/antiox11061078] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
Flow (shear stress)-mediated dilation (FMD) of resistance arteries is a rapid endothelial response involved in tissue perfusion. FMD is reduced early in cardiovascular diseases, generating a major risk factor for atherosclerosis. As alteration of mitochondrial fusion reduces endothelial cells’ (ECs) sprouting and angiogenesis, we investigated its role in ECs responses to flow. Opa1 silencing reduced ECs (HUVECs) migration and flow-mediated elongation. In isolated perfused resistance arteries, FMD was reduced in Opa1+/− mice, a model of the human disease due to Opa1 haplo-insufficiency, and in mice with an EC specific Opa1 knock-out (EC-Opa1). Reducing mitochondrial oxidative stress restored FMD in EC-Opa1 mice. In isolated perfused kidneys from EC-Opa1 mice, flow induced a greater pressure, less ATP, and more H2O2 production, compared to control mice. Opa1 expression and mitochondrial length were reduced in ECs submitted in vitro to disturbed flow and in vivo in the atheroprone zone of the mouse aortic cross. Aortic lipid deposition was greater in Ldlr−/--Opa1+/- and in Ldlr−/--EC-Opa1 mice than in control mice fed with a high-fat diet. In conclusion, we found that reduction in mitochondrial fusion in mouse ECs altered the dilator response to shear stress due to excessive superoxide production and induced greater atherosclerosis development.
Collapse
Affiliation(s)
- Ahmad Chehaitly
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
| | - Anne-Laure Guihot
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
| | - Coralyne Proux
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
| | - Linda Grimaud
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
| | - Jade Aurrière
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
| | - Benoit Legouriellec
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
| | - Jordan Rivron
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
| | - Emilie Vessieres
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
| | - Clément Tétaud
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10–12, 08028 Barcelona, Spain;
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biologie, University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, C/ de Monforte de Lemos, 5, 28029 Madrid, Spain
| | - Vincent Procaccio
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
- University Hospital (CHU) of Angers, 4 rue Larrey, F-49933 Angers, France;
| | - Françoise Joubaud
- University Hospital (CHU) of Angers, 4 rue Larrey, F-49933 Angers, France;
| | - Pascal Reynier
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
- University Hospital (CHU) of Angers, 4 rue Larrey, F-49933 Angers, France;
| | - Guy Lenaers
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
- University Hospital (CHU) of Angers, 4 rue Larrey, F-49933 Angers, France;
| | - Laurent Loufrani
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
| | - Daniel Henrion
- MITOVASC Department, Team 2 (CarMe), ICAT SFR, University of Angers, 3 rue Roger Amsler, F-49500 Angers, France; (A.C.); (A.-L.G.); (C.P.); (L.G.); (J.A.); (B.L.); (J.R.); (E.V.); (C.T.); (V.P.); (P.R.); (G.L.); (L.L.)
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1083, 3 rue Roger Amsler, F-49500 Angers, France
- Centre National de la Recherche Scientifique (CNRS) UMR 6015, 3 rue Roger Amsler, F-49500 Angers, France
- University Hospital (CHU) of Angers, 4 rue Larrey, F-49933 Angers, France;
- Correspondence: ; Tel.: +33-2-41-73-58-45
| |
Collapse
|