1
|
Soni KK, Gurjar K, Ranjan A, Sinha S, Srivastava M, Verma V. Post-translational modifications control the signal at the crossroads of plant-pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6957-6979. [PMID: 39177255 DOI: 10.1093/jxb/erae358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
The co-evolution of plants and pathogens has enabled them to 'outsmart' each other by promoting their own defence responses and suppressing those of the other. While plants are reliant on their sophisticated immune signalling pathways, pathogens make use of effector proteins to achieve the objective. This entails rapid regulation of underlying molecular mechanisms for prompt induction of associated signalling events in both plants as well as pathogens. The past decade has witnessed the emergence of post-translational modification (PTM) of proteins as a key a factor in modulating cellular responses. The ability of PTMs to expand the functional diversity of the proteome and induce rapid changes at the appropriate time enables them to play crucial roles in the regulation of plant-pathogen interactions. Therefore, this review will delve into the intricate interplay of five major PTMs involved in plant defence and pathogen countermeasures. We discuss how plants employ PTMs to fortify their immune networks, and how pathogen effectors utilize/target host modification systems to gain entry into plants and cause disease. We also emphasize the need for identification of novel PTMs and propose the use of PTM pathways as potential targets for genome editing approaches.
Collapse
Affiliation(s)
- Kamlesh Kumar Soni
- Department of Biotechnology, AKS University, Satna, Madhya Pradesh-485001, India
| | - Kishan Gurjar
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
| | - Aastha Ranjan
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
| | - Shashank Sinha
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
| | - Moumita Srivastava
- Plant Biotechnology and Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Thiruvananthapuram, Kerala-695014, India
| | - Vivek Verma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
- Plant Biotechnology Department, Gujarat Biotechnology University, Near Gujarat International Finance Tec City, Gandhinagar, Gujarat-382355, India
| |
Collapse
|
2
|
Wu X, Zhou X, Lin T, Zhang Z, Wu X, Zhang Y, Liu Y, Tian Z. Accumulation of dually targeted StGPT1 in chloroplasts mediated by StRFP1, an E3 ubiquitin ligase, enhances plant immunity. HORTICULTURE RESEARCH 2024; 11:uhae241. [PMID: 39512780 PMCID: PMC11540758 DOI: 10.1093/hr/uhae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/22/2024] [Indexed: 11/15/2024]
Abstract
Chloroplasts play a crucial role in essential processes, such as photosynthesis and the synthesis of primary and diverse secondary metabolites. Recent studies have also highlighted their significance linked to phytohormone production in plant immunity, especially SA and JA. Ubiquitination, a key posttranslational modification, usually leads to target protein degradation, which acts as a signal for remodeling the proteome via the induction of protein endocytosis or targeting to other membrane associated systems. Previously, the potato E3 ligase StRFP1 was shown to enhance resistance against Phytophthora infestans, but its mechanism remained unclear. Here, we demonstrate that StRFP1 interacted with the dually localized plastid glucose 6-phosphate transporter StGPT1 on the endoplasmic reticulum (ER). Transiently expressed StGPT1-GFP located on the chloroplast and ER in plant cells. Overexpression of StGPT1 enhances late blight resistance in potato and Nicotiana benthamiana, activates immune responses, including ROS bursts and up-regulation of PTI marker genes. The resistance function of StGPT1 seems to be related to its dual localization. Remarkably, StRFP1 ubiquitinates StGPT1 at the ER, possibly due to its merely transient function in peroxisomes, leading to apparent accumulation in chloroplasts. Our findings point to a novel mechanism by which a plant E3 ligase contributes to immunity via interacting with dually targeted GPT1 at the ER of plant cells.
Collapse
Affiliation(s)
- Xintong Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
| | - Xiaoshuang Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
| | - Tianyu Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
| | - Zhe Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
| | - Xinya Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
| | - Yonglin Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
| | - Yanli Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
| | - Zhendong Tian
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan 430070, China
| |
Collapse
|
3
|
Liu Y, Jackson E, Liu X, Huang X, van der Hoorn RAL, Zhang Y, Li X. Proteolysis in plant immunity. THE PLANT CELL 2024; 36:3099-3115. [PMID: 38723588 PMCID: PMC11371161 DOI: 10.1093/plcell/koae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/23/2024] [Indexed: 09/05/2024]
Abstract
Compared with transcription and translation, protein degradation machineries can act faster and be targeted to different subcellular compartments, enabling immediate regulation of signaling events. It is therefore not surprising that proteolysis has been used extensively to control homeostasis of key regulators in different biological processes and pathways. Over the past decades, numerous studies have shown that proteolysis, where proteins are broken down to peptides or amino acids through ubiquitin-mediated degradation systems and proteases, is a key regulatory mechanism to control plant immunity output. Here, we briefly summarize the roles various proteases play during defence activation, focusing on recent findings. We also update the latest progress of ubiquitin-mediated degradation systems in modulating immunity by targeting plant membrane-localized pattern recognition receptors, intracellular nucleotide-binding domain leucine-rich repeat receptors, and downstream signaling components. Additionally, we highlight recent studies showcasing the importance of proteolysis in maintaining broad-spectrum resistance without obvious yield reduction, opening new directions for engineering elite crops that are resistant to a wide range of pathogens with high yield.
Collapse
Affiliation(s)
- Yanan Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Edan Jackson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xueru Liu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xingchuan Huang
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, Sichuan 641100, China
| | | | - Yuelin Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
4
|
Giulietti S, Bigini V, Savatin DV. ROS and RNS production, subcellular localization, and signaling triggered by immunogenic danger signals. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4512-4534. [PMID: 37950493 DOI: 10.1093/jxb/erad449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Plants continuously monitor the environment to detect changing conditions and to properly respond, avoiding deleterious effects on their fitness and survival. An enormous number of cell surface and intracellular immune receptors are deployed to perceive danger signals associated with microbial infections. Ligand binding by cognate receptors represents the first essential event in triggering plant immunity and determining the outcome of the tissue invasion attempt. Reactive oxygen and nitrogen species (ROS/RNS) are secondary messengers rapidly produced in different subcellular localizations upon the perception of immunogenic signals. Danger signal transduction inside the plant cells involves cytoskeletal rearrangements as well as several organelles and interactions between them to activate key immune signaling modules. Such immune processes depend on ROS and RNS accumulation, highlighting their role as key regulators in the execution of the immune cellular program. In fact, ROS and RNS are synergic and interdependent intracellular signals required for decoding danger signals and for the modulation of defense-related responses. Here we summarize current knowledge on ROS/RNS production, compartmentalization, and signaling in plant cells that have perceived immunogenic danger signals.
Collapse
Affiliation(s)
- Sarah Giulietti
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Valentina Bigini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| | - Daniel V Savatin
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S. Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
5
|
Wu X, Lin T, Zhou X, Zhang W, Liu S, Qiu H, Birch PRJ, Tian Z. Potato E3 ubiquitin ligase StRFP1 positively regulates late blight resistance by degrading sugar transporters StSWEET10c and StSWEET11. THE NEW PHYTOLOGIST 2024; 243:688-704. [PMID: 38769723 DOI: 10.1111/nph.19848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Potato (Solanum tuberosum) is the fourth largest food crop in the world. Late blight, caused by oomycete Phytophthora infestans, is the most devastating disease threatening potato production. Previous research has shown that StRFP1, a potato Arabidopsis Tóxicos en Levadura (ATL) family protein, positively regulates late blight resistance via its E3 ligase activity. However, the underlying mechanism is unknown. Here, we reveal that StRFP1 is associated with the plasma membrane (PM) and undergoes constitutive endocytic trafficking. Its PM localization is essential for inhibiting P. infestans colonization. Through in vivo and in vitro assays, we investigated that StRFP1 interacts with two sugar transporters StSWEET10c and StSWEET11 at the PM. Overexpression (OE) of StSWEET10c or StSWEET11 enhances P. infestans colonization. Both StSWEET10c and StSWEET11 exhibit sucrose transport ability in yeast, and OE of StSWEET10c leads to an increased sucrose content in the apoplastic fluid of potato leaves. StRFP1 ubiquitinates StSWEET10c and StSWEET11 to promote their degradation. We illustrate a novel mechanism by which a potato ATL protein enhances disease resistance by degrading susceptibility (S) factors, such as Sugars Will Eventually be Exported Transporters (SWEETs). This offers a potential strategy for improving disease resistance by utilizing host positive immune regulators to neutralize S factors.
Collapse
Affiliation(s)
- Xintong Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Tianyu Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Xiaoshuang Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Wenjun Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Shengxuan Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Huishan Qiu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Paul R J Birch
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Zhendong Tian
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| |
Collapse
|
6
|
Movahedi A, Hwarari D, Dzinyela R, Ni S, Yang L. A close-up of regulatory networks and signaling pathways of MKK5 in biotic and abiotic stresses. Crit Rev Biotechnol 2024:1-18. [PMID: 38797669 DOI: 10.1080/07388551.2024.2344584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/04/2024] [Indexed: 05/29/2024]
Abstract
Mitogen-activated protein Kinase Kinase 5 (MKK5) is a central hub in the complex phosphorylation chain reaction of the Mitogen-activated protein kinases (MAPK) cascade, regulating plant responses to biotic and abiotic stresses. This review manuscript aims to provide a comprehensive analysis of the regulatory mechanism of the MKK5 involved in stress adaptation. This review will delve into the intricate post-transcriptional and post-translational modifications of the MKK5, discussing how they affect its expression, activity, and subcellular localization in response to stress signals. We also discuss the integration of the MKK5 into complex signaling pathways, orchestrating plant immunity against pathogens and its modulating role in regulating abiotic stresses, such as: drought, cold, heat, and salinity, through the phytohormonal signaling pathways. Furthermore, we highlight potential applications of the MKK5 for engineering stress-resilient crops and provide future perspectives that may pave the way for future studies. This review manuscript aims to provide valuable insights into the mechanisms underlying MKK5 regulation, bridge the gap from numerous previous findings, and offer a firm base in the knowledge of MKK5, its regulating roles, and its involvement in environmental stress regulation.
Collapse
Affiliation(s)
- Ali Movahedi
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
- College of Arts and Sciences, Arlington International University, Wilmington, DE, USA
| | - Delight Hwarari
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Raphael Dzinyela
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Siyi Ni
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
7
|
Yang Z, Lu X, Wang N, Mei Z, Fan Y, Zhang M, Wang L, Sun Y, Chen X, Huang H, Meng Y, Liu M, Han M, Chen W, Zhang X, Yu X, Chen X, Wang S, Wang J, Zhao L, Guo L, Peng F, Feng K, Gao W, Ye W. GhVIM28, a negative regulator identified from VIM family genes, positively responds to salt stress in cotton. BMC PLANT BIOLOGY 2024; 24:432. [PMID: 38773389 PMCID: PMC11107009 DOI: 10.1186/s12870-024-05156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/16/2024] [Indexed: 05/23/2024]
Abstract
The VIM (belonged to E3 ubiquitin ligase) gene family is crucial for plant growth, development, and stress responses, yet their role in salt stress remains unclear. We analyzed phylogenetic relationships, chromosomal localization, conserved motifs, gene structure, cis-acting elements, and gene expression patterns of the VIM gene family in four cotton varieties. Our findings reveal 29, 29, 17, and 14 members in Gossypium hirsutum (G.hirsutum), Gossypium barbadense (G.barbadense), Gossypium arboreum (G.arboreum), and Gossypium raimondii (G. raimondii), respectively, indicating the maturity and evolution of this gene family. motifs among GhVIMs genes were observed, along with the presence of stress-responsive, hormone-responsive, and growth-related elements in their promoter regions. Gene expression analysis showed varying patterns and tissue specificity of GhVIMs genes under abiotic stress. Silencing GhVIM28 via virus-induced gene silencing revealed its role as a salt-tolerant negative regulator. This work reveals a mechanism by which the VIM gene family in response to salt stress in cotton, identifying a potential negative regulator, GhVIM28, which could be targeted for enhancing salt tolerance in cotton. The objective of this study was to explore the evolutionary relationship of the VIM gene family and its potential function in salt stress tolerance, and provide important genetic resources for salt tolerance breeding of cotton.
Collapse
Affiliation(s)
- Zhining Yang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Ning Wang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, 730070, China
| | - Zhengding Mei
- Hunan Institute of Cotton Science, Changde, Hunan, 415101, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Menghao Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Lidong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Yuping Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Xiao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Yuan Meng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Mengyue Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Mingge Han
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Wenhua Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Xinrui Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Xin Yu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China
| | - Fanjia Peng
- Hunan Institute of Cotton Science, Changde, Hunan, 415101, China
| | - Keyun Feng
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, 730070, China
| | - Wenwei Gao
- Engineering Research Centre of Cotton, Ministry of Education / College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China.
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, Henan, 455000, China.
| |
Collapse
|
8
|
Su M, Hou S. Ethylene insensitive 2 (EIN2) destiny shaper: The post-translational modification. JOURNAL OF PLANT PHYSIOLOGY 2024; 295:154190. [PMID: 38460400 DOI: 10.1016/j.jplph.2024.154190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/22/2024] [Accepted: 02/04/2024] [Indexed: 03/11/2024]
Abstract
PTMs (Post-Translational Modifications) of proteins facilitate rapid modulation of protein function in response to various environmental stimuli. The EIN2 (Ethylene Insensitive 2) protein is a core regulatory of the ethylene signaling pathway. Recent findings have demonstrated that PTMs, including protein phosphorylation, ubiquitination, and glycosylation, govern EIN2 trafficking, subcellular localization, stability, and physiological roles. The cognition of multiple PTMs in EIN2 underscores the stringent regulation of protein. Consequently, a thorough review of the regulatory role of PTMs in EIN2 functions will improve our profound comprehension of the regulation mechanism and various physiological processes of EIN2-mediated signaling pathways. This review discusses the evolution, functions, structure and characteristics of EIN2 protein in plants. Additionally, this review sheds light on the progress of protein ubiquitination, phosphorylation, O-Glycosylation in the regulation of EIN2 functions, and the unresolved questions and future perspectives.
Collapse
Affiliation(s)
- Meifei Su
- Key Laboratory of Gene Editing for Breeding, Gansu Province, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suiwen Hou
- Key Laboratory of Gene Editing for Breeding, Gansu Province, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
9
|
Bandopadhyay L, Basu D, Ranjan Sikdar S. De novo transcriptome assembly and global analysis of differential gene expression of aphid tolerant wild mustard Rorippa indica (L.) Hiern infested by mustard aphid Lipaphis Erysimi (L.) Kaltenbach. Funct Integr Genomics 2024; 24:43. [PMID: 38418630 DOI: 10.1007/s10142-024-01323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Rapeseed-mustard, the oleiferous Brassica species are important oilseed crops cultivated all over the globe. Mustard aphid Lipaphis erysimi (L.) Kaltenbach is a major threat to the cultivation of rapeseed-mustard. Wild mustard Rorippa indica (L.) Hiern shows tolerance to mustard aphids as a nonhost and hence is an important source for the bioprospecting of potential resistance genes and defense measures to manage mustard aphids sustainably. We performed mRNA sequencing of the R. indica plant uninfested and infested by the mustard aphids, harvested at 24 hours post-infestation. Following quality control, the high-quality reads were subjected to de novo assembly of the transcriptome. As there is no genomic information available for this potential wild plant, the raw reads will be useful for further bioinformatics analysis and the sequence information of the assembled transcripts will be helpful to design primers for the characterization of specific gene sequences. In this study, we also used the generated resource to comprehensively analyse the global profile of differential gene expression in R. indica in response to infestation by mustard aphids. The functional enrichment analysis of the differentially expressed genes reveals a significant immune response and suggests the possibility of chitin-induced defense signaling.
Collapse
Affiliation(s)
- Lekha Bandopadhyay
- Division of Plant Biology, Bose Institute, P 1/12, C. I. T. Road, Scheme VIIM, Kolkata, 700054, India.
| | - Debabrata Basu
- Division of Plant Biology, Bose Institute, P 1/12, C. I. T. Road, Scheme VIIM, Kolkata, 700054, India
| | - Samir Ranjan Sikdar
- Division of Plant Biology, Bose Institute, P 1/12, C. I. T. Road, Scheme VIIM, Kolkata, 700054, India.
| |
Collapse
|
10
|
Xue Q, Yang Y, Li H, Li X, Zou L, Li T, Ma H, Qi H, Wang J, Yu T. Functions and mechanisms of protein lysine butyrylation (Kbu): Therapeutic implications in human diseases. Genes Dis 2023; 10:2479-2490. [PMID: 37554202 PMCID: PMC10404885 DOI: 10.1016/j.gendis.2022.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/27/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
Post-translational modifications (PTM) are covalent modifications of proteins or peptides caused by proteolytic cleavage or the attachment of moieties to one or more amino acids. PTMs play essential roles in biological function and regulation and have been linked with several diseases. Modifications of protein acylation (Kac), a type of PTM, are known to induce epigenetic regulatory processes that promote various diseases. Thus, an increasing number of studies focusing on acylation modifications are being undertaken. Butyrylation (Kbu) is a new acylation process found in animals and plants. Kbu has been recently linked to the onset and progression of several diseases, such as cancer, cardiovascular diseases, diabetes, and vascular dementia. Moreover, the mode of action of certain drugs used in the treatment of lymphoma and colon cancer is based on the regulation of butyrylation levels, suggesting that butyrylation may play a therapeutic role in these diseases. In addition, butyrylation is also commonly involved in rice gene expression and thus plays an important role in the growth, development, and metabolism of rice. The tools and analytical methods that could be utilized for the prediction and detection of lysine butyrylation have also been investigated. This study reviews the potential role of histone Kbu, as well as the mechanisms underlying this process. It also summarizes various enzymes and analytical methods associated with Kbu, with the goal of providing new insights into the role of Kbu in gene regulation and diseases.
Collapse
Affiliation(s)
- Qianqian Xue
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Hong Li
- Clinical Laboratory, Central Laboratory. The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Xiaoxin Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Lu Zou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Tianxiang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Huibo Ma
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Hongzhao Qi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Jianxun Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| |
Collapse
|
11
|
Lee GH, Min CW, Jang JW, Wang Y, Jeon JS, Gupta R, Kim ST. Analysis of post-translational modification dynamics unveiled novel insights into Rice responses to MSP1. J Proteomics 2023; 287:104970. [PMID: 37467888 DOI: 10.1016/j.jprot.2023.104970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Magnaporthe oryzae snodprot1 homologous protein (MSP1) is known to function as a pathogen-associated molecular pattern (PAMP) and trigger PAMP-triggered immunity (PTI) in rice including induction of programmed cell death and expression of defense-related genes. The involvement of several post-translational modifications (PTMs) in the regulation of plant immune response, especially PTI, is well established, however, the information on the regulatory roles of these PTMs in response to MSP1-induced signaling is currently elusive. Here, we report the phosphoproteome, ubiquitinome, and acetylproteome to investigate the MSP1-induced PTMs alterations in MSP1 overexpressed and wild-type rice. Our analysis identified a total of 4666 PTMs-modified sites in rice leaves including 4292 phosphosites, 189 ubiquitin sites, and 185 acetylation sites. Among these, the PTM status of 437 phosphorylated, 53 ubiquitinated, and 68 acetylated peptides was significantly changed by MSP1. Functional annotation of MSP1 modulated peptides by MapMan analysis revealed that these were majorly associated with cellular immune responses including signaling, transcription factors, DNA and RNA regulation, and protein metabolism, among others. Taken together, our study provides novel insights into post-translational mediated regulation of rice proteins in response to M. oryzae secreted PAMP which help in understanding the molecular mechanism of MSP1-induced signaling in rice in greater detail. SIGNIFICANCE: The research investigates the effect of overexpression of MSP1 protein in rice leaves on the phosphoproteome, acetylome, and ubiquitinome. The study found that MSP1 is involved in rice protein phosphorylation, particularly in signaling pathways, and identified a key component, PTAC16, in MSP1-induced signaling. The analysis also revealed MSP1's role in protein degradation and modification by inducing ubiquitination of the target rice proteins. The research identified potential kinases involved in the phosphorylation of rice proteins, including casein kinase II, 14-3-3 domain binding motif, β-adrenergic receptor kinase, ERK1,2 kinase substrate motif, and casein kinase I motifs. Overall, the findings provide insights into the molecular mechanisms underlying of MSP1 induced signaling in rice which may have implications for improving crop yield and quality.
Collapse
Affiliation(s)
- Gi Hyun Lee
- Department of Plant Bioscience, Pusan National University, Miryang 50463, South Korea
| | - Cheol Woo Min
- Department of Plant Bioscience, Pusan National University, Miryang 50463, South Korea
| | - Jeong Woo Jang
- Department of Plant Bioscience, Pusan National University, Miryang 50463, South Korea
| | - Yiming Wang
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Department of Plant Pathology, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul 02707, South Korea.
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang 50463, South Korea.
| |
Collapse
|
12
|
Sharma S, Prasad A, Prasad M. Ubiquitination from the perspective of plant pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4367-4376. [PMID: 37226440 DOI: 10.1093/jxb/erad191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
The constant battle of survival between pathogens and host plants has played a crucial role in shaping the course of their co-evolution. However, the major determinants of the outcome of this ongoing arms race are the effectors secreted by pathogens into host cells. These effectors perturb the defense responses of plants to promote successful infection. In recent years, extensive research in the area of effector biology has reported an increase in the repertoire of pathogenic effectors that mimic or target the conserved ubiquitin-proteasome pathway. The role of the ubiquitin-mediated degradation pathway is well known to be indispensable for various aspects of a plant's life, and thus targeting or mimicking it seems to be a smart strategy adopted by pathogens. Therefore, this review summarizes recent findings on how some pathogenic effectors mimic or act as one of the components of the ubiquitin-proteasome machinery while others directly target the plant's ubiquitin-proteasome system.
Collapse
Affiliation(s)
| | - Ashish Prasad
- Department of Botany, Kurukshetra University, Kurukshetra, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
13
|
Hua Z. The Ubiquitin-26S Proteasome System-A Versatile Player Worthy of Close Attention in Plants. Int J Mol Sci 2023; 24:ijms24098185. [PMID: 37175891 PMCID: PMC10178954 DOI: 10.3390/ijms24098185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
In the crowded and confined space of a cell, numerous proteins work collaboratively in various subsystems, such as metabolic pathways, organelle compartments, and complexes, to regulate cell growth and development [...].
Collapse
Affiliation(s)
- Zhihua Hua
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
14
|
Liang Y, Wang Z, Wang Q, Zhou X, Qian Y. The RING-Finger Protein NbRFP1 Contributes to Regulating the Host Hypersensitive Response Induced by Oat Dwarf Virus RepA. Int J Mol Sci 2023; 24:ijms24097697. [PMID: 37175403 PMCID: PMC10178201 DOI: 10.3390/ijms24097697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Our previous study identified that the RepA protein encoded by the oat dwarf virus (ODV) was responsible for inducing a strong hypersensitive response (HR) during the virus infection in non-host tobacco plants. However, little was known about the molecular mechanism of the RepA-elicited HR. Here, a RING-finger protein, which is described as NbRFP1 and is mainly located in the cytoplasm and nucleus in Nicotiana benthamiana cells, was confirmed to interact with RepA. In addition, the accumulation level of NbRFP1 in N. benthamiana leaves was enhanced by either ODV infection or by only RepA expression. The knockdown of NbRFP1 by a TRV-mediated virus-induced gene silencing markedly delayed the ODV or RepA-elicited HR. By contrast, the overexpression of NbRFP1 in N. benthamiana conferred enhanced resistance to ODV infection and promoted RepA-induced HR. Further mutation analysis showed that a RING-finger domain located in NbRFP1 plays important roles in modulating RepA-induced HR, as well as in mediating the interaction between NbRFP1 and RepA.
Collapse
Affiliation(s)
- Yanqing Liang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhanqi Wang
- College of Life Science, Huzhou University, Huzhou 313000, China
| | - Qian Wang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xueping Zhou
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Department of Plant Protection, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yajuan Qian
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Lu Y, Zhang Y, Lian N, Li X. Membrane Dynamics Regulated by Cytoskeleton in Plant Immunity. Int J Mol Sci 2023; 24:ijms24076059. [PMID: 37047032 PMCID: PMC10094514 DOI: 10.3390/ijms24076059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 04/14/2023] Open
Abstract
The plasma membrane (PM), which is composed of a lipid layer implanted with proteins, has diverse functions in plant responses to environmental triggers. The heterogenous dynamics of lipids and proteins in the plasma membrane play important roles in regulating cellular activities with an intricate pathway that orchestrates reception, signal transduction and appropriate response in the plant immune system. In the process of the plasma membrane participating in defense responses, the cytoskeletal elements have important functions in a variety of ways, including regulation of protein and lipid dynamics as well as vesicle trafficking. In this review, we summarized how the plasma membrane contributed to plant immunity and focused on the dynamic process of cytoskeleton regulation of endocytosis and exocytosis and propose future research directions.
Collapse
Affiliation(s)
- Yuqing Lu
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuan Zhang
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Na Lian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Li
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
16
|
Wang N, Yin Z, Zhao Y, Wang J, Pei Y, Ji P, Daly P, Li Z, Dou D, Wei L. An F-box protein attenuates fungal xylanase-triggered immunity by destabilizing LRR-RLP NbEIX2 in a SOBIR1-dependent manner. THE NEW PHYTOLOGIST 2022; 236:2202-2215. [PMID: 36151918 DOI: 10.1111/nph.18509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Receptor-like proteins (RLPs) lacking the cytoplasmic kinase domain play crucial roles in plant growth, development and immunity. However, what remains largely elusive is whether RLP protein levels are fine-tuned by E3 ubiquitin ligases, which are employed by receptor-like kinases for signaling attenuation. Nicotiana benthamiana NbEIX2 is a leucine-rich repeat RLP (LRR-RLP) that mediates fungal xylanase-triggered immunity. Here we show that NbEIX2 associates with an F-box protein NbPFB1, which promotes NbEIX2 degradation likely by forming an SCF E3 ubiquitin ligase complex, and negatively regulates NbEIX2-mediated immune responses. NbEIX2 undergoes ubiquitination and proteasomal degradation in planta. Interestingly, NbEIX2 without its cytoplasmic tail is still associated with and destabilized by NbPFB1. In addition, NbPFB1 also associates with and destabilizes NbSOBIR1, a co-receptor of LRR-RLPs, and fails to promote NbEIX2 degradation in the sobir1 mutant. Our findings reveal a distinct model of NbEIX2 degradation, in which an F-box protein destabilizes NbEIX2 indirectly in a SOBIR1-dependent manner.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Zhiyuan Yin
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yaning Zhao
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jinghao Wang
- College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Yong Pei
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Peiyun Ji
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Paul Daly
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Zhengpeng Li
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, 223300, Huaian, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| |
Collapse
|
17
|
RING-Type E3 Ubiquitin Ligases AtRDUF1 and AtRDUF2 Positively Regulate the Expression of PR1 Gene and Pattern-Triggered Immunity. Int J Mol Sci 2022; 23:ijms232314525. [PMID: 36498851 PMCID: PMC9739713 DOI: 10.3390/ijms232314525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The importance of E3 ubiquitin ligases from different families for plant immune signaling has been confirmed. Plant RING-type E3 ubiquitin ligases are members of the E3 ligase superfamily and have been shown to play positive or negative roles during the regulation of various steps of plant immunity. Here, we present Arabidopsis RING-type E3 ubiquitin ligases AtRDUF1 and AtRDUF2 which act as positive regulators of flg22- and SA-mediated defense signaling. Expression of AtRDUF1 and AtRDUF2 is induced by pathogen-associated molecular patterns (PAMPs) and pathogens. The atrduf1 and atrduf2 mutants displayed weakened responses when triggered by PAMPs. Immune responses, including oxidative burst, mitogen-activated protein kinase (MAPK) activity, and transcriptional activation of marker genes, were attenuated in the atrduf1 and atrduf2 mutants. The suppressed activation of PTI responses also resulted in enhanced susceptibility to bacterial pathogens. Interestingly, atrduf1 and atrduf2 mutants showed defects in SA-mediated or pathogen-mediated PR1 expression; however, avirulent Pseudomonas syringae pv. tomato DC3000-induced cell death was unaffected. Our findings suggest that AtRDUF1 and AtRDUF2 are not just PTI-positive regulators but are also involved in SA-mediated PR1 gene expression, which is important for resistance to P. syringae.
Collapse
|
18
|
Rauf M, Ur-Rahman A, Arif M, Gul H, Ud-Din A, Hamayun M, Lee IJ. Immunomodulatory Molecular Mechanisms of Luffa cylindrica for Downy Mildews Resistance Induced by Growth-Promoting Endophytic Fungi. J Fungi (Basel) 2022; 8:689. [PMID: 35887445 PMCID: PMC9324744 DOI: 10.3390/jof8070689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023] Open
Abstract
Downy mildew (DM), caused by P. cubensis, is harmful to cucurbits including luffa, with increased shortcomings associated with its control through cultural practices, chemical fungicides, and resistant cultivars; there is a prompt need for an effective, eco-friendly, economical, and safe biocontrol approach. Current research is therefore dealt with the biocontrol of luffa DM1 through the endophytic fungi (EF) consortium. Results revealed that T. harzianum (ThM9) and T. virens (TvA1) showed pathogen-dependent inducible metabolic production of squalene and gliotoxins by higher gene expression induction of SQS1/ERG9 (squalene synthase) and GliP (non-ribosomal peptide synthetase). Gene expression of lytic enzymes of EF was also induced with subsequently higher enzyme activities upon confrontation with P. cubensis. EF-inoculated luffa seeds showed efficient germination with enhanced growth potential and vigor of seedlings. EF-inoculated plants showed an increased level of growth-promoting hormone GA with higher gene expression of GA2OX8. EF-pre-inoculated seedlings were resistant to DM and showed an increased GSH content and antioxidant enzyme activities (SOD, CAT, POD). The level of MDA, H2O2, REL, and disease severity was reduced by EF. ACC, JA, ABA, and SA were overproduced along with higher gene expression of LOX, ERF, NCED2, and PAL. Expression of defense-marker genes (PPO, CAT2, SOD, APX, PER5, LOX, NBS-LRR, PSY, CAS, Ubi, MLP43) was also modulated in EF-inoculated infected plants. Current research supported the use of EF inoculation to effectively escalate the systemic immunity against DM corresponding to the significant promotion of induced systemic resistance (ISR) and systemic acquired resistance (SAR) responses through initiating the defense mechanism by SA, ABA, ET, and JA biosynthesis and signaling pathways in luffa.
Collapse
Affiliation(s)
- Mamoona Rauf
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.R.); (A.U.-R.); (H.G.)
| | - Asim Ur-Rahman
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.R.); (A.U.-R.); (H.G.)
| | - Muhammad Arif
- Department of Biotechnology, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan
| | - Humaira Gul
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.R.); (A.U.-R.); (H.G.)
| | - Aziz Ud-Din
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21120, Pakistan;
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan 23200, Pakistan; (M.R.); (A.U.-R.); (H.G.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|