1
|
Ren S, Zhang Z, Song Q, Ren Z, Xiao J, Li L, Zhang Q. Metabolic exploration of the developmental abnormalities and neurotoxicity of Esculentoside B, the main toxic factor in Phytolaccae radix. Food Chem Toxicol 2023; 176:113777. [PMID: 37080526 DOI: 10.1016/j.fct.2023.113777] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
P: radix is a perennial herb, and its extracts have various biological properties that make it a potential candidate for the treatment of tumors, edema, and lymphatic stasis. However, the main factor contributing to its toxicity are not clear. Here, we used a zebrafish toxicological model to study the main toxicity factor of P. radix and explore the potential mechanisms involved. The results revealed that Esculentoside B was the major toxic factor of P. radix. Exposure of zebrafish larvae to Esculentoside B caused developmental abnormalities, neurotoxicity and altered locomotor behavior. The combination of AChE activity and the expression levels of genes relevant to CNS development demonstrated that Esculentoside B is neurotoxic to zebrafish larvae, impairs their CNS development, and that AChE may be a toxic target of Esculentoside B. Metabolomic analysis has revealed that Esculentoside B exposure can disrupt D-Amino acid metabolism, protein export, autophagy, and mTOR signaling pathways in zebrafish larvae. These findings provide insights into the molecular mechanisms underlying EsB-induced neurotoxicity in zebrafish, which can facilitate further research and development of P. radix for safe consumption.
Collapse
Affiliation(s)
- Sipei Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Zhichao Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Qinyang Song
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Zhaoyang Ren
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Jian Xiao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China.
| | - Luqi Li
- Life Science Research Core Services, Northwest A&F University, Yangling, Xianyang, 712100, China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shanxi, China; Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, 721013, China.
| |
Collapse
|
2
|
López-González D, Bruno L, Díaz-Tielas C, Lupini A, Aci MM, Talarico E, Madeo ML, Muto A, Sánchez-Moreiras AM, Araniti F. Short-Term Effects of Trans-Cinnamic Acid on the Metabolism of Zea mays L. Roots. PLANTS (BASEL, SWITZERLAND) 2023; 12:189. [PMID: 36616318 PMCID: PMC9824805 DOI: 10.3390/plants12010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
trans-Cinnamic acid is a phenolic compound widely studied in plant metabolism due to its importance in regulating different plant processes. Previous studies on maize plants showed that this compound could affect plant growth and causes metabolic changes in the leaves when applied. However, its effects on root metabolism are not well known. This study analyses the short-term effect of trans-cinnamic acid on the morphology of vascular bundle elements and metabolism in maize roots. At short times (between 6 and 12 h), there is a reduction in the content of many amino acids which may be associated with the altered nitrogen uptake observed in earlier work. In addition, the compound caused an alteration of the vascular bundles at 48 h and seemed to have changed the metabolism in roots to favor lignin and galactose synthesis. The results obtained complement those previously carried out on maize plants, demonstrating that in the short term trans-cinnamic acid can trigger stress-coping processes in the treated plants.
Collapse
Affiliation(s)
- David López-González
- Departmento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Leonardo Bruno
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria (DiBEST-UNICAL), 87036 Arcavacata di Rende, Italy
| | - Carla Díaz-Tielas
- Departmento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Antonio Lupini
- Dipartimento Agraria, Università Mediterranea di Reggio Calabria, 89124 Reggio Calabria, Italy
| | - Meriem Miyassa Aci
- Dipartimento Agraria, Università Mediterranea di Reggio Calabria, 89124 Reggio Calabria, Italy
| | - Emanuela Talarico
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria (DiBEST-UNICAL), 87036 Arcavacata di Rende, Italy
| | - Maria Letizia Madeo
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria (DiBEST-UNICAL), 87036 Arcavacata di Rende, Italy
| | - Antonella Muto
- Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria (DiBEST-UNICAL), 87036 Arcavacata di Rende, Italy
| | - Adela M. Sánchez-Moreiras
- Departmento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Bioloxía, Universidade de Vigo, Campus Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Fabrizio Araniti
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università Statale di Milano, Via Celoria n°2, 20133 Milano, Italy
| |
Collapse
|
3
|
Yang QQ, Hua WP, Zou HL, Yang JX, Wang XZ, Zhang T, Wang DH, Zhu XJ, Cao XY. Overexpression of SmLAC25 promotes lignin accumulation and decreases salvianolic acid content in Salvia miltiorrhiza. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111462. [PMID: 36126879 DOI: 10.1016/j.plantsci.2022.111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Laccase (LAC) is a blue multicopper oxidase that contains four copper ions, which is involved in lignin polymerization and flavonoid biosynthesis in plants. Although dozens of LAC genes have been identified in Salvia miltiorrhiza Bunge (a model medicinal plant), most have not been functionally characterized. Here, we explored the expression patterns and the functionality of SmLAC25 in S. miltiorrhiza. SmLAC25 has a higher expression level in roots and responds to methyl jasmonate, auxin, abscisic acid, and gibberellin stimuli. The SmLAC25 protein is localized in the cytoplasm and chloroplasts. Recombinant SmLAC25 protein could oxidize coniferyl alcohol and sinapyl alcohol, two monomers of G-lignin and S-lignin. To investigate its function, we generated SmLAC25-overexpressed S. miltiorrhiza plantlets and hairy roots. The lignin content increased significantly in all SmLAC25-overexpressed plantlets and hairy roots, compared with the controls. However, the concentrations of rosmarinic acid and salvianolic acid B decreased significantly in all the SmLAC25-overexpressed lines. Further studies revealed that the transcription levels of some key enzyme genes in the lignin synthesis pathway (e.g., SmCCR and SmCOMT) were significantly improved in the SmLAC25-overexpressed lines, while the expression levels of multiple enzyme genes in the salvianolic acid biosynthesis pathway were inhibited. We speculated that the overexpression of SmLAC25 promoted the metabolic flux of lignin synthesis, which resulted in a decreased metabolic flux to the salvianolic acid biosynthesis pathway.
Collapse
Affiliation(s)
- Qian-Qian Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an 710062, China
| | - Wen-Ping Hua
- College of Life Science and Food Engineering, Shaanxi Xueqian Normal University, Xi'an 710100, China
| | - Hao-Lan Zou
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an 710062, China
| | - Jia-Xin Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xiang-Zeng Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an 710062, China
| | - Tong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an 710062, China
| | - Dong-Hao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xiao-Jia Zhu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an 710062, China.
| | - Xiao-Yan Cao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
4
|
Liu Y, Deng Y, Wang F, Liu X, Wang J, Xiao J, Zhang C, Zhang Q. A New Mechanism for Ginsenoside Rb1 to Promote Glucose Uptake, Regulating Riboflavin Metabolism and Redox Homeostasis. Metabolites 2022; 12:1011. [PMID: 36355094 PMCID: PMC9698532 DOI: 10.3390/metabo12111011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
Glucose absorption promoters perform insulin mimic functions to enhance blood glucose transport to skeletal muscle cells and accelerate glucose consumption, thereby reducing blood glucose levels. In our screening exploration of food ingredients for improving glucose transportation and metabolism, we found that the saponins in American ginseng (Panaxquinquefolius L.) showed potential activity to promote glucose uptake, which can be used for stabilizing levels of postprandial blood glucose. The aim of this study was to identify key components of American ginseng with glucose uptake-promoting activity and to elucidate their metabolic regulatory mechanisms. Bio-guided isolation using zebrafish larvae and 2-NBDG indicator identified ginsenoside Rb1 (GRb1) as the most potential promotor of glucose uptake. Using UPLC-QTOF-MS/MS combined with RT-qPCR and phenotypic verification, we found that riboflavin metabolism is the hinge for GRb1-mediated facilitation of glucose transport. GRb1-induced restoration of redox homeostasis was mediated by targeting riboflavin transporters (SLC52A1 and SLC52A3) and riboflavin kinase (RFK).
Collapse
Affiliation(s)
- Yihan Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China
| | - Yuchan Deng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China
| | - Fengyu Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China
| | - Xiaoyi Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China
| | - Jiaqi Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China
| | - Jian Xiao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Cunli Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China
| | - Qiang Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| |
Collapse
|
5
|
LC-MS/MS Insight into Vitamin C Restoration to Metabolic Disorder Evoked by Amyloid β in Caenorhabditis elegans CL2006. Metabolites 2022; 12:metabo12090841. [PMID: 36144245 PMCID: PMC9506573 DOI: 10.3390/metabo12090841] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The transitional expression and aggregation of amyloid β (Aβ) are the most important causative factors leading to the deterioration of Alzheimer’s disease (AD), a commonly occurring metabolic disease among older people. Antioxidant agents such as vitamin C (Vc) have shown potential effects against AD and aging. We applied an liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method and differential metabolites strategy to explore the metabolic disorders and Vc restoration in a human Aβ transgenic (Punc-54::Aβ1–42) nematode model CL2006. We combined the LC-MS/MS investigation with the KEGG and HMDB databases and the CFM-ID machine-learning model to identify and qualify the metabolites with important physiological roles. The differential metabolites responding to Aβ activation and Vc treatment were filtered out and submitted to enrichment analysis. The enrichment showed that Aβ mainly caused abnormal biosynthesis and metabolism pathways of phenylalanine, tyrosine and tryptophan biosynthesis, as well as arginine and proline metabolism. Vc reversed the abnormally changed metabolites tryptophan, anthranilate, indole and indole-3-acetaldehyde. Vc restoration affected the tryptophan metabolism and the biosynthesis of phenylalanine, tyrosine and tryptophan. Our findings provide supporting evidence for understanding the metabolic abnormalities in neurodegenerative diseases and the repairing effect of drug interventions.
Collapse
|