1
|
Zheng B, Li YT, Wu QP, Zhao W, Ren TH, Zhang XH, Li G, Ning TY, Zhang ZS. Maize (Zea mays L.) planted at higher density utilizes dynamic light more efficiently. PLANT, CELL & ENVIRONMENT 2023; 46:3305-3322. [PMID: 37485705 DOI: 10.1111/pce.14673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/15/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
In nature, plants are exposed to a dynamic light environment. Fluctuations in light decreased the photosynthetic light utilization efficiency (PLUE) of leaves, and much more severely in C4 species than in C3 species. However, little is known about the plasticity of PLUE under dynamic light in C4 species. Present study focused on the influence of planting density to the photosynthesis under dynamic light in maize (Zea mays L.), a most important C4 crop. In addition, the molecular mechanism behind photosynthetic adaptation to planting density were also explored by quantitative proteomics analysis. Results revealed that as planting density increases, maize leaves receive less light that fluctuates more. The maize planted at high density (HD) improved the PLUE under dynamic light, especially in the middle and later growth stages. Quantitative proteomics analysis showed that the transfer of nitrogen from Rubisco to RuBP regeneration and C4 pathway related enzymes contributes to the photosynthetic adaptation to lower and more fluctuating light environment in HD maize. This study provides potential ways to further improve the light energy utilization efficiency of maize in HD.
Collapse
Affiliation(s)
- Bin Zheng
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Yu-Ting Li
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Qiu-Ping Wu
- Jining Academy of Agricultural Sciences, Shandong, P. R. China
| | - Wei Zhao
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Ting-Hu Ren
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Xing-Hui Zhang
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Geng Li
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Tang-Yuan Ning
- College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| | - Zi-Shan Zhang
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, P. R. China
| |
Collapse
|
2
|
Zou QQ, Liu DH, Sang M, Jiang CD. Sunflower Leaf Structure Affects Chlorophyll a Fluorescence Induction Kinetics In Vivo. Int J Mol Sci 2022; 23:ijms232314996. [PMID: 36499324 PMCID: PMC9738131 DOI: 10.3390/ijms232314996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Chlorophyll a fluorescence induction kinetics (CFI) is an important tool that reflects the photosynthetic function of leaves, but it remains unclear whether it is affected by leaf structure. Therefore, in this study, the leaf structure and CFI curves of sunflower and sorghum seedlings were analyzed. Results revealed that there was a significant difference between the structures of palisade and spongy tissues in sunflower leaves. Their CFI curves, measured on both the adaxial and abaxial sides, also differed significantly. However, the differences in the leaf structures and CFI curves between both sides of sorghum leaves were not significant. Further analysis revealed that the differences in the CFI curves between the adaxial and abaxial sides of sunflower leaves almost disappeared due to reduced incident light scattering and refraction in the leaf tissues; more importantly, changes in the CFI curves of the abaxial side were greater than the adaxial side. Compared to leaves grown under full sunlight, weak light led to decreased differences in the CFI curves between the adaxial and abaxial sides of sunflower leaves; of these, changes in the CFI curves and palisade tissue structure on the adaxial side were more obvious than on the abaxial side. Therefore, it appears that large differences in sunflower leaf structures may affect the shape of CFI curves. These findings lay a foundation for enhancing our understanding of CFI from a new perspective.
Collapse
Affiliation(s)
- Qing-Qing Zou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Huan Liu
- China National Botanical Garden, Beijing 100093, China
- Beijing Botanical Garden, Beijing Floriculture Engineering Technology Research Centre, Beijing 100093, China
| | - Min Sang
- China National Botanical Garden, Beijing 100093, China
- Beijing Botanical Garden, Beijing Floriculture Engineering Technology Research Centre, Beijing 100093, China
| | - Chuang-Dao Jiang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Correspondence:
| |
Collapse
|
3
|
Ibrahim AEA, Abd El Mageed T, Abohamid Y, Abdallah H, El-Saadony M, AbuQamar S, El-Tarabily K, Abdou N. Exogenously Applied Proline Enhances Morph-Physiological Responses and Yield of Drought-Stressed Maize Plants Grown Under Different Irrigation Systems. FRONTIERS IN PLANT SCIENCE 2022; 13:897027. [PMID: 35909786 PMCID: PMC9331896 DOI: 10.3389/fpls.2022.897027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
The exogenous application of osmoprotectants [e.g., proline (Pro)] is an important approach for alleviating the adverse effects of abiotic stresses on plants. Field trials were conducted during the summers of 2017 and 2018 to determine the effects of deficit irrigation and exogenous application of Pro on the productivity, morph-physiological responses, and yield of maize grown under two irrigation systems [surface irrigation (SI) and drip irrigation (DI)]. Three deficit irrigation levels (I100, I85, and I70, representing 100, 85, and 70% of crop evapotranspiration, respectively) and two concentrations of Pro (Pro1 = 2 mM and Pro2 = 4 mM) were used in this study. The plants exposed to drought stress showed a significant reduction in plant height, dry matter, leaf area, chlorophyll content [soil plant analysis development (SPAD)], quantum efficiency of photosystem II [Fv/Fm, Fv/F0, and performance index (PI)], water status [membrane stability index (MSI) and relative water content (RWC)], and grain yield. The DI system increased crop growth and yield and reduced the irrigation water input by 30% compared with the SI system. The growth, water status, and yield of plants significantly decreased with an increase in the water stress levels under the SI system. Under the irrigation systems tested in this study, Pro1 and Pro2 increased plant height by 16 and 18%, RWC by 7 and 10%, MSI by 6 and 12%, PI by 6 and 19%, chlorophyll fluorescence by 7 and 11%, relative chlorophyll content by 9 and 14%, and grain yield by 10 and 14%, respectively, compared with Pro0 control treatment (no Pro). The interaction of Pro2 at I100 irrigation level in DI resulted in the highest grain yield (8.42 t ha-1). However, under the DI or SI system, exogenously applied Pro2 at I85 irrigation level may be effective in achieving higher water productivity and yield without exerting any harmful effects on the growth or yield of maize under limited water conditions. Our results demonstrated the importance of the application of Pro as a tolerance inducer of drought stress in maize.
Collapse
Affiliation(s)
- Abd El-Aty Ibrahim
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Taia Abd El Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Yasmin Abohamid
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Hanan Abdallah
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Mohamed El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Synan AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Khaled El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Nasr Abdou
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| |
Collapse
|