1
|
Weng X, Gonzalez M, Angelia J, Piroozmand S, Jamehdor S, Behrooz AB, Latifi-Navid H, Ahmadi M, Pecic S. Lipidomics-driven drug discovery and delivery strategies in glioblastoma. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167637. [PMID: 39722408 DOI: 10.1016/j.bbadis.2024.167637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
With few viable treatment options, glioblastoma (GBM) is still one of the most aggressive and deadly types of brain cancer. Recent developments in lipidomics have demonstrated the potential of lipid metabolism as a therapeutic target in GBM. The thorough examination of lipids in biological systems, or lipidomics, is essential to comprehending the changed lipid profiles found in GBM, which are linked to the tumor's ability to grow, survive, and resist treatment. The use of lipidomics in drug delivery and discovery is examined in this study, focusing on how it may be used to find new biomarkers, create multi-target directed ligands, and improve drug delivery systems. We also cover the use of FDA-approved medications, clinical trials that use lipid-targeted medicines, and the integration of lipidomics with other omics technologies. This study emphasizes lipidomics as a possible tool in developing more effective treatment methods for GBM by exploring various lipid-centric techniques.
Collapse
Affiliation(s)
- Xiaohui Weng
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Michael Gonzalez
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Jeannes Angelia
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Somayeh Piroozmand
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Saleh Jamehdor
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States.
| |
Collapse
|
2
|
Brandt N, Köper F, Hausmann J, Bräuer AU. Spotlight on plasticity-related genes: Current insights in health and disease. Pharmacol Ther 2024; 260:108687. [PMID: 38969308 DOI: 10.1016/j.pharmthera.2024.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The development of the central nervous system is highly complex, involving numerous developmental processes that must take place with high spatial and temporal precision. This requires a series of complex and well-coordinated molecular processes that are tighly controlled and regulated by, for example, a variety of proteins and lipids. Deregulations in these processes, including genetic mutations, can lead to the most severe maldevelopments. The present review provides an overview of the protein family Plasticity-related genes (PRG1-5), including their role during neuronal differentiation, their molecular interactions, and their participation in various diseases. As these proteins can modulate the function of bioactive lipids, they are able to influence various cellular processes. Furthermore, they are dynamically regulated during development, thus playing an important role in the development and function of synapses. First studies, conducted not only in mouse experiments but also in humans, revealed that mutations or dysregulations of these proteins lead to changes in lipid metabolism, resulting in severe neurological deficits. In recent years, as more and more studies have shown their involvement in a broad range of diseases, the complexity and broad spectrum of known and as yet unknown interactions between PRGs, lipids, and proteins make them a promising and interesting group of potential novel therapeutic targets.
Collapse
Affiliation(s)
- Nicola Brandt
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Franziska Köper
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Jens Hausmann
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Anja U Bräuer
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
3
|
Bou Zerdan M, Atoui A, Hijazi A, Basbous L, Abou Zeidane R, Alame SM, Assi HI. Latest updates on cellular and molecular biomarkers of gliomas. Front Oncol 2022; 12:1030366. [PMID: 36425564 PMCID: PMC9678906 DOI: 10.3389/fonc.2022.1030366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/05/2022] [Indexed: 03/05/2024] Open
Abstract
Gliomas are the most common central nervous system malignancies, compromising almost 80% of all brain tumors and is associated with significant mortality. The classification of gliomas has shifted from basic histological perspective to one that is based on molecular biomarkers. Treatment of this type of tumors consists currently of surgery, chemotherapy and radiation therapy. During the past years, there was a limited development of effective glioma diagnostics and therapeutics due to multiple factors including the presence of blood-brain barrier and the heterogeneity of this type of tumors. Currently, it is necessary to highlight the advantage of molecular diagnosis of gliomas to develop patient targeted therapies based on multiple oncogenic pathway. In this review, we will evaluate the development of cellular and molecular biomarkers for the diagnosis of gliomas and the impact of these diagnostic tools for better tailored and targeted therapies.
Collapse
Affiliation(s)
- Maroun Bou Zerdan
- Department of Internal Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Ali Atoui
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Hijazi
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Lynn Basbous
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Reine Abou Zeidane
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| | - Saada M Alame
- Department of Pediatrics, Faculty of Medicine, Lebanese University, Beirut, Lebanon
| | - Hazem I Assi
- Hematology-Oncology Division, Internal Medicine Department, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
4
|
Fuchs J, Bareesel S, Kroon C, Polyzou A, Eickholt BJ, Leondaritis G. Plasma membrane phospholipid phosphatase-related proteins as pleiotropic regulators of neuron growth and excitability. Front Mol Neurosci 2022; 15:984655. [PMID: 36187351 PMCID: PMC9520309 DOI: 10.3389/fnmol.2022.984655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neuronal plasma membrane proteins are essential for integrating cell extrinsic and cell intrinsic signals to orchestrate neuronal differentiation, growth and plasticity in the developing and adult nervous system. Here, we shed light on the family of plasma membrane proteins phospholipid phosphatase-related proteins (PLPPRs) (alternative name, PRGs; plasticity-related genes) that fine-tune neuronal growth and synaptic transmission in the central nervous system. Several studies uncovered essential functions of PLPPRs in filopodia formation, axon guidance and branching during nervous system development and regeneration, as well as in the control of dendritic spine number and excitability. Loss of PLPPR expression in knockout mice increases susceptibility to seizures, and results in defects in sensory information processing, development of psychiatric disorders, stress-related behaviors and abnormal social interaction. However, the exact function of PLPPRs in the context of neurological diseases is largely unclear. Although initially described as active lysophosphatidic acid (LPA) ecto-phosphatases that regulate the levels of this extracellular bioactive lipid, PLPPRs lack catalytic activity against LPA. Nevertheless, they emerge as atypical LPA modulators, by regulating LPA mediated signaling processes. In this review, we summarize the effects of this protein family on cellular morphology, generation and maintenance of cellular protrusions as well as highlight their known neuronal functions and phenotypes of KO mice. We discuss the molecular mechanisms of PLPPRs including the deployment of phospholipids, actin-cytoskeleton and small GTPase signaling pathways, with a focus on identifying gaps in our knowledge to stimulate interest in this understudied protein family.
Collapse
Affiliation(s)
- Joachim Fuchs
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Shannon Bareesel
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Cristina Kroon
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexandra Polyzou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Britta J. Eickholt
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- *Correspondence: Britta J. Eickholt,
| | - George Leondaritis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Institute of Biosciences, University Research Center Ioannina, University of Ioannina, Ioannina, Greece
- George Leondaritis,
| |
Collapse
|
5
|
Broggini T, Stange L, Lucia KE, Vajkoczy P, Czabanka M. Endothelial EphrinB2 Regulates Sunitinib Therapy Response in Murine Glioma. Life (Basel) 2022; 12:life12050691. [PMID: 35629359 PMCID: PMC9146972 DOI: 10.3390/life12050691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 12/28/2022] Open
Abstract
Vascular guidance is critical in developmental vasculogenesis and pathological angiogenesis. Brain tumors are strongly vascularized, and antiangiogenic therapy was anticipated to exhibit a strong anti-tumor effect in this tumor type. However, vascular endothelial growth factor A (VEGFA) specific inhibition had no significant impact in clinical practice of gliomas. More research is needed to understand the failure of this therapeutic approach. EphrinB2 has been found to directly interact with vascular endothelial growth factor receptor 2 (VEGFR2) and regulate its activity. Here we analyzed the expression of ephrinB2 and EphB4 in human glioma, we observed vascular localization of ephrinB2 in physiology and pathology and found a significant survival reduction in patients with elevated ephrinB2 tumor expression. Induced endothelial specific depletion of ephrinB2 in the adult mouse (efnb2i∆EC) had no effect on the quiescent vascular system of the brain. However, we found glioma growth and perfusion altered in efnb2i∆EC animals similar to the effects observed with antiangiogenic therapy. No additional anti-tumor effect was observed in efnb2i∆EC animals treated with antiangiogenic therapy. Our data indicate that ephrinB2 and VEGFR2 converge on the same pathway and intervention with either molecule results in a reduction in angiogenesis.
Collapse
Affiliation(s)
- Thomas Broggini
- Department of Neurosurgery, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (L.S.); (K.E.L.); (M.C.)
- Correspondence:
| | - Lena Stange
- Department of Neurosurgery, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (L.S.); (K.E.L.); (M.C.)
| | - Kristin Elizabeth Lucia
- Department of Neurosurgery, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (L.S.); (K.E.L.); (M.C.)
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Marcus Czabanka
- Department of Neurosurgery, University Hospital Frankfurt, 60528 Frankfurt am Main, Germany; (L.S.); (K.E.L.); (M.C.)
| |
Collapse
|