1
|
Arellano‐García LI, Milton‐Laskibar I, Martínez JA, Arán‐González M, Portillo MP. Comparative effects of viable Lactobacillus rhamnosus GG and its heat-inactivated paraprobiotic in the prevention of high-fat high-fructose diet-induced non-alcoholic fatty liver disease in rats. Biofactors 2025; 51:e2116. [PMID: 39135211 PMCID: PMC11680974 DOI: 10.1002/biof.2116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 12/29/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver alterations worldwide, being gut microbiota dysbiosis one of the contributing factors to its development. The aim of this research is to compare the potential effects of a viable probiotic (Lactobacillus rhamnosus GG) with those exerted by its heat-inactivated paraprobiotic counterpart in a dietary rodent model of NAFLD. The probiotic administration effectively prevented the hepatic lipid accumulation induced by a high-fat high-fructose diet feeding, as demonstrated by chemical (lower TG content) and histological (lower steatosis grade and lobular inflammation) analyses. This effect was mainly mediated by the downregulation of lipid uptake (FATP2 protein expression) and upregulating liver TG release to bloodstream (MTTP activity) in rats receiving the probiotic. By contrast, the effect of the paraprobiotic preventing diet-induced liver lipid accumulation was milder, and mainly derived from the downregulation of hepatic de novo lipogenesis (SREBP-1c protein expression and FAS activity) and TG assembly (DGAT2 and AQP9 protein expression). The obtained results demonstrate that under these experimental conditions, the effects induced by the administration of viable L. rhamnosus GG preventing liver lipid accumulation in rats fed a diet rich in saturated fat and fructose differ from those induced by its heat-inactivated paraprobiotic counterpart.
Collapse
Affiliation(s)
- Laura Isabel Arellano‐García
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy and Lucio Lascaray Research CentreUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos IIIMadridSpain
| | - Iñaki Milton‐Laskibar
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy and Lucio Lascaray Research CentreUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos IIIMadridSpain
- BIOARABA Health Research InstituteVitoria‐GasteizSpain
| | - J. Alfredo Martínez
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos IIIMadridSpain
- Precision Nutrition and Cardiometabolic Health, IMDEA‐Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research CouncilMadridSpain
| | - Miguel Arán‐González
- Unidad de Gestión Clínica de Anatomía Patológica de GuipúzcoaHospital Universitario DonostiaSan SebastiánSpain
| | - María P. Portillo
- Nutrition and Obesity Group, Department of Pharmacy and Food Sciences, Faculty of Pharmacy and Lucio Lascaray Research CentreUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos IIIMadridSpain
- BIOARABA Health Research InstituteVitoria‐GasteizSpain
| |
Collapse
|
2
|
Arellano-García LI, Portillo MP, Martínez JA, Courtois A, Milton-Laskibar I. Postbiotics for the management of obesity, insulin resistance/type 2 diabetes and NAFLD. Beyond microbial viability. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 39644489 DOI: 10.1080/10408398.2024.2437143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Highly prevalent comorbidities associated with metabolic syndrome, such as abdominal obesity, nonalcoholic fatty liver disease (NAFLD) and insulin-resistance/Type 2 diabetes (IR/T2D) share alterations in gut microbiota composition as a potential triggering factor. Recent studies put the attention in the potential usage of postbiotics (inactivated probiotics) on these metabolic alterations. This review summarizes the current evidence regarding the efficacy of postbiotic administration in both, preclinical and clinical studies, for the management of obesity, NAFLD and IR/T2D. Data from preclinical studies (rodents) suggest that postbiotic administration effectively prevents obesity, whereas clinical studies corroborate these benefits also in overweight/obese subjects receiving inactivated bacteria. As for NAFLD, although preclinical studies indicate that postbiotic administration improves different liver markers, no data obtained in humans have been published so far since all the studies are ongoing clinical trials. Finally, while the administration of inactivated bacteria demonstrated to be a promising approach for the management of IR/T2D in rodents, data from clinical trials indicates that in humans, this approach is more effective on IR than in T2D. In conclusion, the available scientific data indicate that postbiotic administration not only is safer, but also as effective as probiotic administration for the management of obesity associated prevalent metabolic alterations.
Collapse
Affiliation(s)
- Laura Isabel Arellano-García
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - María P Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
- BIOARABA Health Research Institute, Vitoria-Gasteiz, Spain
| | - J Alfredo Martínez
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
| | - Arnaud Courtois
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Villenave d'Ornon, France
- Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Gradignan, France
- Centre Antipoison de Nouvelle Aquitaine, CHU de Bordeaux, Bordeaux, France
| | - Iñaki Milton-Laskibar
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy and Lucio Lascaray Research Centre, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
- BIOARABA Health Research Institute, Vitoria-Gasteiz, Spain
| |
Collapse
|
3
|
Qayyum N, Ismael M, Haoyue H, Guo H, Lü X. Dietary supplementation of probiotic Lactobacillus modulates metabolic dysfunction-associated steatotic liver disease and intestinal barrier integrity in obesity-induced mice. J Food Sci 2024; 89:10113-10133. [PMID: 39455245 DOI: 10.1111/1750-3841.17439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024]
Abstract
The impact of Lacticaseibacillus paracasei NWAFU334 and Limosilactobacillus fermentum NWAFU0035 on the amelioration of liver function, oxidative stress reduction, and lipid metabolism modulation in mice subjected to an obesity-inducing high-fat diet (HFD) model was investigated. L. paracasei NWAFU334 and L. fermentum NWAFU0035 supplementations over 12 weeks have been shown to have numerous beneficial effects in mice with induced obesity. These effects comprise the restoration of liver function and the reduction of oxidative stress within the liver. Furthermore, the supplementation led to a decreased content of fat accumulation in the liver, mitigation of the expression of inflammatory cytokines in the liver and colon, and a decrease in the expression levels of tight-junction proteins, for example, claudin-1, PPARγ, occludin, and ZO-1. Additionally, a notable improvement in the colonic expression proteins, including IL-6, TNF-α, IL-1β, Muc-2, Muc-3, Zo-1, claudin-1, and occludin. These proposed strains considerably decreased proinflammatory cytokines and influenced the regulation of lipid metabolism in the liver. These findings indicate that the potential mechanisms, primarily the impact of L. paracasei NWAFU334 and L. fermentum NWAFU0035 on obesity-induced liver function in mice, involve two regulated pathways: downregulation of lipogenesis and upregulation of gene expression related to fatty acid oxidation and lipolysis. In other words, these probiotic bacterial strains might be beneficial in reducing fat production and increasing fat breakdown in the liver. They may serve as effective therapeutic supplements for alleviating abnormalities induced by an HFD.
Collapse
Affiliation(s)
- Nageena Qayyum
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Xianyang, China
- Shaanxi Engineering Research Centre of Dairy Products Quality, Safety, and Health Shaanxi, Shaanxi, China
- School of Public Health, Guangdong Medical University, Dongguan, China
| | | | - Han Haoyue
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Xianyang, China
- Shaanxi Engineering Research Centre of Dairy Products Quality, Safety, and Health Shaanxi, Shaanxi, China
| | - Honghui Guo
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest Agriculture and Forestry University, Xianyang, China
- Shaanxi Engineering Research Centre of Dairy Products Quality, Safety, and Health Shaanxi, Shaanxi, China
| |
Collapse
|
4
|
Bhardwaj M, Mazumder PM. The gut-liver axis: emerging mechanisms and therapeutic approaches for nonalcoholic fatty liver disease and type 2 diabetes mellitus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8421-8443. [PMID: 38861011 DOI: 10.1007/s00210-024-03204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD), more appropriately known as metabolic (dysfunction) associated fatty liver disease (MAFLD), a prevalent condition in type 2 diabetes mellitus (T2DM) patients, is a complex condition involving hepatic lipid accumulation, inflammation, and liver fibrosis. The gut-liver axis is closely linked to metabolic dysfunction, insulin resistance, inflammation, and oxidative stress that are leading to the cooccurrence of MAFLD and T2DM cardiovascular diseases (CVDs). The purpose of this review is to raise awareness about the role of the gut-liver axis in the progression of MAFLD, T2DM and CVDs with a critical analysis of available treatment options for T2DM and MAFLD and their impact on cardiovascular health. This study analysed over 100 articles on this topic, using online searches and predefined keywords, to understand and summarise published research. Numerous studies have shown a strong correlation between gut dysfunction, particularly the gut microbiota and its metabolites, and the occurrence and progression of MAFLD and type 2 diabetes mellitus (T2DM). Herein, this article also examines the impact of the gut-liver axis on MAFLD, T2DM, and related complications, focusing on the role of gut microbiota dysbiosis in insulin resistance, T2DM and obesity-related cardiovascular complications. The study suggests potential treatment targets for MAFLD linked to T2DM, focusing on cardiovascular outcomes and the molecular mechanism of the gut-liver axis, as gut microbiota dysbiosis contributes to obesity-related metabolic abnormalities.
Collapse
Affiliation(s)
- Monika Bhardwaj
- Department of Pharmaceutical Sciences & Technology, BIT Mesra, Ranchi, 835215, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Sciences & Technology, BIT Mesra, Ranchi, 835215, India.
| |
Collapse
|
5
|
Singh S, Kriti M, Catanzaro R, Marotta F, Malvi M, Jain A, Verma V, Nagpal R, Tiwari R, Kumar M. Deciphering the Gut–Liver Axis: A Comprehensive Scientific Review of Non-Alcoholic Fatty Liver Disease. LIVERS 2024; 4:435-454. [DOI: 10.3390/livers4030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant global health issue. The condition is closely linked to metabolic dysfunctions such as obesity and type 2 diabetes. The gut–liver axis, a bidirectional communication pathway between the liver and the gut, plays a crucial role in the pathogenesis of NAFLD. This review delves into the mechanisms underlying the gut–liver axis, exploring the influence of gut microbiota, intestinal permeability, and inflammatory pathways. This review also explores the potential therapeutic strategies centered on modulating gut microbiota such as fecal microbiota transplantation; phage therapy; and the use of specific probiotics, prebiotics, and postbiotics in managing NAFLD. By understanding these interactions, we can better comprehend the development and advancement of NAFLD and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Mona Kriti
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Roberto Catanzaro
- Internal Medicine Unit, Department of Clinical and Experimental Medicine, Gastroenterology and Hepatology Service, University Hospital Policlinico “G. Rodolico”, University of Catania, 95123 Catania, Italy
| | | | - Mustafa Malvi
- Choithram Hospital and Research Centre Indore, Indore 452014, India
| | - Ajay Jain
- Choithram Hospital and Research Centre Indore, Indore 452014, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ravinder Nagpal
- Department of Nutrition & Integrative Physiology, College of Health & Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Rajnarayan Tiwari
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhauri, Bhopal 462030, India
| |
Collapse
|
6
|
Mozaffari S, Aliari M, Emamgholipour S, Hosseini H, Amirkiasar PR, Zare M, Katsiki N, Panahi G, Sahebkar A. The effect of probiotic consumption on lipid profile, glycemic index, inflammatory markers, and liver function in NAFLD patients: A systematic review and meta-analysis of randomized controlled trials. J Diabetes Complications 2024; 38:108780. [PMID: 38968867 DOI: 10.1016/j.jdiacomp.2024.108780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND-AIM Non-alcoholic fatty liver disease (NAFLD1) is the most frequent chronic liver disorder worldwide. Currently, no pharmacological treatment has been approved for NAFLD. Probiotics have been suggested as a potential therapy for NAFLD. The aim of this systematic review and meta-analysis was to assess the impact of probiotic intake on liver tests, lipids, glycemic parameters and inflammatory markers in NAFLD patients. METHODS We searched electronic databases using related terms. Meta-analysis was performed using random-effects models. Clinical outcomes were presented as standard mean difference (SMD2) with a 95 % confidence interval (CI3). Publication bias and heterogeneity were evaluated in eligible studies. RESULTS Fifteen randomized clinical trials comprising 899 participants were included in our meta-analysis. Probiotic supplementation improved alanine transaminase [SMD -0.796; 95 % CI (-1.419, -0.172); p = 0.012], Homeostatic Model Assessment for Insulin Resistance (HOMA-IR4) [SMD -0.596; 95 % CI (-1.071, -0.121); p = 0.01] and insulin levels [SMD -1.10; 95 % CI (-2.121, -0.087); p = 0.03]. No significant effects were observed on fasting glucose, hemoglobin A1c, aspartate transaminase, lipid profile, interleukin-6 and tumor necrosis factor-α. CONCLUSIONS Probiotic intake may improve insulin sensitivity and alanine transaminase in NAFLD patients.
Collapse
Affiliation(s)
- Sadegh Mozaffari
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdeyeh Aliari
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pedram Rezaei Amirkiasar
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Zare
- Biochemistry Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece; School of Medicine, European University Cyprus, Nicosia 2404, Cyprus.
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Vallianou NG, Kounatidis D, Psallida S, Vythoulkas-Biotis N, Adamou A, Zachariadou T, Kargioti S, Karampela I, Dalamaga M. NAFLD/MASLD and the Gut-Liver Axis: From Pathogenesis to Treatment Options. Metabolites 2024; 14:366. [PMID: 39057689 PMCID: PMC11278747 DOI: 10.3390/metabo14070366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) poses an emerging threat topublic health. Nonalcoholic steatohepatitis (NASH) is reported to be the most rapidly rising cause of hepatocellular carcinoma in the western world. Recently, a new term has been proposed: metabolic dysfunction-associated steatotic liver disease (MASLD). The introduction of this new terminology has sparked a debate about the interchangeability of these terms. The pathogenesis of NAFLD/MASLD is thought to be multifactorial, involving both genetic and environmental factors. Among these factors, alterations in gut microbiota and gut dysbiosis have recently garnered significant attention. In this context, this review will further discuss the gut-liver axis, which refers to the bidirectional interaction between the human gut microbiota and the liver. Additionally, the therapeutic potential of probiotics, particularly next-generation probiotics and genetically engineered bacteria, will be explored. Moreover, the role of prebiotics, synbiotics, postbiotics, and phages as well as fecal microbiota transplantation will be analyzed. Particularly for lean patients with NAFLD/MASLD, who have limited treatment options, approaches that modify the diversity and composition of the gut microbiota may hold promise. However, due to ongoing safety concerns with approaches that modulate gut microbiota, further large-scale studies are necessary to better assess their efficacy and safety in treating NAFLD/MASLD.
Collapse
Affiliation(s)
- Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, Sismanogliou 1 Str., 15126 Athens, Greece
| | - Dimitris Kounatidis
- Department of Internal Medicine, Hippokration General Hospital, 114 Vassilissis Sofias Str., 11527 Athens, Greece;
| | - Sotiria Psallida
- Department of Microbiology, “KAT” General Hospital of Attica, 14561 Athens, Greece;
| | - Nikolaos Vythoulkas-Biotis
- First Department of Internal Medicine, Sismanogleio General Hospital, Sismanogliou 1 Str., 15126 Athens, Greece
| | - Andreas Adamou
- First Department of Internal Medicine, Sismanogleio General Hospital, Sismanogliou 1 Str., 15126 Athens, Greece
| | - Tatiana Zachariadou
- First Department of Internal Medicine, Sismanogleio General Hospital, Sismanogliou 1 Str., 15126 Athens, Greece
| | - Sofia Kargioti
- First Department of Internal Medicine, Sismanogleio General Hospital, Sismanogliou 1 Str., 15126 Athens, Greece
| | - Irene Karampela
- Second Department of Critical Care, Attikon University Hospital, 1 Rimini Str., 12462 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece;
| |
Collapse
|
8
|
Bołdys A, Bułdak Ł, Maligłówka M, Surma S, Okopień B. Potential Therapeutic Strategies in the Treatment of Metabolic-Associated Fatty Liver Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1789. [PMID: 37893507 PMCID: PMC10608225 DOI: 10.3390/medicina59101789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Metabolic-associated Fatty Liver Disease is one of the outstanding challenges in gastroenterology. The increasing incidence of the disease is undoubtedly connected with the ongoing obesity pandemic. The lack of specific symptoms in the early phases and the grave complications of the disease require an active approach to prompt diagnosis and treatment. Therapeutic lifestyle changes should be introduced in a great majority of patients; but, in many cases, the adherence is not satisfactory. There is a great need for an effective pharmacological therapy for Metabolic-Associated Fatty Liver Disease, especially before the onset of steatohepatitis. Currently, there are no specific recommendations on the selection of drugs to treat liver steatosis and prevent patients from progression toward more advanced stages (steatohepatitis, cirrhosis, and cancer). Therefore, in this Review, we provide data on the clinical efficacy of therapeutic interventions that might improve the course of Metabolic-Associated Fatty Liver Disease. These include the drugs used in the treatment of obesity and hyperlipidemias, as well as affecting the gut microbiota and endocrine system, and other experimental approaches, including functional foods. Finally, we provide advice on the selection of drugs for patients with concomitant Metabolic-Associated Fatty Liver Disease.
Collapse
Affiliation(s)
| | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland
| | | | | | | |
Collapse
|
9
|
Cao C, Shi M, Wang X, Yao Y, Zeng R. Effects of probiotics on non-alcoholic fatty liver disease: a review of human clinical trials. Front Nutr 2023; 10:1155306. [PMID: 37457967 PMCID: PMC10349203 DOI: 10.3389/fnut.2023.1155306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global public health issue, of which the prevalence is about 25% worldwide. The incidence of NAFLD is increasing in patients with obesity, type 2 diabetes (T2DM) and the metabolic syndrome. The crosstalk between gut microbiota and metabolism-related diseases has been raised great concern. Patients with NAPLD were observed with disruption of gut microbiota. Several researches showed that gut microbiota was the determination in the progression of NAFLD by the experiments using fecal microbiota transplants. The application of probiotics, as one of the most important strategies for the regulation of gut microbiota disorder, have been explored whether it is beneficial to gut-related diseases of intestine-distal organs. Some probiotics were showed to improve the liver parameters and phenotype in patients with NAFLD. The oral intake of them might become the effective management for the prevention and treatment of NAFLD. In this review, we summarized the human clinical trials focusing on the effects of probiotics on NAFLD to give some evidential reference for the administration of NAFLD.
Collapse
Affiliation(s)
- Chujin Cao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengxia Shi
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuru Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Division of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
10
|
Saenz M, McDonough JC, Bloom-Saldana E, Irimia JM, Cauble EL, Castillo A, Fueger PT, Treviño LS. Longitudinal analysis of a dietary mouse model of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.19.540989. [PMID: 37293034 PMCID: PMC10245692 DOI: 10.1101/2023.05.19.540989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), and resultant non-alcoholic steatohepatitis (NASH), incidence and prevalence are rising globally due to increasing rates of obesity and diabetes. Currently, there are no approved pharmacological treatments for NAFLD, highlighting a need for additional mechanistic studies to develop prevention and/or therapeutic strategies. Diet-induced preclinical models of NAFLD can be used to examine the dynamic changes that occur during NAFLD development and progression throughout the lifespan. To date, most studies utilizing such models have focused exclusively on terminal time points and have likely missed critical early and late changes that are important for NAFLD progression (i.e, worsening). We performed a longitudinal analysis of histopathological, biochemical, transcriptomic, and microbiome changes that occurred in adult male mice fed either a control diet or a NASH-promoting diet (high in fat, fructose, and cholesterol) for up to 30 weeks. We observed progressive development of NAFLD in mice fed the NASH diet compared to the control diet. Differential expression of immune-related genes was observed at an early stage of diet-induced NAFLD development (10 weeks) and persisted into the later stages of the disease (20 and 30 weeks). Differential expression of xenobiotic metabolism related genes was observed at the late stage of diet-induced NAFLD development (30 weeks). Microbiome analysis revealed an increased abundance of Bacteroides at an early stage (10 weeks) that persisted into the later stages of the disease (20 and 30 weeks). These data provide insight into the progressive changes that occur during NAFLD/NASH development and progression in the context of a typical Western diet. Furthermore, these data are consistent with what has been reported in patients with NAFLD/NASH, supporting the preclinical use of this diet-induced model for development of strategies to prevent or treat the disease.
Collapse
Affiliation(s)
- Marissa Saenz
- Center for Comparative Medicine, City of Hope, Duarte, CA
- Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA
| | - Jillian C. McDonough
- Division of Health Inequities, Department of Population Sciences, City of Hope, Duarte, CA
| | - Elizabeth Bloom-Saldana
- Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, Duarte, CA
| | - Jose M. Irimia
- Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, Duarte, CA
| | - Emily L. Cauble
- Division of Health Inequities, Department of Population Sciences, City of Hope, Duarte, CA
| | - Ashly Castillo
- Eugene and Ruth Roberts Summer Student Academy, Irell & Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA
| | - Patrick T. Fueger
- Department of Molecular and Cellular Endocrinology, City of Hope, Duarte, CA
- Comprehensive Metabolic Phenotyping Core, Beckman Research Institute, City of Hope, Duarte, CA
| | - Lindsey S. Treviño
- Division of Health Inequities, Department of Population Sciences, City of Hope, Duarte, CA
- Cancer Control and Population Sciences, Comprehensive Cancer Center, City of Hope, Duarte, CA
| |
Collapse
|
11
|
Wen X, Liu H, Luo X, Lui L, Fan J, Xing Y, Wang J, Qiao X, Li N, Wang G. Supplementation of Lactobacillus plantarum ATCC14917 mitigates non-alcoholic fatty liver disease in high-fat-diet-fed rats. Front Microbiol 2023; 14:1146672. [PMID: 37266005 PMCID: PMC10229879 DOI: 10.3389/fmicb.2023.1146672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Atherosclerosis and non-alcoholic fatty liver disease (NAFLD) have been increasing at an alarming rate worldwide. Many clinical studies have underlined the link between NAFLD and atherosclerosis. Our previous experiments have discovered that Lactobacillus (L.) plantarum ATCC14917 supplementation could decrease the progression of atherosclerotic lesion formation. In this study, we aimed to investigate the role of supplementation of L. plantarum ATCC14917 mitigates liver injury in rats fed with a high-fat diet (HFD, 45% kcal from fat). A total of 32 rats were randomly divided into four groups, including two intervention groups, who fed with HFD and administering either 1 × 107 or 1 × 109 colony forming units (CFU) of L. plantarum ATCC14917, the normal control group, and the HFD control group. The results showed that supplementation with low-dose and high-dose of L. plantarum ATCC14917 for 8 weeks could alleviate the body weight gain (p < 0.05), hepatic steatosis, and serum lipid metabolism (p < 0.05) in HFD-fed rats. Moreover, supplementation of L. plantarum ATCC 14917 decreased total cholesterol (TC), triglyceride (TG), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels (p < 0.05) in serum, and improved HFD-associated inflammation (p < 0.05). Furthermore, cecal contents were analyzed by high-throughput 16S ribosomal RNA sequencing. The results indicated that supplementation of L. plantarum ATCC 14917 could ameliorate HFD-induced gut dysbiosis. In summary, our findings suggest that supplementation of L. plantarum ATCC 14917 could mitigate NAFLD in rats, suggesting it may be considered as a probiotic agent for preventing HFD-induced obesity.
Collapse
Affiliation(s)
- Xingjian Wen
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Hejing Liu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaoling Luo
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Li Lui
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Jiuyu Fan
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yajing Xing
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Jia Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xingfang Qiao
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Na Li
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Guixue Wang
- College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
12
|
Pezzino S, Sofia M, Mazzone C, Castorina S, Puleo S, Barchitta M, Agodi A, Gallo L, La Greca G, Latteri S. Gut Microbiome in the Progression of NAFLD, NASH and Cirrhosis, and Its Connection with Biotics: A Bibliometric Study Using Dimensions Scientific Research Database. BIOLOGY 2023; 12:biology12050662. [PMID: 37237476 DOI: 10.3390/biology12050662] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
There is growing evidence that gut microbiota dysbiosis is linked to the etiopathogenesis of nonalcoholic fatty liver disease (NAFLD), from the initial stage of disease until the progressive stage of nonalcoholic steatohepatitis (NASH) and the final stage of cirrhosis. Conversely, probiotics, prebiotics, and synbiotics have shown promise in restoring dysbiosis and lowering clinical indicators of disease in a number of both preclinical and clinical studies. Additionally, postbiotics and parabiotics have recently garnered some attention. The purpose of this bibliometric analysis is to assess recent publishing trends concerning the role of the gut microbiome in the progression of NAFLD, NASH and cirrhosis and its connection with biotics. The free access version of the Dimensions scientific research database was used to find publications in this field from 2002 to 2022. VOSviewer and Dimensions' integrated tools were used to analyze current research trends. Research into the following topics is expected to emerge in this field: (1) evaluation of risk factors which are correlated with the progression of NAFLD, such as obesity and metabolic syndrome; (2) pathogenic mechanisms, such as liver inflammation through toll-like receptors activation, or alteration of short-chain fatty acids metabolisms, which contribute to NAFLD development and its progression in more severe forms, such as cirrhosis; (3) therapy for cirrhosis through dysbiosis reduction, and research on hepatic encephalopathy a common consequence of cirrhosis; (4) evaluation of diversity, and composition of gut microbiome under NAFLD, and as it varies under NASH and cirrhosis by rRNA gene sequencing, a tool which can also be used for the development of new probiotics and explore into the impact of biotics on the gut microbiome; (5) treatments to reduce dysbiosis with new probiotics, such as Akkermansia, or with fecal microbiome transplantation.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, 95123 Catania, Italy
| | - Maria Sofia
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, 95123 Catania, Italy
| | - Chiara Mazzone
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, 95123 Catania, Italy
| | - Sergio Castorina
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, 95123 Catania, Italy
| | - Stefano Puleo
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, 95123 Catania, Italy
| | - Martina Barchitta
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, 95123 Catania, Italy
| | - Antonella Agodi
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, 95123 Catania, Italy
| | - Luisa Gallo
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, 95123 Catania, Italy
| | - Gaetano La Greca
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, 95123 Catania, Italy
| | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies "G. F. Ingrassia", Cannizzaro Hospital, University of Catania, 95123 Catania, Italy
| |
Collapse
|
13
|
Oh KK, Yoon SJ, Lee SB, Lee SY, Gupta H, Ganesan R, Sharma SP, Won SM, Jeong JJ, Kim DJ, Suk KT. The convergent application of metabolites from Avena sativa and gut microbiota to ameliorate non-alcoholic fatty liver disease: a network pharmacology study. J Transl Med 2023; 21:263. [PMID: 37069607 PMCID: PMC10111676 DOI: 10.1186/s12967-023-04122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a serious public health issue globally, currently, the treatment of NAFLD lies still in the labyrinth. In the inchoate stage, the combinatorial application of food regimen and favorable gut microbiota (GM) are considered as an alternative therapeutic. Accordingly, we integrated secondary metabolites (SMs) from GM and Avena sativa (AS) known as potent dietary grain to identify the combinatorial efficacy through network pharmacology. METHODS We browsed the SMs of AS via Natural Product Activity & Species Source (NPASS) database and SMs of GM were retrieved by gutMGene database. Then, specific intersecting targets were identified from targets related to SMs of AS and GM. The final targets were selected on NAFLD-related targets, which was considered as crucial targets. The protein-protein interaction (PPI) networks and bubble chart analysis to identify a hub target and a key signaling pathway were conducted, respectively. In parallel, we analyzed the relationship of GM or AS─a key signaling pathway─targets─SMs (GASTM) by merging the five components via RPackage. We identified key SMs on a key signaling pathway via molecular docking assay (MDA). Finally, the identified key SMs were verified the physicochemical properties and toxicity in silico platform. RESULTS The final 16 targets were regarded as critical proteins against NAFLD, and Vascular Endothelial Growth Factor A (VEGFA) was a key target in PPI network analysis. The PI3K-Akt signaling pathway was the uppermost mechanism associated with VEGFA as an antagonistic mode. GASTM networks represented 122 nodes (60 GM, AS, PI3K-Akt signaling pathway, 4 targets, and 56 SMs) and 154 edges. The VEGFA-myricetin, or quercetin, GSK3B-myricetin, IL2-diosgenin complexes formed the most stable conformation, the three ligands were derived from GM. Conversely, NR4A1-vestitol formed stable conformation with the highest affinity, and the vestitol was obtained from AS. The given four SMs were no hurdles to develop into drugs devoid of its toxicity. CONCLUSION In conclusion, we show that combinatorial application of AS and GM might be exerted to the potent synergistic effects against NAFLD, dampening PI3K-Akt signaling pathway. This work provides the importance of dietary strategy and beneficial GM on NAFLD, a data mining basis for further explicating the SMs and pharmacological mechanisms of combinatorial application (AS and GM) against NAFLD.
Collapse
Affiliation(s)
- Ki-Kwang Oh
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Sang-Jun Yoon
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Su-Been Lee
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Sang Youn Lee
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Satya Priya Sharma
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Sung-Min Won
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Jin-Ju Jeong
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea
| | - Ki-Tae Suk
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon, 24252, Korea.
| |
Collapse
|
14
|
Beneficial Effects of Viable and Heat-Inactivated Lactobacillus rhamnosus GG Administration on Oxidative Stress and Inflammation in Diet-Induced NAFLD in Rats. Antioxidants (Basel) 2023; 12:antiox12030717. [PMID: 36978965 PMCID: PMC10045382 DOI: 10.3390/antiox12030717] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Oxidative stress and inflammation are well-known triggers of NAFLD onset and progression. The aim of this study is to compare the potential benefits of a viable probiotic (Lactobacillus rhamnosus GG) and its parabiotic (heat-inactivated) on oxidative stress, inflammation, DNA damage and cell death pathways in the liver of rats featuring diet-induced NAFLD. The consumption of the steatotic diet led to increased final body and liver weights, higher hepatic triacylglycerol content, altered serum transaminase levels and enhanced oxidative and inflammatory status. Administration of the probiotic and the parabiotic partially prevented the body weight increase induced by the steatotic diet, whereas the probiotic caused more effective decreasing hepatic triglyceride content. Sharp but nonstatistically significant decreases in serum transaminase levels were also observed for both treatments. The reduction in antioxidant enzyme activities found in the nontreated animals fed the steatotic diet was partially prevented by both treatments (GPx activity). Similarly, the reductions in nonenzymatic antioxidant protection (GSH content) and total antioxidant capacity (ORAC) found in the nontreated rats were restored by the administration of both treatments. These results show that both viable and heat-inactivated Lactobacillus rhamnosus GG administration partially prevent steatotic diet-induced liver oxidative stress and inflammation induced in rats.
Collapse
|
15
|
Abstract
Childhood obesity is, according to the WHO, one of the most serious challenges of the 21st century. More than 100 million children have obesity today. Already during childhood, almost all organs are at risk of being affected by obesity. In this review, we present the current knowledge about diseases associated with childhood obesity and how they are affected by weight loss. One major causative factor is obesity-induced low-grade chronic inflammation, which can be observed already in preschool children. This inflammation-together with endocrine, paracrine, and metabolic effects of obesity-increases the long-term risk for several severe diseases. Type 2 diabetes is increasingly prevalent in adolescents and young adults who have had obesity during childhood. When it is diagnosed in young individuals, the morbidity and mortality rate is higher than when it occurs later in life, and more dangerous than type 1 diabetes. Childhood obesity also increases the risk for several autoimmune diseases such as multiple sclerosis, Crohn's disease, arthritis, and type 1 diabetes and it is well established that childhood obesity also increases the risk for cardiovascular disease. Consequently, childhood obesity increases the risk for premature mortality, and the mortality rate is three times higher already before 30 years of age compared with the normal population. The risks associated with childhood obesity are modified by weight loss. However, the risk reduction is affected by the age at which weight loss occurs. In general, early weight loss-that is, before puberty-is more beneficial, but there are marked disease-specific differences.
Collapse
Affiliation(s)
- Claude Marcus
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Pernilla Danielsson
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Emilia Hagman
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Polyphenol-Rich Liupao Tea Extract Prevents High-Fat Diet-Induced MAFLD by Modulating the Gut Microbiota. Nutrients 2022; 14:nu14224930. [PMID: 36432617 PMCID: PMC9697786 DOI: 10.3390/nu14224930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The modulation of gut microbiota dysbiosis might regulate the progression of metabolic-associated fatty liver disease (MAFLD). Here, we found that polyphenol-rich Liupao tea extract (PLE) prevents high-fat diet (HFD)-induced MAFLD in ApoE-/- male mice accompanied by protection of the intestinal barrier and downregulation of lipopolysaccharide (LPS)-related Toll-like receptor 4 (TLR4)-myeloid differentiation primary response 88 (MyD88) signaling in the liver. Fecal microbiome transplantation (FMT) from PLE-and-HFD-treated mice delayed MAFLD development significantly compared with FMT from HFD-treated mice. In this case, 16S rRNA gene sequencing revealed that Rikenellaceae and Odoribacter were significantly enriched and that Helicobacter was significantly decreased in not only the HFD+PLE group but also the HFD+PLE-FMT group. Furthermore, the level of 3-sulfodeoxycholic acid was significantly decreased in the HFD+PLE-FMT group compared with the HFD-FMT group. In conclusion, our data demonstrate that PLE could modulate the MAFLD phenotype in mice and that this effect is partly mediated through modulation of the gut microbiota.
Collapse
|
17
|
Carpi RZ, Barbalho SM, Sloan KP, Laurindo LF, Gonzaga HF, Grippa PC, Zutin TLM, Girio RJS, Repetti CSF, Detregiachi CRP, Bueno PCS, Mazuqueli Pereira EDSB, Goulart RDA, Haber JFDS. The Effects of Probiotics, Prebiotics and Synbiotics in Non-Alcoholic Fat Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH): A Systematic Review. Int J Mol Sci 2022; 23:8805. [PMID: 35955942 PMCID: PMC9369010 DOI: 10.3390/ijms23158805] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 12/11/2022] Open
Abstract
Modifications in the microbiota caused by environmental and genetic reasons can unbalance the intestinal homeostasis, deregulating the host's metabolism and immune system, intensifying the risk factors for the development and aggravation of non-alcoholic fat liver disease (NAFLD). The use of probiotics, prebiotics and synbiotics have been considered a potential and promising strategy to regulate the gut microbiota and produce beneficial effects in patients with liver conditions. For this reason, this review aimed to evaluate the effectiveness of probiotics, prebiotics, and symbiotics in patients with NAFLD and NASH. Pubmed, Embase, and Cochrane databases were consulted, and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines were followed. The clinical trials used in this study demonstrated that gut microbiota interventions could improve a wide range of markers of inflammation, glycemia, insulin resistance, dyslipidemia, obesity, liver injury (decrease of hepatic enzymes and steatosis and fibrosis). Although microbiota modulators do not play a healing role, they can work as an important adjunct therapy in pathological processes involving NAFLD and its spectrums, either by improving the intestinal barrier or by preventing the formation of toxic metabolites for the liver or by acting on the immune system.
Collapse
Affiliation(s)
- Rodrigo Zamignan Carpi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Sandra M. Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
- School of Food and Technology of Marilia (FATEC), Marilia 17506-000, SP, Brazil
| | | | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Heron Fernando Gonzaga
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Paulo Cesar Grippa
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Tereza L. Menegucci Zutin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Raul J. S. Girio
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Cláudia Sampaio Fonseca Repetti
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Cláudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Patrícia C. Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
- Department of Biochemistry, School of Dentistry, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Jesselina Francisco dos Santos Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| |
Collapse
|
18
|
Soundharrajan I, Karnan M, Jung JS, Lee KD, Lee JC, Ramesh T, Kim D, Choi KC. A Transcriptomic Response to Lactiplantibacillus plantarum-KCC48 against High-Fat Diet-Induced Fatty Liver Diseases in Mice. Int J Mol Sci 2022; 23:6750. [PMID: 35743193 PMCID: PMC9224190 DOI: 10.3390/ijms23126750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
The most prevalent chronic liver disorder in the world is fatty liver disease caused by a high-fat diet. We examined the effects of Lactiplantibacillus plantarum-KCC48 on high-fat diet-induced (HFD) fatty liver disease in mice. We used the transcriptome tool to perform a systematic evaluation of hepatic mRNA transcripts changes in high-fat diet (HFD)-fed animals and high-fat diet with L. plantarum (HFLPD)-fed animals. HFD causes fatty liver diseases in animals, as evidenced by an increase in TG content in liver tissues compared to control animals. Based on transcriptome data, 145 differentially expressed genes (DEGs) were identified in the liver of HFD-fed mice compared to control mice. Moreover, 61 genes were differentially expressed in the liver of mice fed the HFLPD compared to mice fed the HFD. Additionally, 43 common DEGs were identified between HFD and HFLPD. These genes were enriched in metabolic processes, retinol metabolism, the PPAR signaling pathway, fatty acid degradation, arachidonic metabolism, and steroid hormone synthesis. Taking these data into consideration, it can be concluded that L. plantarum-KCC48 treatment significantly regulates the expression of genes involved in hepatosteatosis caused by HFD, which may prevent fatty liver disease.
Collapse
Affiliation(s)
- Ilavenil Soundharrajan
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan 31000, Korea; (I.S.); (M.K.); (J.-S.J.)
| | - Muthusamy Karnan
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan 31000, Korea; (I.S.); (M.K.); (J.-S.J.)
| | - Jeong-Sung Jung
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan 31000, Korea; (I.S.); (M.K.); (J.-S.J.)
| | - Kyung-Dong Lee
- Department of Companion Animals, Dongsin University, Naju 58245, Korea;
| | - Jeong-Chae Lee
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea;
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju 55365, Korea
| | - Ki-Choon Choi
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan 31000, Korea; (I.S.); (M.K.); (J.-S.J.)
| |
Collapse
|