1
|
Li J, Li X, Zhang C, Zhou Q, Chen S. Phylogeographic analysis reveals extensive genetic variation of native grass Elymus nutans (Poaceae) on the Qinghai-Tibetan plateau. FRONTIERS IN PLANT SCIENCE 2024; 15:1349641. [PMID: 38529066 PMCID: PMC10961384 DOI: 10.3389/fpls.2024.1349641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/26/2024] [Indexed: 03/27/2024]
Abstract
Introduction Elymus nutans holds ecological and pastoral significance due to its adaptability and nutritional value, the Qinghai-Tibet Plateau (QTP) is a key hub for its genetic diversity. To conserve and harness its genetic resources in highland ecosystems, a thorough assessment is vital. However, a comprehensive phylogeographic exploration of E. nutans is lacking. The objective of this study was to unravel the genetic diversity, adaptation, and phylogenetics of E. nutans populations. Methods Encompassing 361 individuals across 35 populations, the species' genetic landscape and dynamic responses to diverse environments were decoded by using four chloroplast DNA (cpDNA) sequences and nine microsatellite markers derived from the transcriptome. Results and discussion This study unveiled a notable degree of genetic diversity in E. nutans populations at nuclear (I = 0.46, He = 0.32) and plastid DNA levels (Hd = 0.805, π = 0.67). Analysis via AMOVA highlighted genetic variation predominantly within populations. Despite limited isolation by distance (IBD), the Mekong-Salween Divide (MSD) emerged as a significant factor influencing genetic differentiation and conserving diversity. Furthermore, correlations were established between external environmental factors and effective alleles of three EST-SSRs (EN5, EN57 and EN80), potentially linked to glutathione S-transferases T1 or hypothetical proteins, affecting adaptation. This study deepens the understanding of the intricate relationship between genetic diversity, adaptation, and environmental factors within E. nutans populations on the QTP. The findings shed light on the species' evolutionary responses to diverse ecological conditions and contribute to a broader comprehension of plant adaptation mechanisms.
Collapse
Affiliation(s)
- Jin Li
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
| | - Xinda Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Changbing Zhang
- Institute of Grass Plants, Sichuan Academy of Grassland Science, Chengdu, China
| | - Qingping Zhou
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
| | - Shiyong Chen
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu, China
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| |
Collapse
|
2
|
Farkas A, Gaál E, Ivanizs L, Blavet N, Said M, Holušová K, Szőke-Pázsi K, Spitkó T, Mikó P, Türkösi E, Kruppa K, Kovács P, Darkó É, Szakács É, Bartoš J, Doležel J, Molnár I. Chromosome genomics facilitates the marker development and selection of wheat-Aegilops biuncialis addition, substitution and translocation lines. Sci Rep 2023; 13:20499. [PMID: 37993509 PMCID: PMC10665447 DOI: 10.1038/s41598-023-47845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
The annual goatgrass, Aegilops biuncialis is a rich source of genes with considerable agronomic value. This genetic potential can be exploited for wheat improvement through interspecific hybridization to increase stress resistance, grain quality and adaptability. However, the low throughput of cytogenetic selection hampers the development of alien introgressions. Using the sequence of flow-sorted chromosomes of diploid progenitors, the present study enabled the development of chromosome-specific markers. In total, 482 PCR markers were validated on wheat (Mv9kr1) and Ae. biuncialis (MvGB642) crossing partners, and 126 on wheat-Aegilops additions. Thirty-two markers specific for U- or M-chromosomes were used in combination with GISH and FISH for the screening of 44 Mv9kr1 × Ae. biuncialis BC3F3 genotypes. The predominance of chromosomes 4M and 5M, as well as the presence of chromosomal aberrations, may indicate that these chromosomes have a gametocidal effect. A new wheat-Ae. biuncialis disomic 4U addition, 4M(4D) and 5M(5D) substitutions, as well as several introgression lines were selected. Spike morphology and fertility indicated that the Aegilops 4M or 5M compensated well for the loss of 4D and 5D, respectively. The new cytogenetic stocks represent valuable genetic resources for the introgression of key genes alleles into wheat.
Collapse
Affiliation(s)
- András Farkas
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Eszter Gaál
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary.
| | - László Ivanizs
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Nicolas Blavet
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
| | - Mahmoud Said
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, 9 Gamma Street, Giza, Cairo, 12619, Egypt
| | - Kateřina Holušová
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
| | - Kitti Szőke-Pázsi
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Tamás Spitkó
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Péter Mikó
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Edina Türkösi
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Klaudia Kruppa
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Péter Kovács
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Éva Darkó
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Éva Szakács
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Jan Bartoš
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
| | - István Molnár
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
| |
Collapse
|
3
|
Said M, Cápal P, Farkas A, Gaál E, Ivanizs L, Friebe B, Doležel J, Molnár I. Flow karyotyping of wheat- Aegilops additions facilitate dissecting the genomes of Ae. biuncialis and Ae. geniculata into individual chromosomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1017958. [PMID: 36262648 PMCID: PMC9575658 DOI: 10.3389/fpls.2022.1017958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/09/2022] [Indexed: 06/13/2023]
Abstract
Breeding of wheat adapted to new climatic conditions and resistant to diseases and pests is hindered by a limited gene pool due to domestication and thousands of years of human selection. Annual goatgrasses (Aegilops spp.) with M and U genomes are potential sources of the missing genes and alleles. Development of alien introgression lines of wheat may be facilitated by the knowledge of DNA sequences of Aegilops chromosomes. As the Aegilops genomes are complex, sequencing relevant Aegilops chromosomes purified by flow cytometric sorting offers an attractive route forward. The present study extends the potential of chromosome genomics to allotetraploid Ae. biuncialis and Ae. geniculata by dissecting their M and U genomes into individual chromosomes. Hybridization of FITC-conjugated GAA oligonucleotide probe to chromosomes suspensions of the two species allowed the application of bivariate flow karyotyping and sorting some individual chromosomes. Bivariate flow karyotype FITC vs. DAPI of Ae. biuncialis consisted of nine chromosome-populations, but their chromosome content determined by microscopic analysis of flow sorted chromosomes indicated that only 7Mb and 1Ub could be sorted at high purity. In the case of Ae. geniculata, fourteen chromosome-populations were discriminated, allowing the separation of nine individual chromosomes (1Mg, 3Mg, 5Mg, 6Mg, 7Mg, 1Ug, 3Ug, 6Ug, and 7Ug) out of the 14. To sort the remaining chromosomes, a partial set of wheat-Ae. biuncialis and a whole set of wheat-Ae. geniculata chromosome addition lines were also flow karyotyped, revealing clear separation of the GAA-rich Aegilops chromosomes from the GAA-poor A- and D-genome chromosomes of wheat. All of the alien chromosomes represented by individual addition lines could be isolated at purities ranging from 74.5% to 96.6% and from 87.8% to 97.7%, respectively. Differences in flow karyotypes between Ae. biuncialis and Ae. geniculata were analyzed and discussed. Chromosome-specific genomic resources will facilitate gene cloning and the development of molecular tools to support alien introgression breeding of wheat.
Collapse
Affiliation(s)
- Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Field Crops Research Institute, Agricultural Research Centre, Cairo, Egypt
| | - Petr Cápal
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - András Farkas
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránd Kutatási Hálózat (ELKH), Martonvásár, Hungary
| | - Eszter Gaál
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránd Kutatási Hálózat (ELKH), Martonvásár, Hungary
| | - László Ivanizs
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránd Kutatási Hálózat (ELKH), Martonvásár, Hungary
| | - Bernd Friebe
- Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránd Kutatási Hálózat (ELKH), Martonvásár, Hungary
| |
Collapse
|
4
|
Orlov YL, Ivanisenko VA, Dobrovolskaya OB, Chen M. Plant Biology and Biotechnology: Focus on Genomics and Bioinformatics. Int J Mol Sci 2022; 23:ijms23126759. [PMID: 35743200 PMCID: PMC9223720 DOI: 10.3390/ijms23126759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
The study of molecular mechanisms of plant stress response is important for agrobiotechnology applications as it was discussed at series of recent bioinformatics conferences [...].
Collapse
Affiliation(s)
- Yuriy L. Orlov
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- The Digital Health Institute, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
- Correspondence:
| | | | - Oxana B. Dobrovolskaya
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|