1
|
Sobiech M, Khamanga SM, Synoradzki K, Bednarchuk TJ, Sikora K, Luliński P, Giebułtowicz J. Molecularly Imprinted Drug Carrier for Lamotrigine-Design, Synthesis, and Characterization of Physicochemical Parameters. Int J Mol Sci 2024; 25:4605. [PMID: 38731823 PMCID: PMC11083086 DOI: 10.3390/ijms25094605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
This study presents the initial attempt at introducing a magnetic molecularly imprinted polymer (MIP) designed specifically for lamotrigine with the purpose of functioning as a drug carrier. First, the composition of the magnetic polymer underwent optimization based on bulk polymer adsorption studies and theoretical analyses. The magnetic MIP was synthesized from itaconic acid and ethylene glycol dimethacrylate exhibiting a drug loading capacity of 3.4 ± 0.9 μg g-1. Structural characterization was performed using powder X-ray diffraction analysis, vibrating sample magnetometry, and Fourier transform infrared spectroscopy. The resulting MIP demonstrated controlled drug released characteristics without a burst effect in the phospahe buffer saline at pH 5 and 8. These findings hold promise for the potential nasal administration of lamotrigine in future applications.
Collapse
Affiliation(s)
- Monika Sobiech
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.S.); (K.S.)
| | | | - Karol Synoradzki
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland;
| | - Tamara J. Bednarchuk
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland;
| | - Katarzyna Sikora
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.S.); (K.S.)
| | - Piotr Luliński
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.S.); (K.S.)
| | - Joanna Giebułtowicz
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| |
Collapse
|
2
|
Panova GG, Krasnopeeva EL, Laishevkina SG, Kuleshova TE, Udalova OR, Khomyakov YV, Mirskaya GV, Vertebny VE, Zhuravleva AS, Shevchenko NN, Yakimansky AV. Polymer Gel Substrate: Synthesis and Application in the Intensive Light Artificial Culture of Agricultural Plants. Gels 2023; 9:937. [PMID: 38131923 PMCID: PMC10743194 DOI: 10.3390/gels9120937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
This work is devoted to the description of the synthesis of hydrogels in the process of cryotropic gel formation based on copolymerization of synthesized potassium 3-sulfopropyl methacrylate and 2-hydroxyethyl methacrylate (SPMA-co-HEMA) and assessing the potential possibility of their use as substrates for growing plants in intensive light culture in a greenhouse. Gel substrates based on the SPMA-co-HEMA were created in two compositions, differing from each other in the presence of macro- and microelements, and their effects were studied on the plants' physiological state (content of chlorophylls a and b, activity of catalase and peroxidase enzymes, intensity of lipid peroxidation, elemental compositions) at the vegetative period of their development and on the plants' growth, productivity and quality of plant production at the final stages of development. Experiments were carried out under controlled microclimate conditions. Modern and standard generally accepted methods of gels were employed (ATR-FTIR and 13C NMR spectral studies, scanning electron microscopy, measurement of specific surface area and pore volume), as well as the methods of the physiological and chemical analysis of plants. The study demonstrated the swelling ability of the created gel substrates. Hydrogels' structure, their specific surface area, porosity, and pore volume were investigated. Using the example of representatives of leaf, fruit and root vegetable crops, the high biological activity of gel substrates was revealed throughout the vegetation period. Species specificity in the reaction of plants to the presence of gel substrates in the root-inhabited environment was revealed. Lettuce, tomato and cucumber plants were more responsive to the effect of the gel substrate, and radish plants were less responsive. At the same time, more pronounced positive changes in plant growth, quality and productivity were observed in cucumber and lettuce in the variant of gel substrates with macro- and microelements and in tomato plants in both variants of gel substrates. Further research into the mechanisms of the influence of gel substrates on plants, as well as the synthesis of new gel substrates with more pronounced properties to sorb and retain moisture is promising.
Collapse
Affiliation(s)
- Gayane G. Panova
- Agrophysical Research Institute (AFI), 195220 Saint-Petersburg, Russia; (T.E.K.); (O.R.U.); (Y.V.K.); (G.V.M.); (V.E.V.); (A.S.Z.)
| | - Elena L. Krasnopeeva
- Institute of Macromolecular Compounds, Russian Academy of Sciences (IMC RAS), 199004 Saint-Petersburg, Russia; (E.L.K.); (S.G.L.); (N.N.S.); (A.V.Y.)
| | - Svetlana G. Laishevkina
- Institute of Macromolecular Compounds, Russian Academy of Sciences (IMC RAS), 199004 Saint-Petersburg, Russia; (E.L.K.); (S.G.L.); (N.N.S.); (A.V.Y.)
| | - Tatiana E. Kuleshova
- Agrophysical Research Institute (AFI), 195220 Saint-Petersburg, Russia; (T.E.K.); (O.R.U.); (Y.V.K.); (G.V.M.); (V.E.V.); (A.S.Z.)
| | - Olga R. Udalova
- Agrophysical Research Institute (AFI), 195220 Saint-Petersburg, Russia; (T.E.K.); (O.R.U.); (Y.V.K.); (G.V.M.); (V.E.V.); (A.S.Z.)
| | - Yuriy V. Khomyakov
- Agrophysical Research Institute (AFI), 195220 Saint-Petersburg, Russia; (T.E.K.); (O.R.U.); (Y.V.K.); (G.V.M.); (V.E.V.); (A.S.Z.)
| | - Galina V. Mirskaya
- Agrophysical Research Institute (AFI), 195220 Saint-Petersburg, Russia; (T.E.K.); (O.R.U.); (Y.V.K.); (G.V.M.); (V.E.V.); (A.S.Z.)
| | - Vitaly E. Vertebny
- Agrophysical Research Institute (AFI), 195220 Saint-Petersburg, Russia; (T.E.K.); (O.R.U.); (Y.V.K.); (G.V.M.); (V.E.V.); (A.S.Z.)
| | - Anna S. Zhuravleva
- Agrophysical Research Institute (AFI), 195220 Saint-Petersburg, Russia; (T.E.K.); (O.R.U.); (Y.V.K.); (G.V.M.); (V.E.V.); (A.S.Z.)
| | - Natalia N. Shevchenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences (IMC RAS), 199004 Saint-Petersburg, Russia; (E.L.K.); (S.G.L.); (N.N.S.); (A.V.Y.)
| | - Alexander V. Yakimansky
- Institute of Macromolecular Compounds, Russian Academy of Sciences (IMC RAS), 199004 Saint-Petersburg, Russia; (E.L.K.); (S.G.L.); (N.N.S.); (A.V.Y.)
| |
Collapse
|
3
|
Recent Reports on Polysaccharide-Based Materials for Drug Delivery. Polymers (Basel) 2022; 14:polym14194189. [PMID: 36236137 PMCID: PMC9572459 DOI: 10.3390/polym14194189] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Polysaccharides constitute one of the most important families of biopolymers. Natural polysaccharide-based drug delivery systems are of constant interest to the scientific community due to their unique properties: biocompatibility, non-toxicity, biodegradability, and high availability. These promising biomaterials protect sensitive active agents and provide their controlled release in targeted sites. The application of natural polysaccharides as drug delivery systems is also intensively developed by Polish scientists. The present review focuses on case studies from the last few years authored or co-authored by research centers in Poland. A particular emphasis was placed on the diversity of the formulations in terms of the active substance carried, the drug delivery route, the composition of the material, and its preparation method.
Collapse
|
4
|
Cavallaro G, Caruso MR, Milioto S, Fakhrullin R, Lazzara G. Keratin/alginate hybrid hydrogels filled with halloysite clay nanotubes for protective treatment of human hair. Int J Biol Macromol 2022; 222:228-238. [PMID: 36155783 DOI: 10.1016/j.ijbiomac.2022.09.170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022]
Abstract
Keratin/alginate hydrogels filled with halloysite nanotubes (HNTs) have been tested for the protective coating of human hair. Preliminary studies have been conducted on the aqueous colloidal systems and the corresponding hydrogels obtained by using Ca2+ ions as crosslinkers. Firstly, we have investigated the colloidal properties of keratin/alginate/HNTs dispersions to explore the specific interactions occurring between the biomacromolecules and the nanotubes. Then, the rheological properties of the hydrogels have been studied highlighting that the keratin/alginate interactions and the subsequent addition of HNTs facilitate the biopolymer crosslinking. Finally, human hair samples have been treated with the hydrogel systems by the dipping procedure. The protection efficiency of the hydrogels has been evaluated by studying the tensile properties of hair fibers exposed to UV irradiation. In conclusion, keratin/alginate hydrogel filled with halloysite represents a promising formulation for hair protective treatments due to the peculiar structural and rheological characteristics.
Collapse
Affiliation(s)
- Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy.
| | - Maria Rita Caruso
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy
| | - Stefana Milioto
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan, 420008, Russian Federation
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| |
Collapse
|
5
|
Abdullah T, Qurban RO, Abdel-Wahab MS, Salah NA, Melaibari AA, Zamzami MA, Memić A. Development of Nanocoated Filaments for 3D Fused Deposition Modeling of Antibacterial and Antioxidant Materials. Polymers (Basel) 2022; 14:2645. [PMID: 35808690 PMCID: PMC9269528 DOI: 10.3390/polym14132645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) printing is one of the most futuristic manufacturing technologies, allowing on-demand manufacturing of products with highly complex geometries and tunable material properties. Among the different 3D-printing technologies, fused deposition modeling (FDM) is the most popular one due to its affordability, adaptability, and pertinency in many areas, including the biomedical field. Yet, only limited amounts of materials are commercially available for FDM, which hampers their application potential. Polybutylene succinate (PBS) is one of the biocompatible and biodegradable thermoplastics that could be subjected to FDM printing for healthcare applications. However, microbial contamination and the formation of biofilms is a critical issue during direct usage of thermoplastics, including PBS. Herein, we developed a composite filament containing polybutylene succinate (PBS) and lignin for FDM printing. Compared to pure PBS, the PBS/lignin composite with 2.5~3.5% lignin showed better printability and antioxidant and antimicrobial properties. We further coated silver/zinc oxide on the printed graft to enhance their antimicrobial performance and obtain the strain-specific antimicrobial activity. We expect that the developed approach can be used in biomedical applications such as patient-specific orthoses.
Collapse
Affiliation(s)
- Turdimuhammad Abdullah
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (M.S.A.-W.); (N.A.S.); (A.A.M.)
| | - Rayyan O. Qurban
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.O.Q.); (M.A.Z.)
| | - Mohamed Sh. Abdel-Wahab
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (M.S.A.-W.); (N.A.S.); (A.A.M.)
| | - Numan A. Salah
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (M.S.A.-W.); (N.A.S.); (A.A.M.)
| | - Ammar AbdulGhani Melaibari
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (M.S.A.-W.); (N.A.S.); (A.A.M.)
- Department of Mechanical Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mazin A. Zamzami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (R.O.Q.); (M.A.Z.)
| | - Adnan Memić
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.A.); (M.S.A.-W.); (N.A.S.); (A.A.M.)
| |
Collapse
|
6
|
Wang X, Hou X, Zou P, Zhang M, Ma L. Development of Cationic Cellulose-Modified Bentonite-Alginate Nanocomposite Gels for Sustained Release of Alachlor. ACS OMEGA 2022; 7:20032-20043. [PMID: 35722019 PMCID: PMC9202269 DOI: 10.1021/acsomega.2c01805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The nanocomposite gel prepared from nanoclay and natural polysaccharides showed a good sustained-release property. Herein, a cationic cellulose-modified bentonite-alginate nanocomposite gel was prepared and used to enhance the sustained release of alachlor. The underlying effect and mechanism of the structure of modified bentonite-alginate nanocomposite gels on the release behavior of alachlor were explored by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric (TG) analysis. The results showed that the release of alachlor from the nanocomposite gels was dominated by Fickian diffusion and closely related to the adsorption capacity and permeability of the matrix. The cationic cellulose intercalated into the interlayer space of bentonite through an ion exchange reaction, which significantly enhanced the hydrophobicity of bentonite and its interaction with alachlor. The stacking aggregation of bentonite nanoplatelets and permeability of the gel network were decreased through the electrostatic interaction between cationic cellulose and alginate molecular chains, thus remarkably enhancing the sustained-release property of the nanocomposite gel. The release kinetics revealed that the release rate of alachlor from the nanocomposite gel first decreased and then increased as the content of bentonite and modified bentonite gradually increased. Also, the best sustained-release property of the nanocomposite gel was obtained at bentonite and modified bentonite additions of about 10%, under which the release time of 50% alachlor (T 50) from bentonite-alginate and modified bentonite-alginate nanocomposite gels was 4.4 and 5.6 times longer than the release time from pure alginate gels, respectively.
Collapse
|