1
|
Bakaeva Z, Goncharov M, Frolov F, Krasilnikova I, Sorokina E, Zgodova A, Smolyarchuk E, Zavadskiy S, Andreeva L, Myasoedov N, Fisenko A, Savostyanov K. Regulatory Peptide Pro-Gly-Pro Accelerates Neuroregeneration of Primary Neuroglial Culture after Mechanical Injury in Scratch Test. Int J Mol Sci 2024; 25:10886. [PMID: 39456669 PMCID: PMC11507231 DOI: 10.3390/ijms252010886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
The scratch test is used as an experimental in vitro model of mechanical damage to primary neuronal cultures to study the mechanisms of cell death in damaged areas. The involvement of NMDA receptors in processes leading to delayed neuronal death, due to calcium dysregulation and synchronous mitochondrial depolarization, has been previously demonstrated. In this study, we explored the neuroregenerative potential of Pro-Gly-Pro (PGP)-an endogenous regulatory peptide with neuroprotective and anti-inflammatory properties and a mild chemoattractant effect. Mechanical injury to the primary neuroglial culture in the form of a scratch caused acute disruption of calcium homeostasis and mitochondrial functions. This was accompanied by neuronal death alongside changes in the profile of neuronal markers (BDNF, NSE and GFAP). In another series of experiments, under subtoxic doses of glutamate (Glu, 33 μM), delayed changes in [Ca2+]i and ΔΨm, i.e., several days after scratch application, were more pronounced in cells in damaged neuroglial cultures. The percentage of cells that restored the initial level of [Ca2+]i (p < 0.05) and the rate of recovery of ΔΨm (p < 0.01) were decreased compared with undamaged cells. Prophylactic application of PGP (100 μM, once) prevented the increase in [Ca2+]i and the sharp drop in mitochondrial potential [ΔΨm] at the time of scratching. Treatment with PGP (30 μM, three or six days) reduced the delayed Glu-induced disturbances in calcium homeostasis and cell death. In the post-glutamate period, the surviving neurons more effectively restored the initial levels of [Ca2+]i (p < 0.001) and Ψm (p < 0.0001). PGP also increased intracellular levels of BDNF and reduced extracellular NSE. In the context of the peptide's therapeutic effect, the recovery of the damaged neuronal network occurred faster due to reduced astrogliosis and increased migration of neurons to the scratch area. Thus, the peptide PGP has a neuroprotective effect, increasing the survival of neuroglial cells after mechanical trauma in vitro by reducing cellular calcium overload and preventing mitochondrial dysfunction. Additionally, the tripeptide limits the post-traumatic consequences of mechanical damage: it reduces astrogliosis and promotes neuronal regeneration.
Collapse
Affiliation(s)
- Zanda Bakaeva
- National Medical Research Center of Children’s Health, 119296 Moscow, Russia; (I.K.); (E.S.)
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (F.F.); (E.S.)
- Kalmyk State University Named after B.B. Gorodovikov, 358000 Elista, Russia
| | - Mikhail Goncharov
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany;
| | - Fyodor Frolov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (F.F.); (E.S.)
| | - Irina Krasilnikova
- National Medical Research Center of Children’s Health, 119296 Moscow, Russia; (I.K.); (E.S.)
| | - Elena Sorokina
- National Medical Research Center of Children’s Health, 119296 Moscow, Russia; (I.K.); (E.S.)
| | - Arina Zgodova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (F.F.); (E.S.)
| | - Elena Smolyarchuk
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (F.F.); (E.S.)
| | - Sergey Zavadskiy
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (F.F.); (E.S.)
| | - Liudmila Andreeva
- National Research Centre «Kurchatov Institute» (NRC «Kurchatov Institute»), 123182 Moscow, Russia; (L.A.); (N.M.)
| | - Nikolai Myasoedov
- National Research Centre «Kurchatov Institute» (NRC «Kurchatov Institute»), 123182 Moscow, Russia; (L.A.); (N.M.)
| | - Andrey Fisenko
- National Medical Research Center of Children’s Health, 119296 Moscow, Russia; (I.K.); (E.S.)
| | - Kirill Savostyanov
- National Medical Research Center of Children’s Health, 119296 Moscow, Russia; (I.K.); (E.S.)
| |
Collapse
|
2
|
Clemente-Suárez VJ, Beltrán-Velasco AI, Redondo-Flórez L, Martín-Rodríguez A, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Neuro-Vulnerability in Energy Metabolism Regulation: A Comprehensive Narrative Review. Nutrients 2023; 15:3106. [PMID: 37513524 PMCID: PMC10383861 DOI: 10.3390/nu15143106] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
This comprehensive narrative review explores the concept of neuro-vulnerability in energy metabolism regulation and its implications for metabolic disorders. The review highlights the complex interactions among the neural, hormonal, and metabolic pathways involved in the regulation of energy metabolism. The key topics discussed include the role of organs, hormones, and neural circuits in maintaining metabolic balance. The review investigates the association between neuro-vulnerability and metabolic disorders, such as obesity, insulin resistance, and eating disorders, considering genetic, epigenetic, and environmental factors that influence neuro-vulnerability and subsequent metabolic dysregulation. Neuroendocrine interactions and the neural regulation of food intake and energy expenditure are examined, with a focus on the impact of neuro-vulnerability on appetite dysregulation and altered energy expenditure. The role of neuroinflammation in metabolic health and neuro-vulnerability is discussed, emphasizing the bidirectional relationship between metabolic dysregulation and neuroinflammatory processes. This review also evaluates the use of neuroimaging techniques in studying neuro-vulnerability and their potential applications in clinical settings. Furthermore, the association between neuro-vulnerability and eating disorders, as well as its contribution to obesity, is examined. Potential therapeutic interventions targeting neuro-vulnerability, including pharmacological treatments and lifestyle modifications, are reviewed. In conclusion, understanding the concept of neuro-vulnerability in energy metabolism regulation is crucial for addressing metabolic disorders. This review provides valuable insights into the underlying neurobiological mechanisms and their implications for metabolic health. Targeting neuro-vulnerability holds promise for developing innovative strategies in the prevention and treatment of metabolic disorders, ultimately improving metabolic health outcomes.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | | | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Tajo Street s/n, 28670 Madrid, Spain
| | | | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile
| | | |
Collapse
|
3
|
Song JL, Westover MB, Zhang R. A mechanistic model of calcium homeostasis leading to occurrence and propagation of secondary brain injury. J Neurophysiol 2022; 128:1168-1180. [PMID: 36197012 PMCID: PMC9621713 DOI: 10.1152/jn.00045.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Secondary brain injury (SBI) refers to new or worsening brain insult after primary brain injury (PBI). Neurophysiological experiments show that calcium (Ca2+) is one of the major culprits that contribute to neuronal damage and death following PBI. However, mechanistic details about how alterations of Ca2+ levels contribute to SBI are not well characterized. In this paper, we first build a biophysical model for SBI related to calcium homeostasis (SBI-CH) to study the mechanistic details of PBI-induced disruption of CH, and how these disruptions affect the occurrence of SBI. Then, we construct a coupled SBI-CH model by formulating synaptic interactions to investigate how disruption of CH affects synaptic function and further promotes the propagation of SBI between neurons. Our model shows how the opening of voltage-gated calcium channels (VGCCs), decreasing of plasma membrane calcium pump (PMCA), and reversal of the Na+/Ca2+ exchanger (NCX) during and following PBI, could induce disruption of CH and further promote SBI. We also show that disruption of CH causes synaptic dysfunction, which further induces loss of excitatory-inhibitory balance in the system, and this might promote the propagation of SBI and cause neighboring tissue to be injured. Our findings offer a more comprehensive understanding of the complex interrelationship between CH and SBI.NEW & NOTEWORTHY We build a mechanistic model SBI-CH for calcium homeostasis (CH) to study how alterations of Ca2+ levels following PBI affect the occurrence and propagation of SBI. Specifically, we investigate how the opening of VGCCs, decreasing of PMCA, and reversal of NCX disrupt CH, and further induce the occurrence of SBI. We also present a coupled SBI-CH model to show how disrupted CH causes synaptic dysfunction, and further promotes the propagation of SBI between neurons.
Collapse
Affiliation(s)
- Jiang-Ling Song
- The Medical Big Data Research Center, Northwest University, Xi'an, People's Republic of China
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rui Zhang
- The Medical Big Data Research Center, Northwest University, Xi'an, People's Republic of China
| |
Collapse
|
4
|
Zgodova A, Pavlova S, Nekrasova A, Boyarkin D, Pinelis V, Surin A, Bakaeva Z. Isoliquiritigenin Protects Neuronal Cells against Glutamate Excitotoxicity. MEMBRANES 2022; 12:1052. [PMID: 36363608 PMCID: PMC9693036 DOI: 10.3390/membranes12111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
It is considered that glutamate excitotoxicity may be a major factor in the pathological death of neurons and mediate the development of neurodegenerative diseases in humans. Here, we show that isoliquiritigenin (ILG) at a concentration of 0.5-5 µM protects primary neuroglial cell culture from glutamate-induced death (glutamate 100 µM). ILG (1 µM) prevented a sharp increase in [Ca2+]i and a decrease in mitochondrial potential (ΔΨm). With the background action of ILG (1-5 µM), there was an increase in oxygen consumption rate (OCR) in response to glutamate, as well as in reserve respiration. The neuroprotective effect of ILG (5 µM) was accompanied by an increase in non-mitochondrial respiration. The results show that ILG can protect cortical neurons from death by preventing the development of calcium deregulation and limiting mitochondrial dysfunction caused by a high dose of glutamate. We hypothesize that ILG will be useful in drug development for the prevention or treatment of neurodegenerative diseases accompanied by glutamate excitotoxicity.
Collapse
Affiliation(s)
- Arina Zgodova
- Laboratory of Neurobiology and Fundamentals of Brain Development, National Medical Research Center of Children’s Health, 119991 Moscow, Russia
- Department of Psychiatry and Psychosomatics, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Svetlana Pavlova
- Department of Pharmacology, Clinical Pharmacology and Biochemistry, Chuvash State University named after I.N. Ulyanov, 428015 Cheboksary, Russia
| | - Anastasia Nekrasova
- Laboratory of Neurobiology and Fundamentals of Brain Development, National Medical Research Center of Children’s Health, 119991 Moscow, Russia
| | - Dmitriy Boyarkin
- Laboratory of Neurobiology and Fundamentals of Brain Development, National Medical Research Center of Children’s Health, 119991 Moscow, Russia
| | - Vsevolod Pinelis
- Laboratory of Neurobiology and Fundamentals of Brain Development, National Medical Research Center of Children’s Health, 119991 Moscow, Russia
| | - Alexander Surin
- Laboratory of Neurobiology and Fundamentals of Brain Development, National Medical Research Center of Children’s Health, 119991 Moscow, Russia
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Zanda Bakaeva
- Laboratory of Neurobiology and Fundamentals of Brain Development, National Medical Research Center of Children’s Health, 119991 Moscow, Russia
- Department of Medicine, General Biology and Physiology, Kalmyk State University named after B.B. Gorodovikov, 358000 Elista, Russia
| |
Collapse
|
5
|
Pinelis V, Krasilnikova I, Bakaeva Z, Surin A, Boyarkin D, Fisenko A, Krasilnikova O, Pomytkin I. Insulin Diminishes Superoxide Increase in Cytosol and Mitochondria of Cultured Cortical Neurons Treated with Toxic Glutamate. Int J Mol Sci 2022; 23:ijms232012593. [PMID: 36293449 PMCID: PMC9604026 DOI: 10.3390/ijms232012593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Glutamate excitotoxicity is involved in the pathogenesis of many disorders, including stroke, traumatic brain injury, and Alzheimer’s disease, for which central insulin resistance is a comorbid condition. Neurotoxicity of glutamate (Glu) is primarily associated with hyperactivation of the ionotropic N-methyl-D-aspartate receptors (NMDARs), causing a sustained increase in intracellular free calcium concentration ([Ca2+]i) and synchronous mitochondrial depolarization and an increase in intracellular superoxide anion radical (O2–•) production. Recently, we found that insulin protects neurons against excitotoxicity by decreasing the delayed calcium deregulation (DCD). However, the role of insulin in O2–• production in excitotoxicity still needs to be clarified. The present study aims to investigate insulin’s effects on glutamate-evoked O2–• generation and DCD using the fluorescent indicators dihydroethidium, MitoSOX Red, and Fura-FF in cortical neurons. We found a linear correlation between [Ca2+]i and [O2–•] in primary cultures of the rat neuron exposed to Glu, with insulin significantly reducing the production of intracellular and mitochondrial O2–• in the primary cultures of the rat neuron. MK 801, an inhibitor of NMDAR-gated Ca2+ influx, completely abrogated the glutamate effects in both the presence and absence of insulin. In experiments in sister cultures, insulin diminished neuronal death and O2 consumption rate (OCR).
Collapse
Affiliation(s)
- Vsevolod Pinelis
- Laboratory of Neurobiology, National Medical Research Center of Children’s Health, Russian Ministry of Health, Lomonosov Avenue 2, Bldg 1, 119991 Moscow, Russia
- Correspondence: (V.P.); (I.P.)
| | - Irina Krasilnikova
- Laboratory of Neurobiology, National Medical Research Center of Children’s Health, Russian Ministry of Health, Lomonosov Avenue 2, Bldg 1, 119991 Moscow, Russia
| | - Zanda Bakaeva
- Laboratory of Neurobiology, National Medical Research Center of Children’s Health, Russian Ministry of Health, Lomonosov Avenue 2, Bldg 1, 119991 Moscow, Russia
- Department of General Biology and Physiology, Kalmyk State University Named after B.B. Gorodovikov, St. Pushkin, 11, 358000 Elista, Russia
| | - Alexander Surin
- Laboratory of Neurobiology, National Medical Research Center of Children’s Health, Russian Ministry of Health, Lomonosov Avenue 2, Bldg 1, 119991 Moscow, Russia
- Laboratory of Pathology of Ion Transport and Intracellular Signaling, Institute of General Pathology and Pathophysiology, Baltiyskaya St., 8, 125315 Moscow, Russia
| | - Dmitrii Boyarkin
- Laboratory of Neurobiology, National Medical Research Center of Children’s Health, Russian Ministry of Health, Lomonosov Avenue 2, Bldg 1, 119991 Moscow, Russia
| | - Andrei Fisenko
- Laboratory of Neurobiology, National Medical Research Center of Children’s Health, Russian Ministry of Health, Lomonosov Avenue 2, Bldg 1, 119991 Moscow, Russia
| | - Olga Krasilnikova
- Department of Regenerative Medicine, National Medical Research Radiological Center, 4 Koroleva St., 249036 Obninsk, Russia
| | - Igor Pomytkin
- Institute of Pharmacy, The First Sechenov Moscow State Medical University under Ministry of Health of the Russian Federation, St. Trubetskaya, 8, Bldg 2, 119991 Moscow, Russia
- Correspondence: (V.P.); (I.P.)
| |
Collapse
|